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Summary 
B lymphocytes contain a novel population of endocytic vesicles involved in the transport of newly 
synthesized major histocompatibility complex (MHC) class II c~3 chains and c~/~ peptide com- 
plexes to the cell surface. We now present evidence that these class II-enriched vesicles (CIIV) 
are also likely to be a site for the loading of immunogenic peptides onto MHC molecules. We 
used the serine protease inhibitor leupeptin to accumulate naturally occurring intermediates in 
the degradation of otB-invariant chain complexes and to slow the intracellular transport of class 
II molecules. As expected, leupeptin caused an accumulation of Ii chain and class II molecules 
(I-A a) in endosomes and lysosomes. More importantly, however, it enhanced the selective ac- 
cumulation of a 10-kD invariant chain fragment associated with sodium dodecyl sulfate (SDS)- 
labile (empty) orb dimers in CIIV. This was followed by the dissociation of the 10-kD fragment, 
formation of SDS-stable (peptide-loaded) orb dimers, and their subsequent appearance at the cell 
surface. Thus, CIIV are likely to serve as a specialized site, distinct from endosomes and lyso- 
somes, that hosts the final steps in the dissociation of invariant chain from class II molecules 
and the loading of antigen-derived peptides onto newly synthesized oe/3 dimers. 

T he formation of ligands for antigen receptors on CD4 + 
T lymphocytes reflects a complex series of events that 

occur during intracellular transport of newly synthesized 
MHC class II from the endoplasmic reticulum (ER) 1 to the 
plasma membrane of APCs (1-3). These events begin with 
the assembly of nonameric complexes of three c~  dimers as- 
sociated with one invariant (Ii) chain trimer, and they end 
with their transformation into immunogenic ot/~ dimers bound 
to peptides derived from internalized antigens (1-3). Com- 
pletion of this process involves the diversion of newly syn- 
thesized class II molecules from the secretory to the endo- 
cytic pathway, the internalization and processing of extra- 
cellular antigens, transfer ofpeptides to MHC molecules, and 
the transport of the peptide-class II complexes to the cell 
surface (1-3). 

Recent work has defined the general cellular mechanisms 
underlying the conversion of ot/%Ii nonamers to peptide-loaded 
oeB dimers. Transport of newly synthesized class II molecules 
to the endocytic pathway is determined, at least initially, by 
the Ii chain, whose cytoplasmic domain contains signals that 

1 Abbreviations used in this paper: CHAPS, 3-([3-cholamidopropyl]- 
dimethylammonio)-l-propane sulfonate; CIIV, class II-enriched vesicles; 
CLIP, Ii chain lumenal domain fragment; EM, electron microscopy; ER, 
endoplasmic reticulum; FFE, free-flow electrophoresis; HPSEC, high pres- 
sure size exclusion chromatography; LDM, low density membrane; mlg, 
membrane Ig; MIIC, MHC class II vesicles; TGN, trans-Golgi network. 

mediate transport from the trans-Golgi network (TGN) to 
endosomes (4-8). After arrival in endosomes, the Ii chain's 
lumenal domain is cleaved, rendering the ot/~ dimers compe- 
tent to bind antigenic peptides that are derived from inter- 
nalized antigens and that are also delivered to endosomes (9). 
However, the precise pathway taken by otB-Ii complexes to 
endosomes remains unknown (10). 

Several groups recently showed that a single region of Ii 
chain lumenal domain (designated CLIP) both prevents the 
binding of immunogenic peptides and is involved in the as- 
sociation of Ii chain with c~3 dimers (11-13). CLIP-associated 
o~  dimers isolated from cells do not contain immunogenic 
peptides; moreover, synthetic CLIP inhibits peptide binding 
to human MHC class II in vitro (14). Deletion or truncation 
of the region of the Ii chain containing CLIP results in a 
failure of association of Ii and c~/~ dimers (11-13). CLIP is 
also found as a soluble peptide constitutively associated with 
or/3 dimers in normal (15) and HLA-DM-deficient antigen 
presentation-defective cell lines, suggesting that CLIP plays 
a physiological role in the loading of peptides onto orb dimers 
(14, 16, 17). 

