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Abstract

Background

Lateralization of the glenoid implant improves functional outcomes in Reverse Shoulder

Arthroplasty. Lateralization does not appear to impact the Deltoid’s Moment Arm. Therefore,

the stabilizing effect described in the literature would not be the result of an increase this

moment arm. A static biomechanical model, derived from Magnetic Resonance Imaging,

can be used to assess the coaptation effect of the Middle Deltoid. The objective of this study

was to analyze the impact of increasing amounts of glenoid lateralization on the moment

arm but also on its coaptation effect.

Methods

Eight patients (72.6 ± 6.5 years) operated for Reverse Shoulder Arthroplasty were included

in the study. Three-dimensional models of each shoulder were created based on imaging

taken at 6 months postoperative. A least square sphere representing the prosthetic implant

was added to each 3D models. A static biomechanical model was then applied to different

planar portions of the Middle Deltoid (from 3D models), first without lateralization and then

with simulated lateralization of 6, 9 and 12mm. This static model enables to compute a

Coaptation/Elevation Ratio and to measure the Deltoid’s Moment Arm. The inter- and intra-

rater agreement of the 3D models was evaluated.

Results

One patient was excluded due to motion during imaging. The inter- and intra-rater agree-

ment was over 0.99. The ratio increased starting at 6 mm of lateralization (p<0.05), com-

pared to the initial position. The moment arm was not affected by lateralization (p<0.05),

except in two slices starting at 9 mm (S1 p<0.05 and S2 p<0.05).
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Conclusion

Our hypothesis that the Middle Deltoid’s coaptation role would be greater with glenosphere

lateralization was confirmed. This trend was not found in the moment arm, which showed lit-

tle sensitivity to lateralization. The stabilizing effect therefore appears to stem from the coap-

tation role of the Middle Deltoid.

1. Introduction

The Reverse Shoulder Arthroplasty (RSA) technique developed by Grammont aimed to lower

and medialize the glenohumeral joint’s center of rotation and increase the Deltoid’s Moment

Arm (DMA) [1–3]. Scapular notching remains a common complication of RSA [1–12]. Het-

trich et al. [4] define scapular notching as the result of a mechanical conflict between the

medial part of the metaglene against the lateral edge of the scapula during adduction move-

ments. Notching is therefore responsible for progressive osteolysis of the glenoid as well as pre-

mature wear of the metaglene, making the implant unstable. This is the major complication of

this type of arthroplasty. According to Rugg et al. [3], scapular notching is thought to be pres-

ent in nearly 2/3 of RSA 2 years postoperatively. Hettrich et al. [4] even estimate that notching

occurs in 31% to 97% of patients undergoing RSA. Clinically, notching is evidenced by loss of

muscle strength, pain, deterioration of active mobility of the shoulder in flexion and abduction

[3]. Hoenecke et al. [13] believe that optimal implant positioning is a trade-off between this

potential complication and deltoid efficacy. Lateralization can help minimize medialization,

which causes notching, using either the glenoid or humeral implant, or a glenoid bone graft

[11, 14, 15]. For Boileau et al. [8–12], lateralization is a key element to achieve adequate passive

range of motion while minimizing the risk of notching. Tightening of the deltoid through lat-

eralization would help increase joint stability [10–12]. Although lateralization is widely stud-

ied, the ideal amount required to improve shoulder mobility, stability and strength—while

simultaneously decreasing notching—has yet to be determined. Studies report lateralization

between 1 mm and 13 mm [1–13]. For Boileau et al., graft thickness should be 10 mm [9, 11,

16]. However, lateralization does not seem to impact the DMA [14]. Therefore, it is impossible

to explain the stabilizing effect described by Boileau et al. [10–12] by changes in this DMA. Li

et al. [17] and Smith et al. [18] showed that the Middle Deltoid (MD) has key role after RSA

with an increase of EMG activity after surgery. Thus, a specific focus on this part of the deltoid

muscle is clinically relevant.

