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Metagenomic Assembly:
Overview, Challenges and Applications
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Advances in sequencing technologies have led to the increased use of high throughput sequencing in char-
acterizing the microbial communities associated with our bodies and our environment. Critical to the analy-
sis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from
complex mixtures. Metagenomic assembly involves new computational challenges due to the specific char-
acteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome
and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field.
We also review several applications of metagenome assembly in addressing interesting biological prob-

lems.

INTRODUCTION

DNA sequencing has become an important tool in
biological research. The cost of sequencing has been rap-
idly decreasing, leading to the use of sequencing tech-
nologies in a broad set of biological applications. In
particular, sequencing has been used to characterize the
microbial communities associated with human and ani-
mal bodies as well as with many environments within our
world. The use of high throughput sequencing in the
analysis of microbial communities has led to the creation
of a new scientific field — metagenomics — the analysis of
the combined genomes of organisms co-existing in a
community. A critical step in such analyses is metage-
nomic assembly — the stitching together of individual
DNA sequences into genes or organisms. Genome as-
sembly algorithms have been an important component of
efforts to characterize the genomes of single organisms
and have been key to the modern genomic revolution. In
the context of single organisms the genome assembly
problem has been thoroughly studied and a number of ef-
fective strategies have been developed, strategies that un-
derlie modern assembly tools. Metagenomic data,
however, pose new challenges and create new scientific
questions that still await an answer.

In this review, we will survey the key algorithmic
paradigms underlying modern assembly tools. We will
then discuss the specific challenges posed by metage-
nomic data and outline some of the strategies recently de-
veloped to address the complexities associated with these
data. We will conclude with a discussion of specific bio-
logical findings that were made possible by the newly de-
veloped metagenomic assembly approaches.

GENOME ASSEMBLY OVERVIEW

Genome assembly [1] is the reconstruction of
genomes from the smaller DNA segments called reads
which are generated by a sequencing experiment. Various
sequencing technologies have been developed in the past
couple of decades. See Table 1 for a summary of various
sequencing technologies along with their advantages and
disadvantages. In many cases, reads are pair ended or
mate-paired, which means that pairs of reads are se-
quenced from the same DNA fragment. The distance be-
tween the reads in each pair, and their relative orientation
are approximately known. This information is used to re-
solve ambiguities caused by repetitive sequences during
assembly [2] as well as to order and orient the assembled
contigs — the fragments of the genome that could be
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Table 1. Overview of current sequencing technologies.

Technology Read Length Accuracy Time per run Bases per run
Single Molecule Real-Time Sequencing 10 kbp to 15 kbp  87% (Low) 30 minutesto4 5-10Gb
(Pacific Biosciences) hours
Oxford Nanopore MinlON Sequencing 5 kbpto 10 kbp  70% to 90% (Low) 1 to 2 days 500 Mb
lon Semiconductor Up to 400 bp 98% (Medium) 2 hours 10Gb
(lon Torrent sequencing)
Sequencing by synthesis (lllumina) 50-300bp 99.9% (High) 1to 11 days 300 Gb
Sequencing by ligation 75 bp 99.9% (High) 1to 2 weeks 3Gb
(SOLID sequencing)
Pyrosequencing (454) 700 bp 98% (Medium) 24 hours 400 Mb
Chain termination sequencing (Sanger 400 to 900 bp 99.9% (High) 20 mins to 3 50 — 100 Kb
sequencing) hours
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Figure 1: Overview of different de novo assembly paradigms. Schematic representation of the three main para-
digms for genome assembly — Greedy, Overlap-Layout-Consensus, and de Bruijn. In Greedy assembler, reads with
maximum overlaps are iteratively merged into contigs. In Overlap-Layout-Consensus approach, a graph is con-
structed by finding overlaps between all pairs of reads. This graph is further simplified and contigs are constructed by
finding branch-less paths in the graph, and taking the consensus sequence of the overlapping reads implied by the
corresponding paths. Contigs are further organized and extended using mate pair information. In de Bruijn graph as-
semblers, reads are chopped into short overlapping segments (k-mers) which are organized in a de Bruijn graph
structure based on their co-occurrence across reads. The graph is simplified to remove artifacts due to sequencing
errors, and branch-less paths are reported as contigs.
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Figure 2: Metagenomic assem-
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stitched together from the set of reads [3]. Below, we de-
tail these approaches.