An important hint as to the role of the Ii chain in antigen 
presentation may come from the observation that its degra- 
dation and dissociation involve several discrete steps, indicating 
the existence of intermediates in the formation of peptide- 
loaded ~x~ dimers (3). While these intermediates are in- 
sufficiently long lived to be easily detected under normal con- 
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ditions, inhibitors of endosome-lysosome proteolysis cause 
the transient accumulation of naturally occurring fragments 
of Ii chain bound to class II molecules. In human B cells, 
the serine protease inhibitor leupeptin causes the accumula- 
tion of 22- and 10-12-kD Ii fragments (leupeptin-induced 
peptides) (18, 19). Leupeptin also blocks peptide loading and 
delivery of MHC class II to the cell surface (3, 18, 20), sug- 
gesting that the dissociation of these Ii chain fragments from 
ot/~ dimers must precede these two events. It also causes an 
accumulation of class II molecules and Ii chain in endosomes 
(20). Since dissociation of a CLIP-containing Ii fragment and 
peptide loading are likely to be coordinated events, they prob- 
ably occur in the same endocytic compartment. However, 
endosomes comprise structurally and functionally distinct 
compartments, and the actual organeUes involved in class II 
delivery, Ii chain cleavage, antigen degradation, or peptide 
loading, remain unknown. 

Determining the actual site(s) in which the Ii chain is cleaved 
and peptide-class II complexes form has proved a major chal- 
lenge. Recently, an attractive candidate has emerged after the 
identification of a novel intracellular compartment selectively 
enriched in class II molecules (21-24). These class II-con- 
taining vesicles serve as intermediates in the transport of newly 
synthesized class II to the cell surface, contain several markers 
of the endocytic pathway, but are distinct from convention- 
ally defined endosomes and lysosomes. It is not yet clear 
whether the class II vesicles identified thus far comprise one 
or more structurally or functionally distinct subpopulations; 
thus, they have been termed either class II-enriched vesicles 
(CIIV) or MHC class II vesicles (MIIC) in the various mu- 
rine and human cells where they have been observed. In 
general, MIIC appear more lysosome-like than do CIIV. In 
mouse A20 B-cells, we have found that CIIV are selectively 
enriched in newly synthesized class II molecules devoid of 
intact Ii chain, indicating that Ii chain is removed before or 
just after class II molecules reach CIIV. They also transiently 
contain peptide-loaded and immunogenic c~/~ dimers (21, 25). 
However, it remains unknown whether CIIV (or MIIC in 
human cells) serve as a site for peptide loading or if they simply 
accumulate immunogenic complexes formed elsewhere in the 
endocytic pathway. By using leupeptin to slow Ii chain degra- 
dation and class II transport, we now provide direct evidence 
that class II molecules can bind peptide and be rendered stable 
to dissociation in SDS after their delivery to CIIV. 

Materials and Methods 
Cells and Antibodies. All the experiments were performed using 

the A6B9 clone of IIA1.6 cells (an FcvRII- mutant of the A20 
B-lymphoma cell line) transfected with a cDNA encoding the 
endocytosis-competent murine splice product Fc3,RII-B2 (26). For 
convenience, these cells are referred to throughout as A20 cells. 
The anti-MHC class II/3 chain mAb MKD6 (27) and the anti-Ii 
chain cytoplasmic tail mAb IN1 (28) were used for immunoprecip- 
itation experiments. A polyclonal rabbit serum against MHC class 
II molecules (generously provided by R. Kubo, Cytel, San Diego, 
CA) was used for immunocytochemistry (21). 

Pulse-Chase Labeling. This was performed as previously de- 

scribed (21). Briefly, the cells were metabolically labeled with 
[3SS]methionine-cysteine (1 mCi/ml) and chased in the absence of 
label for various times. The leupeptin treatment was performed 
by including 2 mM leupeptin (Sigma Chemical Co., St. Louis, MO) 
in the labeling and the chase media. 