A more in-depth mechanical study of the MD will help define its stabilizing role. Gagey

et al. [19], Billuart et al. [20] and Hereter Gregory et al. [21] have developed a model based on

Magnetic Resonance Imaging (MRI) studies to characterize the coaptation and elevator role of

each portion of the MD using a Coaptation/Elevation Ratio (CER). This ratio is computed

between the "elevating" force (which raises the humeral head and “destabilizes” the shoulder)

and "lowering" force (which stabilizes the humeral head) using angle measurements and force

estimation. This ratio thus makes it possible to characterize the main action of the middle del-

toid on the glenohumeral joint in a static and plane condition. This model, applied to patients

suffering from shoulder osteoarthritis, showed that the MD played an important role as an ele-

vator muscle but that it had a coaptation component as well, stabilizing the shoulder [19].

Therefore, the primary objective of this preliminary study was to analyze the impact of an

increase in glenosphere lateralization on the DMA, but also on the coaptation role of MD. By

comparing the initial position of the glenosphere with simulated lateralizations, our hypothesis
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is that lateralization will increase the coaptation role of the MD without impacting its DMA.

Assessing the reliability of the 3D models was the study’s secondary objective.

2. Materials & methods

The Ethics Committee of the Groupe Hospitalier du Havre (GHH) approved and deemed the

protocol of this study to comply with the ethics rules on clinical research on January 15th,

2021. Experimental work including human subjects within the framework of this study can be

implemented. Each patient was informed of the study via a newsletter. Then, each patient gave

their consent to participate in the study by signing a consent letter informing them that their

data will be used for the current study. Patient data has been anonymized.

2.1 Patients

Eight RSA patients were included at the beginning of the study, from March 8th to March 12th

2021 (Table 1). The inclusion criteria were RSA performed less than 6 months prior and an

indication of cuff tear arthropathy diagnosed with imaging. Exclusion criteria were a history of

surgery or trauma to the affected shoulder, the presence of complications, such as dislocation

or surgical site infection and other severe medical conditions (neurological, cardiovascular,

oncological). The exclusion criteria were screened for on MRI. Finally, movements of the

patient (voluntary or not) during the MRI examination, rendering the images uninterpretable

was the last exclusion criterion (thus one patient was excluded after imaging). All the patients

were treated by the same surgeon between February 1st 2021 and February 5th 2021, using the

deltoid-splitting approach without lateralization of the glenoid implant.

2.2 MRI protocol

The images were taken with a 1.5T MRI scanner (Siemens™ Magnetom Aera, Munich, Ger-

many). The subjects were supine, with an angle of 80˚ between the humeral diaphysis and the

scapula (measured with a goniometer) and palms up. 3D measurement of this angle was not

possible due to artefacts on the MRI near the glenosphere. The images were taken in Spin-

Echo T1-weighted sequence (472/8 for the coronal plane and 350/7.5 for the axial plane, field

of view: 560X640) with a fat hypersignal suppression option: Fat Sat 1. Slice thickness was 3

mm, joined without overlapping.

2.3 3D modeling

The deltoid, the humeral diaphysis, the clavicle and acromion were manually segmented on

each slice and automatically reconstructed in 3D with the SliceOmatic™ software (Tomovision™,

Table 1. Patient characteristics.

Patients Sex Age OS Implant used Glenosphere (mm)

P1 F 67 L Aequalis Ascend Flex, Wright-Tornier™ 36

P2 F 67 R Delta XTEND, DePuy-Synthes™ 38

P3 M 78 R Delta XTEND, DePuy-Synthes™ 38

P4 F 79 R Delta XTEND, DePuy-Synthes™ 38

P5 F 82 L Delta XTEND, DePuy-Synthes™ 38

P6 M 67 R Delta XTEND, DePuy-Synthes™ 38

P7 F 66 L Aequalis Ascend Flex Wright-Tornier™ 36

P8 F 75 L Delta XTEND, DePuy-Synthes™ 38

P = Patients; OS = Operated Shoulder; F = Female; M = Male; L = Left; R = Right

https://doi.org/10.1371/journal.pone.0255817.t001
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Montreal, Canada). The implants could not be reconstructed because of the presence of several

artifacts (Fig 1).

2.4 Static analysis

The model used in this study computed the CER on MD planar slices, taken from the 3D mod-

els. The MD was defined as a mechanical system and the external forces applied to it were

inventoried (Fig 2). Mass and thickness of MD, and other muscles were not taken into consid-

eration. The MD encapsulates the implant like a string on a pulley. The MD’s action on the

pulley at its distal insertion site is defined as F01
�!

with F01
�!
¼ � F1
��!