Algorithms for Genome Assembly

In the following we will distinguish between de novo
assembly — which involves reconstructing genomes di-
rectly from the read data, and comparative assembly —
where the aim is to use the sequences of previously se-
quenced closely related organisms to guide the construc-
tion of a new genome. The general problem of de novo
assembly is proved to be NP-Hard [4], which means that
this problem cannot be solved efficiently. Due to the com-
putational intractability, heuristic based methods have
been devised to perform de novo assembly. The most
widely used strategies (paradigms) are — greedy, overlap-
layout-consensus (OLC+), and De Bruijn graph (See Fig-
ure 1).

Greedy

This is the most simple and intuitive method of as-
sembly. In this method, individual reads are joined to-
gether into contigs in an iterative manner starting with the
reads that overlap best and ending once no more reads or
contigs can be merged. This approach is simple to imple-
ment and effective in many practical settings, and was
used in several of the early genome assemblers such as
TIGR [5], Phrap, VCAKE [6]. This simple greedy
method, however, has some serious drawbacks. The
choices made during merging of reads/contigs are locally
optimal and do not consider global relationships between
reads, As a result, the approach can get stuck or can result
in incorrect assemblies within repetitive sequences.
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in the original sample. After se-
quencing redundant reads can be
removed through digital normal-
ization, reducing the computa-
tional needs for assembly. The
filtered reads are then assembled
into contigs and they are classi-
fied using k-mers and coverage
statistics. Contigs in each group
are then binned to form draft
genome sequences for organ-
isms within the population.

Overlap-Layout-Consensus

This three step approach begins with a calculation
pairwise overlaps between all pairs of reads. The overlaps
are computed with a variant of a dynamic programming-
based alignment algorithm, making assembly possible
even if the reads contain errors. Using this information,
an overlap graph is constructed where nodes are reads and
edges denote overlaps between them. The layout stage
consists of a simplification of the overlap graph to help
identify a path that corresponds to the sequence of the
genome. More precisely, a path through the overlap graph
implies a 'layout' of the reads along the genome. In the
consensus stage, layout is used to construct a multiple
alignment of the reads and to infer the likely sequence of
the genome. This assembly paradigm was used in a num-
ber of assemblers, including Celera Assembler [7], which
was used to reconstruct the human genome, and Arachne
[8] assembler used in many of the genome projects at the
Broad Institute. The overlap-layout-consensus approach
has also re-emerged recently as the primary paradigm used
in assembling long reads with high error rates, such as
those produced by the technologies from Pacific Bio-
sciences and Oxford Nanopore.

De Bruijn Graph

The de Bruijn graph assembly paradigm focuses on
relationship between substrings of fixed length k (k-mers)
derived from the reads. The k-mers are organized in a
graph structure where the nodes correspond to the k-1 pre-
fixes and suffixes of k-mers, connected by edges that rep-
resent the k-mers. In this approach reads are not explicitly
aligned to each other, rather their overlaps can be inferred
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Table 2. Comparison of different de novo genome assembly methods. The columns in the table de-
note various assembly methods. The rows denote the parameters which are compared across these as-
sembly methods. Prototypical assemblers are highlighted in each category. Assemblers marked with a *
are not specifically designed for metagenomic applications.

Greedy
Effect of repeats v v
Effect of high depth of 4 v
coverage
Effect of sequencing errors x x
Ease of implementation v x
Assemblers VCAKE*, phrap*,

TIGR*

from the fact that they share k-mers. With this graph, as-
sembly problem reduces to finding an Eulerian path — a
path through the graph that visits each edge once. Unlike
the Overlap-Layout-Consensus approach, the de Bruijn
graph paradigm is affected by errors in the reads, errors
which introduce false k-mers (false nodes and edges) in
the graph. These errors must be eliminated prior to iden-
tifying an Eulerian path in the graph. All practical de
Bruijn assemblers include a number of heuristic strategies
for eliminating errors from the reads and the graph. This
paradigm has become widely used after the introduction of
high throughput and relatively low-error sequencing tech-
nologies, in part because it is easy to implement and effi-
cient even in high depth of coverage settings. Some
notable assemblers include: Velvet [9], SOAPdenovo [10],
SOAPdenovo2 [11], ALLPATHS [12], and SPADES [13].