Cell Surface Biotinflation and Immunoprecipitation. These were 
performed as previously described (21). The precipitation of the 
biotinylated MHC class II procedure was 15% efficient, judged 
from the ability of the procedure to recover class II molecules ac- 
cessible to cell surface radioiodination. Quantification was performed 
using a phosphorimager (Molecular Dynamics, Sunnyvale, CA). 
To ensure that only intact c~3 dimers were scored when using the 
3-specific antibody MKD6 mAb, quantitative data were expressed 
as amounts of coprecipitated ~ chain. 

Western Blot. Low density membranes from sucrose gradients 
were solubilized in Laemmli sample buffer, the proteins were ana- 
lyzed by 12% SDS-PAGE as described above, and then transferred 
to membranes (Immobilon-P; Millipore Corp., Bedford, MA). The 
proteins recognized by the anti-Ii chain cytoplasmic tail IN1 were 
visualized using goat anti-rat antibodies coupled to horseradish 
peroxidase and enhanced chemiluminescence (ECL; Amersham 
Corp., Arlington Heights, IL). 

Subcellular Fractionation. Subcellular fractionation was performed 
as described (21). Briefly, the cells were washed twice and homo- 
genized in a ball-bearing homogenizer. The resulting postnuclear 
supematant was first fractionated by centrifugation in a sucrose 
density gradient to enrich class II-containing membranes. The low 
density membrane (LDM) fraction, contained >90% of the et and 

chains (21). The LDM were further fractionated by free flow 
electrophoresis (FFE) using a modified Bender and Hobein Elphor 
VaP 21/22 (Dr. Weber, GmbH, Munich) (29). The FFE fractions 
were pooled pairwise, and the membranes were pelleted and lysed 
in 1 ml lysis buffer (as before) for immunoprecipitation. 

Protein Concentration and ~-Hexosarainidase Activity Assays. The 
activity of the lysosomal enzyme B-hexosarninidase was determined 
as previously described (21). The protein concentration in the FFE 
fractions was determined using a protein assay kit (Bio-Rad Labora- 
tories, Richard, CA). 

Immunocytochemistry and Electron Microscopy. Immunocytochem- 
ical analysis of CIIV isolated by FFE was performed as previously 
described (21). Briefly, FFE fractions containing CIIV were glu- 
taraldehyde fixed and pelleted by centrifugation. The vesicles were 
then embedded in 10% gelatin and cryoprotected in 2.1 M sucrose 
before freezing and sectioning. Contrasted sections were prepared 
using 2% uranyl acetate in methyl cellulose. Single and double 
labeling and preparation of protein A-gold were accomplished using 
conventional methods. 

Size Exclusion Chromatography. High pressure size exclusion 
chromatography (HPSEC) separation was performed as previously 
described for human MHC class II (30). Briefly, 4 x 107 cells 
were pulse labeled for 20 min and chased for 3 h, or labeled for 
I h and chased for 1.5 h in the presence of 2 mM leupeptin. The 
cells were then homogenized using a ball bearing homogenizer as 
described above, and the homogenates were centrifuged to elimi- 
nate nuclei and cell debris. The membranes were then pelleted by 
a 60 min centrifugation at 10 s g and solubilized in 2% C12E9 coI1- 
taining lysis buffer, clarified by centrifugation, and equilibrated in 
0.6% 3-([3-cholamidopropyl]-dimethylammonio)-l-propane sul- 
fonate (CHAPS). The cell lysates were injected over tandem KW- 
804 columns (Waters Chromatography, Milford, MA) in 0.6% 
CHAPS. Fractions were collected and used for immunoprecipita- 
tion as described above. 
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Effect of Leupeptin on MHC Class II and Ii Chain Biosyn- 
thesis. Because of the rapid kinetics of class II transport, Ii 
chain cleavage, and peptide association in B cells, it has proved 
difficult to define the site or sites in which peptide is loaded 
onto ol~ dimers. Accordingly, we studied the transport and 
processing of class II molecules in cells treated with leupeptin, 
a serine protease inhibitor well known to delay class II trans- 
port in human cells by interfering with Ii chain degradation 
(3, 18). 