. The action of MD on the

pulley is defined as R0!with R0! ¼ � R�!. Considering the external forces inventoried and the

principles of statics, the following equation was defined within the plane:

F1
�!
þ F2
�!
þ R!¼ 0!.

The forces projected on the y’y axis were as follows:

Ry = F1 cos(E)+F1 cos(2T+E)

Hence: Ry = 2F1 cos(T) cos(T+E)

The CER is computed based on standard forces directly in contact with the humerus:

• Coaptation force = action of MD on the pulley, as R0y

• Elevator force = distal effect of the MD on the humerus, as: F01y

The formula used was: CER ¼ R0y
F01y.

Finally:

• R0y = −2 F1cos(T)cos(T+E)

Fig 1. Manual segmentation of the slices and 3D modeling with SliceOmatic™ software. In Green: acromion; in

Red: deltoid; in Blue: clavicle; in Grey: humeral diaphysis.

https://doi.org/10.1371/journal.pone.0255817.g001
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• F01y = F1 cos (E)

R0y
F01y ¼

� 2F1cosðTÞcosðTþEÞ
F1cosðEÞ

¼
� 2cosðTÞcosðTþEÞ

cosðEÞ

Finally, to compute the CER, angle T̂ and Ê have to be measured on MD planar slices.

2.5 3D model segmentation

To compute the CER based on T̂ and Ê, we used various MD slices of the planar model

extracted from the 3D models (Fig 2B). For this part of the study the mechanical model devel-

oped and validated by Billuart et al. [20] and then by Hereter Gregori et al. [21] on degenera-

tive shoulders was used and transposed to prosthetic shoulders. In the present study, the

following methodology was used: the MD was considered the sum of “n” muscle fibers, start-

ing at the anterior and lateral aspect of the acromion and terminating on the deltoid V (DIP)

which lay on a sphere representing the contact area between the prosthetic implant and the

internal aspect of the MD. This sphere called ILSS (Implant Least Squared Sphere) was posi-

tioned within the 3D model using the least squared method in SliceOmatic™. The following

methodology was used to build ILSS: a mesh sphere was created in the software, which allows

manual point selection on the internal aspect of the MD. Its size (radius ILSS) and its position

were adjusted manually in the 3D model, as close to the desired position as possible (Fig 3).

Then the least square methodology was used: the software eliminates all the points for which

the normal vectors are not in the same direction as the sphere’s normal vector. If the scalar

product between the two directions: "normal" x "dir (node—center)" is over 0, the point is

eliminated. Then, the software’s “distance” function eliminates 10% (with each click) of the

points most distant from the surface of the sphere, using the following equation: dist2 = ABS

((node-cent)2 –r2)). The radius of this sphere was identified as ILSS radius and recorded.

Then, the 3D models were segmented in several plane sections using 3 points:

Fig 2. Biomechanical models used in the present study. (A) External forces and fundamental principles of the static

model. F1
�!

corresponds to the distal insertion Point (PID). F2
�!

is the proximal insertion point (PIP). F1
�!
¼ F2
�!

: R! is

equivalent to the reaction force on the MD. (B) The Y’Y axis is parallel to the humeral diaphysis. Ê represents the angle

between MD muscle fiber orientation and the humeral diaphysis axis. B̂ represents the MD’s change in direction.

T̂ ¼ B̂=2. Only the normal F1 and R vectors are used to compute the CER (forces directly in contact with the

humerus). This model makes it possible to compute the CER using angle measurements.

https://doi.org/10.1371/journal.pone.0255817.g002
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• Point 1: center of a 2nd least squared sphere going through manually chosen points on the

acromion, using the same methodology as ILSS (Fig 3B).

• Point 2: manual selection on A2 insertion of MD [22], changing in 10˚ increments with each

slice and running through all the acromion (Fig 4).

• Point 3: center of the humeral diaphysis.