Comparative Assembly

The number of organisms whose genomes have been
sequenced has been rapidly increasing. These genomes
can be used to assist the assembly process through a strat-
egy called Reference Guided Assembly or Comparative
Assembly. Comparative assembly consists of two steps —
first, all the reads are aligned against the reference
genome; then a consensus sequence is generated by infer-
ring the alignments. This approach is more effective than
de novo assembly in resolving repeats and is thus able to
get better results than de novo approaches especially at
low depths of coverage. Long repeats are still a challenge
as they lead to an ambiguous alignment of reads against
the genome, though the use of mate-pair information can
partly mitigate this issue and help identify the correct
placement of reads. At the same time, the effectiveness of
the comparative assembly approach depends on the avail-
ability of a closely related reference sequence. Differences
between genome being assembled and the reference can
lead to either errors in reconstruction or to a fragmented

oLC
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Omega, SGA*

De-Bruijn

v

v

x

MetaVelvet, Meta-IDBA,
Megahit, Meta-Ray, Meta-
Spades

assembly. AMOScmp [14] comparative assembler at-
tempts to identify such polymorphisms and rearrange-
ments between genomes and breaks the assembly at these
locations in order to avoid mis-assemblies.

A number of tools were developed to help augment
or improve de novo assemblies with the help of reference
genomes. OSLay [15], Projector 2 [16], ABACAS [17]
and r2cat [ 18] simply use a reference sequences to identify
the correct order and orientation of contigs from a de novo
assembly. An extension of this approach was proposed by
Husemann et al. [19] that leverages information from mul-
tiple related genomes, weighted by their evolutionary dis-
tance from the sequence being assembled.
Scaffold builder [20] also provides functionality to join
together contigs that were left unassembled by the de novo
approach, thereby helping improve the assembly through
the use of a reference sequence. Finally, E-RGA [21] per-
forms de novo and reference guided assembly independ-
ently first and then merges two assemblies later using a
novel data structure called merge graph to avoid mis-as-
semblies and ambiguous overlaps.

Tradeoffs Between Different Assembly Methods

None of the methods described above is universally
applicable, rather each method has specific strength and
weaknesses depending on the characteristic of the data
being assembled. The greedy method is easy to implement
and is effective when the data contain no or only short re-
peats. The Overlap-Layout-Consensus approach is effec-
tive even at high error rates however its efficiency rapidly
degrades with depth of coverage as it starts by computing
overlaps. The de-Bruijn graph approach is computation-
ally efficient even at high depths of coverage, however it
is affected by errors in the data and is, thus, most appro-
priate for relatively clean datasets. Comparative assembly
approaches are most effective when a sufficiently closed
related sequence is available (Please refer to Table 2).
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METAGENOMICS

Metagenomics is a fairly new research field focused
on the analysis of sequencing data derived from mixtures
of organisms. The assembly problem outlined above only
become more complex as the goal is no longer to assem-
ble a single genome, but to reconstruct the entire mixture
(See Figure 2). Below we further detail these challenges
and outline several of the approaches developed to address
them.

Metagenomic Data

Metagenomic data consists of mixture of DNA from
different organisms, and may comprise viral, bacterial, or
eukaryotic organisms. The different organisms present in
a mixture may have widely different levels of abundance,
as well as different levels of relatedness with each other.
These characteristics complicate the assembly process. As
we described above, one of the main challenges to the as-
sembly of single organisms is due to repetitive DNA seg-
ments within an organism's genome. For a single
organism, assuming a uniform sequencing process, such
repeats can be detected simply as anomalies in the depth
of coverage (a two copy repeat would contain twice as
many reads as expected). Due to the uneven (and un-
known) representation of the different organisms within a
metagenomic mixture, simple coverage statistics can no
longer be used to detect the repeats. The confounding ef-
fect of repeats on the assembly process is further exacer-
bated by the fact that unrelated genomes may contain
nearly-identical DNA (inter-genomic repeats) represent-
ing, for example, mobile genetic elements. At the other
extreme, the multiple individuals from a same species may
harbor small genetic differences (strain variants). The de-
cision of whether such differences can be ignored when
reconstructing the corresponding genome, or whether it is
appropriate to reconstruct individual-specific genomes is
not only computationally difficult but also ill-defined from
a biological point of view. Furthermore, distinguishing
true biological differences from sequencing errors be-
comes nearly impossible in a metagenomic setting.