A20 murine B lymphoma cells (A6B9 subline) were meta- 
bolically labeled for 20 min and then chased in the absence 
of label for various periods of time with or without leupeptin. 
The cells were then biotinylated with a membrane-imper- 
meable reagent (NHS-SS-biotin) to detect molecules arriving 
at the plasma membrane (21, 31). Total MHC class II was 
immunoprecipitated using the I-Aa-specific mAb MKD6, 
which binds c~B dimers more efficiently than ol~-Ii com- 
plexes (see Fig. 1). The portion of molecules present at the 
surface after each incubation time was determined by repre- 
cipitating biotinylated class II molecules. 

The effect of leupeptin on MHC  class II and Ii biosyn- 
thesis in murine cells was less dramatic but similar to that 
previously reported using human cells (20). As shown in Fig. 
1 A, leupeptin treatment increased the lag before the first 
labeled class II molecules appeared at the surface (•30 vs 60 
min) and increased the time of chase to obtain maximum 
surface transport ('~120 vs 180 min). Leupeptin treatment 
did not, however, significantly affect the total amount of MHC 
class II detected by this antibody (Fig. 1 B, upper panels) or 
decrease the fraction of o~B dimers that ultimately reached 
the surface (Fig. 1 B, lower panels). In both treated and un- 
treated cells, we found that virtually 100% of the newly syn- 
thesized dimers detected by this antibody had become acces- 
sible to biotinylation by 3 h of chase (21). Neither the kinetics 
nor efficiency of transport of endogenous membrane IgG in 
A20 cells was affected by leupeptin (not shown); thus, the 
effect of leupeptin on MHC  class II did not reflect an overall 
decrease in membrane protein transport (20). Little biotinylated 
Ii chain (<0.5% of the total signal) was detected at the cell 
surface in either the presence or absence of leupeptin (not 
shown). 

In addition to MHC class II a ~  dimers, the anti-class II 
antibody MKD6 also precipitated two low molecular weight 
proteins (Fig. 1 B, upper panels; a longer exposure of the low 
molecular weight regions of the gels is shown under each 
panel). A 10-kD protein ~10) was transiently detected after 
1-2 h of chase, while a 12-kD band (p12) appeared after 2 h 
and accumulated thereafter. Leupeptin significantly increased 
the amount of pl0, but not of p12, that was coprecipitated 
with MHC class II. Small amounts of p12, but not pl0, were 
detected at the cell surface (Fig. 1 B, lower panels). 

We next sought to determine the origin of these copre- 
cipitating proteins. Since leupeptin increased the amount of 
pl0 observed, we reasoned that at least this protein might 
be derived from the Ii chain. We first performed Western 

blot analysis using IN1, a monoclonal antibody to the cyto- 
plasmic tail of murine Ii chain. A20 cells were incubated with 
or without leupeptin for 2.5 h, homogenized, and a low den- 
sity membrane fraction was probed using IN1. As shown 
in Fig. 2 A, the presence of a 10-kD INl-reactive band was 
significantly increased by leupeptin. Similar results were ob- 
tained by immunoprecipitation with IN1 from metabolically 
labeled A20 cells (not shown). Moreover, the kinetics of ap- 
pearance of pl0 as detected using anti-/3 (MKD6; Fig. 1 B) 
or anti-Ii chain antibodies were similar. Thus, pl0 (Ii-pl0) 
is derived from the NH2 terminus of the Ii chain since it 
contains the cytoplasmic domain epitope IN1. 