From these three points, a 4x4 homogeneous transformation matrix of the new plane was

defined. For each pixel of this new plane, the cubic interpolation data was computed from the

eight neighboring pixels from the original model using the following formula: 2t3 - 3t2 + 1,

Fig 3. Positioning of the least square spheres (ILSS and acromion). (A) A mesh sphere is created which allows

manual point selection on the internal aspect of the MD: its size (radius ILSS) and position are adjusted manually in

the 3D model, as close to the desired position as possible. (B) The grey sphere is the 2nd least squared sphere going

through the acromion to find Point 1.

https://doi.org/10.1371/journal.pone.0255817.g003

Fig 4. Plane Slices selection and angle measurements. (A) Point 2 changes on each slice: S4 = A2, S3 = A3, S2 = M1

and S4 = P1. (B) Each plane slice includes a MD string (red), a pulley (part of the ILSS, purple), a part of the acromion

(green) and of the clavicle (blue). The CER is computed using the T̂ and Ê measurements with the straight yellow

lines. (C) Caption credit: Sakoma et al. [22].

https://doi.org/10.1371/journal.pone.0255817.g004
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where t is the distance between the new point and one of the points from the original model.

Then, four plane slices were chosen manually for each shoulder, according to the study by

Sakoma et al. [22]. Indeed, the slices passing through the insertion points on the acromion and

corresponding to the four MD intramuscular tendons insertions described by Sakoma et al.
[22] were selected (Fig 4C). Thus, the Slice 4 in the present study (S4) goes through the A2

insertion described by Sakoma et al. [22]. In the same way: S3 = A3, S2 = M1, S1 = P1 (Fig 4).

The different steps from the manual selection of the slices to the incorporation of the bio-

mechanical model by Billuart et al. [20] and then the measurement of the angles is summarized

in Fig 5.

2.6 CER computation

The angles were measured manually on each of the four slices (Fig 4B). A straight line in con-

tact with the pulley and following the internal aspect of the MD was called the MD line. The

intersection between the MD line and the humeral diaphysis axis defines Ê. The PIP of the MD

and a point of contact with the pulley define another straight line called the proximal line. The

intersection between the proximal line and the MD line formed B̂, knowing that T̂ ¼ B̂=2. The

ratio was then computed with the equation presented previously.

Fig 5. Summary of the steps from the selection of slices to angle measurements. (A) The 3D model is segmented in several plane sections according to the

methodology presented above. (B) After selecting the slices according to the anatomical description by Sakoma et al. [22] and in which a portion of the ILSS is

“stamped”, the biomechanical model developed by Billuart et al. [20] (C) is used to carry out the angle measurements (D).

https://doi.org/10.1371/journal.pone.0255817.g005
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2.7 Lateralization of the glenosphere

The lateralization was simulated in SliceOmatic™ by translating the ILSS (on the X-axis) in 6, 9

and 12 mm increments compared to its initial postoperative position without lateralization

(Fig 6). For this part of the study, the following simplifying hypothesis was used: the ILSS

radius was non-significantly modified by the lateralization of the prosthetic implant.

2.8 DMA measurement

The DMA was measured on each slice as the distance between the center of the ILSS and the

line perpendicular to F1
�!

(with the tool “Measurement” of the software).

2.9 Inter- and intra-rater assessment

To assess the reliability of the 3D models and the segmentation method, an inter- and intra-

rater agreement study was undertaken. Two raters created the 3D models and positioned the

ILSS. Rater 1 did the models and positioned the ILSS twice on each study subject’s images, one

week apart. Rater 2 completed the same protocol on all subjects. To assess intra-rater agree-

ment, the models created one week apart were compared for each rater. For the inter-rater

agreement, the models of the three common subjects were compared.

2.10 Statistical analysis

The data were analyzed with R version 2.14 (Bell Laboratories, Murray Hill, USA). Non-

parametric tests were used because normal data distribution could not be guaranteed. The sig-

nificance level was set at 0.05. The inter- and intra-rater agreement was evaluated with an

intraclass correlation coefficient (ICC) for the 3D models and the ILSS radius. The mean/stan-

dard deviation of the angles, the CER and DMA were used for the analysis. The comparison of

CER, angles and DMA between initial and lateralized conditions were done with the Mann-

Whitney test.

3 Results

P2 was excluded because of motion during MRI acquisition and thus, the different MRI slices

were not usable for the 3D reconstruction.