A final challenge also arises from the uneven depth
of sequencing coverage within a metagenomic mixture.
Some organisms' genomes may be sequenced to high
depths of coverage (often exceeding 1000-fold), situation
that leads to high computational costs. In the Overlap-Lay-
out-Consensus paradigm such high depths of coverage
lead to a quadratic growth in the time necessary to com-
pute overlaps (and in the number of overlaps that need to
be processed), while in a de Bruijn graph setting, the
higher depth of coverage amplifies the effect of errors on
the assembly graph and may even stymie error correction
algorithms (simply by chance multiple random errors can
confirm each other).

Due to these complications, algorithms developed for
single genome assembly cannot be applied directly to

metagenomics data. Below we outline some approaches
that have been developed in the community to deal with
such challenges.

Depth Normalization and Error Correction

As outlined above, the high depth of sequencing cov-
erage within abundant organisms in a sample impacts both
the computational cost of the assembly process and also its
accuracy as errors in the reads are hard to identify and cor-
rect. Brown et al. [22] proposed a strategy named digital
normalization that aims to eliminate redundant reads
within regions of high depth of coverage. This approach
relies on k-mer frequencies to identify and remove reads
from regions with high depth of coverage, thereby reduc-
ing the redundancy of the data. Within the reduced dataset
sequencing errors are more easily detected and corrected,
thereby allowing the subsequent assembly process to be
both more efficient (in terms of time and memory use) and
more accurate (see Figure 2).

Reducing Memory Requirements During Assembly

Most metagenomic assemblers developed to date
(MetaVelvet [23], Meta-IDBA [24], MEGAHIT [25] and
Ray [26]) use de Bruijn graph approach. The main as-
sumption of this approach is that the reads contain few er-
rors, or more precisely, that the errors can be easily
corrected prior to assembly. As we mentioned above, even
after filtering and error correction, many errors and poly-
morphisms remain in the data, causing an increase in the
size of the resulting size of the de Bruijn graph. The size
of the graph translates into the need for a larger memory
size as the use of external memory would result in a loss
of performance. Several approaches have been developed
that allow storing and using the de Bruijn graphs in a
lower memory footprint than the naive solutions. One
strategy involves the use of Bloom filters to partition the
graph prior to assembly, leading to a large decrease in
memory size [27]. Bloom filters are an inexact data-struc-
ture that trades off accuracy for memory size. To reduce
the risk of false positives (nodes or edges not present in the
real graph but reported by a Bloom-filter encoded de
Bruijn graph), Chikhi et al. [28] introduced an extension
to the approach that also compactly represents the infor-
mation that may be incorrectly reported, allowing a more
precise representation of the original information without
losing the space efficiency. Salikhov et al. [29] further op-
timized graph representation by reducing storage by 30
percent to 40 percent by using a series of cascading Bloom
filters.

Dealing with Genomic Variants

The approaches mentioned above address the mem-
ory requirements of assembly but not the confounding ef-
fect of genomic variants. Differences between closely
related organisms can make it hard for assemblers to iden-
tify a consistent path through the assembly graph, leading
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to potentially fragmented assemblies. Many of the exist-
ing metagenomic assemblers try to address this issue by
performing a more aggressive 'bubble popping' procedure
— approach used to correct errors in the assembly of sin-
gle organisms through the de Bruijn approach. Specifi-
cally, wherever parallel paths are found within the graph
that differ by only a small amount, these paths are col-
lapsed into one, allowing the assembly to reconstruct
longer contiguous segments from the metagenome. Such
an approach is employed, for example, by MetaVelvet [23]
and Meta-IDBA [24].

Detecting and Reporting Genomic Variants Within
the Assembly

Differences between closely related genomes are of
potential interest to biologists, and approaches, such as
those described above, which try to collapse such variants
may, therefore, hide valuable information from the re-
searchers. One of the first tools developed to find such
variants after assembly is Strainer [30], a tool that ana-
lyzes the alignment pattern of reads against the recon-
structed scaffold of assembled reads and provides
researchers with a visualization of genetic variants found
within the data. Bambus2 [31] includes a module that
identifies patterns within the assembly graph that may in-
dicate the presence of variants, approach that has been ex-
tended in Marygold [32] through the use of SPQR trees
[33] — a graph data-structure that allows the efficient de-
tection of complex 'bubble’ structures within the assem-
bly.