Fig 6. Simulation of lateralizations on SliceOmatic™ in axial view. 2D representation on an MRI image of the displacement of a 2D slice of ILSS (stamped in

the MRI image) along the X axis at 0, 6, 9 and 12mm (from left to right). Yellow circle = slice of ILSS in 2D; In red = deltoid muscle.

https://doi.org/10.1371/journal.pone.0255817.g006
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3.1 Reliability assessment

The results from the reliability assessment are presented in Table 2. For intra-rater agreement

of 3D model, the mean ICC was 0.999 for Rater 1 and Rater 2. For intra-rater agreement of

ILSS radius, the mean ICC was 0.996 for Rater 1 and 0.973 for Rater 2. For inter-rater agree-

ment of 3D models, the mean ICC was 0.994 at Week 1 and 0.989 for the second comparison

at Week 2. For inter-rater agreement of ILSS radius, the mean ICC was 0.957 at Week 1 and

0.925 at Week 2.

3.2 ILSS radius

The ILSS radius of every patient is presented in Table 3. The mean ILSS radius was 32.89±4.29

mm.

3.3 Biomechanical parameters

Table 4 presents the values of the biomechanical parameters for different lateralization options

and for each slice selected. For 0 mm of lateralization, Mean and Standard Deviation (Mean

±SD, for all slices) are 54.93±0.77˚ for Angle T; 7.94±1.24˚ for Angle E; 0.54±0.03 for the CER,

and 38.44±8.80 mm for the DMA. For 6 mm of lateralization, Mean and Standard Deviation

(Mean±SD, for all slices) are 45.60±0.99˚ for Angle T; 11.47±0.81˚ for Angle E; 0.81±0.03 for

the CER, and 39.67±8.25 mm for the DMA. For 9 mm of lateralization, Mean and Standard

Deviation (Mean±SD, for all slices) are 42.54±1.03˚ for Angle T; 14.07±0.93˚ for Angle E; 0.83

±0.04˚ for the CER, and 40.67±9.05 mm for the DMA. For 12 mm of lateralization, Mean and

Standard Deviation (Mean±SD, for all slices) are 40.07±0.90˚ for Angle T; 15.25±1.02˚ for

Angle E; 0.88±0.03 for the CER, and 41.28±5.25 mm for the DMA.

Table 2. Intra- and inter-rater agreement.

P1 P3 P4 P5 P6 P7 P8 Mean
ICC 3D model for Rater 1 (Week 1 vs Week 2) 0.999 0.999 0.999 0.999 0.993 0.999 0.999 0.999
ICC 3D model for Rater 2 (Week 1 vs Week 2) 0.998 0,990 0,990 0,993 0,999 0.999 0.999 0.999
ICC ILSS radius for Rater 1 (Week 1 vs Week 2) 0.997 0.999 0.998 0.992 0.997 0.999 0.990 0.996
ICC ILSS radius for Rater 2 (Week 1 vs Week 2) 0.995 0.949 0.992 0.995 0.907 0.998 0.999 0.973
ICC Rater 1 vs 2: Week 1 (for 3D models) 0.990 0.998 0.990 0.999 0.993 0.999 0.990 0.994
ICC Rater 1 vs 2: Week 2 (for 3D models) 0.989 0.997 0.987 0.999 0.988 0.991 0.992 0.989
ICC Rater 1 vs 2: Week 1 (for ILSS radius) 0.957 0.933 0.762 0.911 0.895 0.713 0.862 0.957

ICC Rater 1 vs 2: Week 2 (for ILSS radius) 0.957 0.963 0.877 0.996 0.929 0.83 0.925 0.925

P = Patient

https://doi.org/10.1371/journal.pone.0255817.t002

Table 3. Radius of the ILSS.

Patients Radius (mm)

P1 31.25

P3 36.30

P4 33.64

P5 25.72

P6 39.42

P7 32.16

P8 31.75

Mean ±SD 32.89 ± 4.29

https://doi.org/10.1371/journal.pone.0255817.t003
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Fig 7 represents a set of images containing all slices at all lateralizations with the angles

overlay for Patient 1.

3.4 Comparisons of lateralization simulations

The comparison of the different lateralization simulations is presented in Table 5. For Angle T

and E, there are significant differences for all the slices when comparing 0mm of lateralization

versus 6mm, 9mm and 12mm (significance level was p = 0.002� for Angle T and between

p = 0.04� and p = 0.002� for Angle E). When lateralization increases, for all the slices, Angle T

decreases and inversely, Angle E increases. CER increase significantly (significance level was

between p = 0.002� and p = 0.0006�) when comparing the initial position without lateralization

(0mm) versus 6mm, 9mm and 12mm, for all the slices. There was no significant difference

Table 4. Means, standard deviation, minimum and maximum values of the biomechanical parameters for different lateralization options.

0 mm 6 mm 9 mm 12 mm

ANGLE T (degrees) S1 55.40±1.68 42.71±2.04 41.40±1.34 38.75±1.71

(53–57) (42–43.5) (40–44.5) (37–41)

S2 55.43±2.23 42.86±1.86 41.75±1.77 40.20±0.45

(52–59) (40.5–45) (39.5–43) (40–36.5)

S3 54.36±1.65 44.79±3.49 43.71±3.68 40.60±2.07

(53–58) (40–51) (42–50) (37–47.5)

S4 54.14±1.31 44.00±2.90 42.50±2.78 40.71±1.89

(53–56) (40–47.5) (39–46) (38–43)

ANGLE E (degrees) S1 9.14±3.44 13.43±2.57 15.14±2.61 16.86±2.41

(3–13) (10–16) (12–19) (14–21)

S2 6.71±2.21 11.57±3.10 13.14±2.48 14.86±2.61

(3–10) (7–15) (10–16) (11–18)

S3 7.29±1.60 12.29±2.43 13.71±2.43 14.57±2.15

(4–9) (8–16) (9–17) (11–17)

S4 7.43±2.30 13.00±3.92 14.71±3.73 16.00±3.21

(3–9) (6–18) (8–20) (10–20)

CER S1 0.49±0.08 0.82±0.08 0.84±0.08 0.90±0.05

(0.39–0.60) (0.71–0.97) (0.73–0.98) (0.86–0.98)

S2 0.53±0.09 0.87±0.07 0.88±0.06 0.91±0.04

(0.44–0.70) (0.73–0.98) (0.79–0.99) (0.85–0.96)

S3 0.55±0.06 0.79±0.11 0.79±0.11 0.84±0.09

(0.44–0.62) (0.63–0.93) (0.67–0.98) (0.8–1.01)

S4 0.56±0.05 0.79±0.06 0.8±0.05 0.86±0.05

(0.47–0.61) (0.69–0.88) (0.73–0.88) (0.78–0.94)

DMA (mm) S1 41.52±3.31 43.32±3.54 47.16±2.93 49.49±2.94

(36.55–47.08) (39.03–49.95) (43.65–52.94) (45.77–55.29)

S2 48.65±4.45 50.66±4.50 54.31±5.07 56.04±5.77

(39.71–53.17) (48.90–56.12) (45.29–60.34) (45.29–63.14)

S3 33.88±5.86 36.01±5.81 38.31±6.36 40.17±5.58

(27.91–42.62) (28.67–43.25) (31.34–47.1) (34.53–48.85)

S4 28.54±6.36 31.09±6.33 33.01±6.65 34.43±6.59

(21.07–38.19) (24.05–40.01) (25.81–42.09) (25.99–44.03)

S = MD slice number.

https://doi.org/10.1371/journal.pone.0255817.t004
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when comparing lateralization results 2x2 (significance level was p> 0.05 for 6vs9, 6vs12,

9vs12). For DMA, there are no significant difference (significance level was p>0.05) when

comparing initial position (0mm) versus 6mm, 9mm and 12mm; except for S1 and S2 when

comparing 0mm versus 9mm and 12mm. (significance level was between p = 0.04� and

p = 0.001�).

Fig 7. Example of images extracted from SliceOmatic™ representing the different slices at each lateralization with

angle measurements for Patient 1. S1 = Slice 1; S2 = Slice 2; S3 = Slice 3; S4 = Slice 4; Blue Circle = 2D ILSS for Slice 1;

Orange Circle = 2D ILSS for Slice 2; Purple Circle = 2D ILSS for Slice 3; Green Circle = 2D ILSS for Slice 4. In red:

deltoid muscle; in green = acromion; in blue = clavicle; in white = humeral diaphysis. B = Angle B in degree; E = Angle

E in degree; T = B/2.

https://doi.org/10.1371/journal.pone.0255817.g007

Table 5. Comparison of the different lateralization simulations.