In the more specific case of viral metagenomic sam-
ples, where a reference sequences is available, a number
of approaches have been developed to reconstruct the
quasi-species structure of the data (the population of vari-
ants found within a sample). These approaches include
ShoRah [34], Vispa [35] and QuRe [36], and all rely on
combinatorial optimization approaches to identify a small
number of genomic sequences that best explain the read
data. A similar approach was also proposed in Genovo
[37] in the context of full metagenomic assembly, and in
EMIRGE [38] to reconstruct just the 16S rRNA gene from
metagenomic mixtures. These latter approaches have sub-
stantial computational costs which limits their application
to relatively small datasets.

Repeat Detection

As already mentioned, simple approaches for finding
repeats based on depth of coverage anomalies are not ef-
fective within metagenomic data. An alternative approach
involves the analysis of the graph structure itself, in order
to find regions of the graph that appear to be 'tangled' by
repeats. In Bambus2 [31] these regions are identified
based on the concept of betweenness centrality [39] — a
measure developed in the field of social network analysis
to identify nodes in the graph that appear to have a central
role (nodes traversed by many paths).

Ghurye et al.: Metagenomic assembly

Identifying Specific Organisms within Metagenomic
Samples

Even after applying the strategies outlined above,
metagenomic assemblies are highly fragmented, consist-
ing of small fragments of the genomes found in a sample.
Linking together these fragments to obtain a partial re-
construction of individual fragments is challenging. A
number of approaches have been developed for this pur-
pose that leverage two complementary types of informa-
tion — the DNA composition of the assembled contigs, and
their depth of coverage. Sequences from the same organ-
isms have long been shown to have a similar DNA com-
position (in terms of frequencies of 2-mers or 4-mers)
[40,41], and this information can be used to group together
contigs that have similar profiles [42]. Contigs from a
same organisms can also be assumed to have similar se-
quencing depth within a sample, allowing them to be
grouped together and even to separate out closely related
sequences that may not be distinguishable by DNA com-
position alone [43].

The coverage approach can be further extended to
leverage information from multiple samples containing a
same organisms. Contigs with correlated abundance pro-
files can be assumed to come from a single organism. Ap-
proaches used to identify such correlations include
clustering of data based on simple correlation metrics
(such as Pearson or Spearman correlation of normalized
abundance profiles) [44], the formulation of the problem
as a under-constrained linear system of equations [45], and
the combination of DNA composition measures and cov-
erage information within a Bayesian framework as per-
formed in CONCOCT [46]. Nielsen et al. [44] have
demonstrated the power of such approaches by recon-
structing 238 high quality genome sequences (as defined
by the quality standards established by the Human Mi-
crobiome Project [47]) from 396 human gut samples se-
quenced as part of the MetaHIT project [48].

Metagenomic Analysis Pipelines

Assembly is just a small part of the data analysis
process, and the increased use of metagenomic methods in
biological research has led to the development of inte-
grated pipelines for metagenomic analysis. Such pipelines
include MetAmos [49] and MOCAT [50], which are
stand-alone packages, as well as CloVR [51] — a frame-
work that enables metagenomic analyses on cloud com-
puting frameworks.

ASSEMBLY QUALITY, ASSEMBLY
EVALUATION

It should be apparent by now that metagenomic as-
sembly is a difficult computational problem. A largely
overlooked analytical step is the validation of the resulting
data. None of the algorithms described so far can be
proven to correctly solve the assembly problem in a gen-
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eral setting, nor can one eliminate the possibility of errors
introduced by programmers when implementing complex
algorithmic techniques. Frequently, the quality of assem-
blies is evaluated through simple size statistics, such as
the number and average sizes of the contigs generated. A
measure developed in the context of the sequencing of the
human genome, the N50 size (the weighted median con-
tig size) is also often misused in a metagenomic context.
The N50 size is the size of the largest contig ¢ such as the
sum of the sizes of contigs larger than ¢ add up to the half
of the correct genome size. In a metagenomic setting, the
correct genome size is unknown, and therefore the N50
value is a meaningless measure. A better assessment of
quality can be made by aligning metagenomic contigs to
related genome sequences, as done by MetaQuast [52], or
by exploring the internal consistency of the assembly (in
terms of uniformity of depth of coverage and consistency
of the placement of mate-pairs) as done in AMOSvalidate
[53]. Recently, a number of tools have been developed that
view assembly as a generative probabilistic process, al-
lowing one to assign a likelihood to a genome assembly
[54,55,56], approach that was also extended to a metage-
nomic context [57]. Such approaches cannot provide an
absolute measure of assembly quality but can help rank
multiple assemblies of the same dataset.