MD slice P values P values P values P values P values P values

0vs6 0vs9 0vs12 6vs9 6vs12 9vs12

Angle T S1 0.002� 0.002� 0.002� 0.27 0.007� 0.05�

S2 0.002� 0.002� 0.002� 0.19 0.006� 0.05�

S3 0.002� 0.002� 0.002� 0.61 0.1 0.24

S4 0.002� 0.002� 0.002� 0.48 0.05� 0.08

Angle E S1 0.04� 0.005� 0.002� 0.27 0.05� 0.22

S2 0.01� 0.002� 0.002� 0.22 0.1 0.27

S3 0.005� 0.002� 0.002� 0.14 0.1 0.5

S4 0.02� 0.01� 0.002� 0.41 0.16 0.4

CER S1 0.0006� 0.002� 0.002� 0.56 0.06 0.22

S2 0.0006� 0.002� 0.002� 0.27 0.11 0.22

S3 0.002� 0.002� 0.002� 1.00 0.61 0.34

S4 0.002� 0.002� 0.002� 0.75 0.05� 0.07

DMA S1 0.46 0.004� 0.001� 0.03� 0.01� 0.1

S2 0.32 0.04� 0.03� 0.13 0.05� 0.48

S3 0.38 0.21 0.1 0.46 0.16 0.54

S4 0.46 0.26 0.1 0.54 0.38 0.54

� = significantly different.

https://doi.org/10.1371/journal.pone.0255817.t005
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4 Discussion

The aim of this study was to assess the effect of lateralizing the glenosphere on the DMA and

coaptation role of MD. To this end, the reliability of the methodology needed to be evaluated.

The rater’s proficiency in identifying and selecting anatomical structures on MRI is key. The

results of the inter- and intra-rater agreement assessment of the 3D models and ILSS position-

ing (Table 2) gave strength to our methods. They were also consistent with other studies

describing the SliceOmatic™ software as a reliable 3D reconstruction tool [23, 24]. Therefore,

using the model developed by Billuart et al. [20] and then by Hereter Gregori et al. [21], we

compared four RSA lateralization options: 0, 6, 9, 12 mm. Our hypothesis that lateralization

increases the coaptation role of the MD was confirmed. Lateralizing the glenoid implant led to

a significant increase in the coaptation role of the Middle Deltoid. With a simulated lateraliza-

tion of 6, 9 and 12 mm, the CER increased significantly compared to initial conditions

(Table 4), with values closer to 1. This was especially true in the posterior (S1 = 0.90) and mid-

dle (S2 = 0.91) portions of MD. The glenoid implants are anatomically angled towards the S1

and S2 portions which may explain this trend. The CER seems to increase with lateralization

but there was no significant difference when comparing lateralization results 2x2 (Table 5).

Our findings are like those reported in the literature. Indeed, the studies published by Boileau

et al. [10–12] or Hettrich et al. [4] and Hoenecke et al. [13], promote lateralization to improve

mobility, stability and strength.

The two types of implants used in this study (Onlay for Wright-Tornier™ and Inlay for

DePuy-Synthes™) do not have the same effect on lateralization. The Onlay is more lateralizing

because of its design and its implantation concept. However, considering that each implant

was compared to itself in the different lateralization simulations, the methodology remains

sound.

Lateralization leads to tensioning of muscle fibers but its impact on DMA remains unclear.

Werthel et al. [15, 16] showed that a few millimeters of lateralization did not affect the DMA.

Our findings appear to agree with these results. Indeed, whatever the amount of lateralization,

the DMA of the S3 and S4 portions were not significantly different, and 6 mm of lateralization

had no effect on the DMA. However, a few millimeters’ increase was seen in DMA with 9 mm

and 12 mm of lateralization, but only for S1 and S2 (Tables 4 and 5). Moreover, lateralization

did not appear to have a significant impact on DMA for all portions of the MD whereas there

was a significant increase in the coaptation effect on the entire MD.

Clinically, the CER is a biomechanical factor that helps explain the Middle Deltoid’s more

prominent role in joint stability after RSA, as described in the literature [10–12]. This improve-

ment in stability is therefore achieved by the Middle Deltoid actively, not only through passive

fiber tensioning that results from humerus lengthening during surgery.