THE USE OF METAGENOMIC ASSEMBLY IN
BIOLOGICAL APPLICATIONS

Below we highlight several examples of biological
applications where metagenomic assembly approaches
have been an important part of the biological results pre-
sented. These are just few from among the many other
studies that have been and are being conducted, however
a broader discussion of metagenomic analysis projects is
beyond the scope of our paper.

Characterizing the Human-associated Microbiota

It has long been known that humans harbor complex
microbial communities, but sequencing costs have pre-
vented scientists from characterizing most of these mi-
crobes. The advent of inexpensive high throughput
sequencing approaches has spurred a number of scientific
efforts to better characterize the human-associate micro-
biota. The European project MetaHIT [48] focused on the
characterization of the gut microbiota in healthy adults as
well as in patients suffering from inflammatory bowel dis-
ease. Their initial publication surveyed 124 individuals
through high throughput sequencing. The assembly of the
resulting data reconstructed 3.3 million non-redundant
gene sequences, most of which (99 percent) were derived
from an estimated more than 1000 different bacterial
species. Each individual was estimated to harbor an aver-
age of 160 microbial species. This initial study is only the
beginning of understanding the true diversity of the human
gut microbiota as evidenced by the continued discovery

of new gene sequences in subsequent studies such as those
by Li et al. [48] and Gevers et al. [47]. The NIH-led
Human Microbiome Project [58,59] has further expanded
this knowledge by adding data collected from the micro-
biota associated with other human body sites.

The gut microbiota is by far the best studied in hu-
mans, in no small part due to the ease of extracting sam-
ples from stool. The wealth of data collected from the gut
microbiota have allowed scientists to address a number of
interesting questions. Turnbaugh et al. [60] explored
whether a core gut microbiota exist (a group of microbes
present in all individuals) and found that while such a con-
cept is hard to define at the organism level, the functions
performed by the gut bacteria are highly conserved across
people. The MetaHIT data revealed a non-random clus-
tering of individuals in terms of their gut microbiota, lead-
ing to the proposal of a concept of 'enterotype' —
semi-stable states within which a person's microbiota can
exist [61]. This concept is controversial and has been de-
bated in the scientific literature. Koren et al. [62] studied
the effect of factors such as clustering methodology, dis-
tance metrics, OTU-picking approaches, sequencing
depth, sequence data type and 16S rRNA region on de-
tection of enterotypes and concluded that the concept of
enterotype is not universal rather strongly tied to the
methodology used to identify clustering within the data.
Huse et al. [63], recently argued that the enterotypes are
primarily defined by the most dominant organisms in a
sample (commonly Prevotella or Bacteroidetes within
human gut communities), rather than reflecting an actual
"community state".

The study of the gut microbiota has also revealed the
factors that influence its composition and diversity, such
as diet [64,65,66], age [67,68], environment [69] and med-
ication [70].

Premature Infant Gut Microbiome

A particularly fascinating research area is the study
of the dynamic changes that occur in the human micro-
biota in the days and months after birth. This is not sim-
ply a matter of scientific curiosity, but also of important
clinical relevance as premature infants frequently develop
necrotizing enterocolitis (NEC) — a severe intestinal dis-
case that can lead to death. The process of microbial col-
onization of the human gut begins at birth and continues
throughout the first year of life until the gut microbiome
reaches maturity. Sterile born babies acquire population
of microbes through the birthing process either through
the vaginal canal or from environmental introductions
through cesarean delivery [71]. It is thought that in pre-
mature infants, aberrations during colonization may lead
to illness or long-term health issues. Morowitz et al. [72]
studied the gut microbiota within the first 3 weeks of life
of a newborn baby, sequencing samples collected at four
different times during this period. Their study revealed a
shift in the microbial community from a community dom-
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inated by members of the Pseudomonas genus to a com-
munity dominated by organisms from the Serratia and
Citrobacter genera. More importantly, however, a careful
manual analysis of the assembled data revealed the pres-
ence within the developing gut microbiota of multiple Cit-
robacter strains. The relative abundance was shown to
change across time, demonstrating the power of methods
that explicitly take into account strain structure in the re-
construction of metagenomic data.

A recent study by Raveh-Sadka et al. [73] investi-
gated a group of infants which developed NEC over a
short period of time to find out which specific microbial
strains were shared amongst co-hospitalized infants and
whether the disease could be attributed to the single in-
fectious agent. They also investigated strain level meta-
bolic potential and population heterogeneity. Their study
did not find any evidence for one common infective agent
causing NEC and the dominant population of each bac-
terium acquired by each organism was genotypically dis-
tinct. This suggests the presence of barriers to the spread
of bacteria among infants.

Global Ocean Microbiome

Microorganism in the ocean environment play im-
portant roles in various bio-geological processes. The re-
cent advancements in metagenomics has enabled to study
ocean microbial communities, their structural patterns and
diversity [74]. The Sorcerer II Global Ocean Sampling se-
quenced and analyzed 6.3 Gb of DNA from surface water
samples along the transect from the Northwest Atlantic to
the Eastern Tropical Pacific [75]. Gene prediction within
the assembly of the resulting data allowed scientists to es-
sentially double the number of proteins available in pub-
lic databases, demonstrating the power of metagenomic
approaches in surveying previously uncultured organisms.
Recently, the 7ara Oceans expedition collected about
35,000 samples across multiple sea depths at global scale,
in order to facilitate complete study of effect of environ-
mental factors on ocean life [76]. While a large part of this
study is focused on eukaryotic organisms, Sunagawa et al.
[77] studied the bacterial microbiota of 248 samples. They
generated 7.2 terabases of [llumina sequencing data, and
used it to create a new annotated reference gene catalog
for the ocean microbiome. Among the findings enabled by
this catalog was the discovery that the vertical stratifica-
tion of the composition of communities in the surface
layer of ocean is mostly driven by temperature rather than
geography or other environmental factors. Surprisingly,
they also found that greater than 73 percent of the com-
position of the ocean microbiome is shared with the
human gut microbiome, despite significant differences in
these ecosystems. The studies of the ocean microbiome
have also highlighted the broad geographical distribution
of phylogenetically similar organisms, raising the ques-
tion of whether specific genomic variants can be identi-
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fied that correlate with or contribute to the geographical
location of microbes.

CONCLUSION

The relatively recent development of inexpensive
high throughput sequencing technologies has spurred ef-
forts to characterize the microbial communities inhabit-
ing the human body and the environment, leading to the
development of a new field - metagenomics. The analysis
of the resulting data has created the opportunity for de-
veloping new algorithms that account for the specific
characteristics of metagenomic data. Here we have out-
lined the key challenges and opportunities created by this
new field in the context of sequence assembly — the
process used to reconstruct the genomes of organisms
from DNA fragments. Despite advances in this field, fur-
ther developments are still needed, particularly for the val-
idation of the resulting assemblies in settings where a
ground truth is not available. Also important is the devel-
opment of new tools for uncovering and characterizing
microbial communities at the strain level.

Repetitive sequences remain a challenge even for sin-
gle genomes and their effect in metagenomic data is fur-
ther amplified by the presence of cross-organismal repeats
and uneven levels of representation of organisms within a
sample. New sequencing technologies such as PacBio and
Oxford Nanopore that provide long but error prone reads
can overcome some of the challenges posed by repeats,
however these approaches are still too expensive to be ap-
plied in a metagenomic data. Algorithms for long read as-
sembly are still in the preliminary stage even for single
genomes, and further algorithm and software development
needs to take place before these technologies can be used
effectively in a metagenomic setting.

In closing, we would like to note that metagenomics
approaches are not the only tools available to researchers
studying microbial communities. Techniques such as
metatranscriptomics [78], metaproteomics [48] and
metabolomics [79] have and are being developed to help
provide a better understanding of the function microbes
play in a community. Furthermore, targeted studies based
on the 16S rRNA gene have already generated a wealth of
data about microbial communities, primarily restricted to
information about the taxonomic origin of organisms.
Tremendous opportunities exist for the development of
methods that combine all these different ways of interro-
gating microbial communities in order to provide a more
complete understanding of the role these communities
play in our world.
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