This study has limitations. The imaging is realized with a patient in supine position which

could presses and deforms the posterior deltoid on the MRI. In addition, the supine position

in the MRI scanner could change the position of the scapula on the rib cage. However, we posi-

tioned the arm so that it was not in extension. This positioning of the arm limits the modifica-

tion of the anatomical relationships between the MD and the elements constituting the ILSS,

inherent in the supine position. The methodology to identify the joint’s center of rotation and

the DMA was based on approximations. In this study, a choice was made to explore only the

deltoid as a mechanical system, excluding other muscles (rotators’cuff, playing a key role on

stability of the shoulder is not functional for these patients). Indeed, the MD has a key func-

tional role after surgery since Li et al. [17] and Smith al. [18] showed a significant increase in

the EMG activity of the MD after surgery during abduction. Furthermore, Yoon et al. [25]

indicate that clinicians should pay attention to the deltoid volume for good functional
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outcomes: a larger deltoid indicates a stronger muscle. Anatomically, MD has been specifically

studied because of the 4 fibrous bands described by Sakoma et al. [22]. In our opinion, these

fibrous bands reflect the adaptation of the MD to transmit forces to the underlying anatomical

or prosthetic elements. The path of the anterior deltoid also reflecting on the ILSS may have a

certain efficiency, but we did not assess this point quantitatively. The simplifying hypothesis

developed to explain the lateralization of ILSS is considered acceptable. Indeed, the lateraliza-

tion of the implant tends to increase the contacts between the ILSS and the MD and therefore

to increase the coaptator effect of the MD. However, we have not quantitatively assessed this

point. Finally, considering the lateral translation of the humerus with the lateralization of the

glenosphere: translating the metaglene increases the coaptator effect of the MD. On the other

hand, lateralization of the metaglene is accompanied by a lateralization of the humerus which

therefore results in conservation of the DMA.

5 Conclusion

This study is the first to analyze the effects that lateralizing the glenosphere has on the coapta-

tion role of the Middle Deltoid with a previously developed model. Simulating 6, 9 and 12 mm

of lateralization on a personalized model derived from MRI showed improved coaptation of

the Middle Deltoid, compared to no lateralization. The DMA was only affected starting at 9

mm of lateralization and only on some portions of the MD. The improvement in stability

would then be the result of an increase in the coaptation role of the Middle Deltoid rather than

an increase in its DMA. The coaptation effect of the MD could be doubly beneficial from a

clinical standpoint. On the one hand, improved joint stability during anterior elevation would

make it possible to lift heavier weights, and on the other, it would also help lower the disloca-

tion rate.
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9. Lädermann A, Denard PJ, Boileau P, Farron A, Deransart P, Walch G. What is the best glenoid configu-

ration in onlay reverse shoulder arthroplasty? Int Orthop. 2018 Jun; 42(6):1339–1346. https://doi.org/

10.1007/s00264-018-3850-x PMID: 29492611

10. Boileau P, Morin-Salvo N, Gauci MO, Seeto BL, Chalmers PN, Holzer N, et al. Angled BIO-RSA (bony-

increased offset-reverse shoulder arthroplasty): a solution for the management of glenoid bone loss

and erosion. J Shoulder Elbow Surg. 2017 Dec; 26(12):2133–2142. https://doi.org/10.1016/j.jse.2017.

05.024 PMID: 28735842

11. Boileau P, Morin-Salvo N, Bessière C, Chelli M, Gauci MO, Lemmex DB. Bony increased-offset-reverse

shoulder arthroplasty: 5 to 10 years’ follow-up. J Shoulder Elbow Surg. 2020 Oct; 29(10):2111–2122.

https://doi.org/10.1016/j.jse.2020.02.008 PMID: 32505414

12. Boileau P, Moineau G, Roussanne Y, O’Shea K. Bony Increased Offset-Reversed Shoulder Arthro-

plasty (BIO-RSA). JBJS Essent Surg Tech. 2017 Dec 27; 7(4):e37. https://doi.org/10.2106/JBJS.ST.

17.00006 PMID: 30233972

13. Hoenecke HR Jr, Flores-Hernandez C, D’Lima DD. Reverse total shoulder arthroplasty component cen-

ter of rotation affects muscle function. J Shoulder Elbow Surg. 2014 Aug; 23(8):1128–35. https://doi.

org/10.1016/j.jse.2013.11.025 PMID: 24613182

14. Werthel JD, Wagner E, Sperling JW, Valenti P, An KN, Elhassan BT. Étude biomécanique de l’influence
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