In contrast, Ii-pl0 was not precipitated using a mAb to 
the Ii lumenal domain (P4H5) (not shown). Yet given its 
size, Ii-pl0 must include, in addition to the Ii cytoplasmic 
tail, the membrane spanning domain and a portion of the 
Ii chain lumenal domain. The fact that Ii-pl0 remains as- 
sociated with c ~  dimers suggests that it is likely to include 
the region of Ii that mediates the association to MHC class 
II, a region including the so-called CLIP peptide (11-13). The 
absence of Ii-pl0 reactivity with P4H5 mAb is not inconsis- 
tent with this expectation. P4H5 was raised against the 98- 
115 peptide of routine Ii (32), and the CLIP peptide eluted 
from murine MHC class II molecules corresponds to amino 
acids 85-99 (15) (Fig. 2 A). Neither IN1 nor P4H5 detected 
a protein corresponding to p12, suggesting that it was un- 
related to the Ii chain; we did not explore its identity further 
given that the expression of p12 was not affected by leupeptin. 

Ii-pl0 coprecipitated with aft dimers both with and without 
previous leupeptin treatment (Fig. 1 and not shown). This 
indicated that the o~B-Ii-pl0 complex is likely to be a normal 
intermediate in the processing of the Ii chain in murine B 
cells. The fact that it accumulated at higher levels in the pres- 
ence of leupeptin suggests that the proteases responsible for 
Ii-pl0 degradation are leupeptin sensitive. The accumulation 
of olB-Ii-pl0 also correlated with the increased delay in the 
transport of a ~  dimers to the cell surface, suggesting that 
its appearance slowed one or more steps in intracellular 
transport. 

Selective Accumulation of olfl-Ii-p10 Complexes in CIIV. Since 
the o~B-Ii-pl0 complex was likely to represent a more direct 
precursor of peptide-loaded aB dimers than a ~  dimers as- 
sociated with intact Ii, it was of interest to determine the 
localization of the partially processed complexes. We first 
sought conditions of labeling that maximized the amount 
of Ii-pl0, thus optimizing our ability to detect this Ii chain 
fragment after subcellular fractionation. A 1-h pulse and 1.5-h 
chase in the presence of leupeptin resulted in a maximum 
amount of labeled c~-Ii-pl0 complexes (not shown). Since 
Ii-pl0 is expected to have one-third the number of methio- 
nine residues as the intact Ii chain, the IN1 precipitates sug- 
gested that the amount of Ii-pl0 that accumulated under these 
conditions corresponded to at least 50% the amount of the 
intact Ii chain. 

To determine the intracellular localization of intact and 
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Figure 2. Ii-pl0 is an NHz-terminal fragment of Ii chain. Low den- 
sity membranes from leupeptin-treated or untreated (control) cells were 
analyzed by SDS-PAGE and Western blot using the mAb to the li chain 
cytoplasmic IN1. In addition to the 31-kD intact Ii chain band, this mAb 
recognized a major 10-kD Ii chain fragment that was increased in the pres- 
ence of leupeptin. A schematic representation of the Ii chain, a type II 
membrane protein, is also shown. The position of the epitopes recognized 
by IN1 and P4H5 mAbs are indicated. The region of the Ii chain corre- 
sponding to the CLIP peptide is also illustrated. Given its size and the 
presence of the IN1 epitope, it is likely that Ii-pl0 is derived from the 
li chain NH2 terminus and includes the CLIP region (see text for details). 

Figure 1. Leupeptin delays the transport of MHC class II molecules 
to the cell surface and causes the accumulation of class II-associated low 
molecular weight proteins. (A) Effect of leupeptin on the kinetics of ap- 
pearance of c~/~ dimers on the plasma membrane. A20 cells were pulsed 
with [3SS]methionine and chased at 37~ in the presence or absence of 
2 mM leupeptin. At the indicated time points, the cells were surface bio- 
tinylated. After detergent lysis, MHC class II molecules were immuno- 
precipitated. To determine the amount of protein that had reached the 
surface, class II molecules were then eluted from the immunoadsorbants 
with SDS and reprecipitated using streptavidin-agarose beads. The amounts 
of ol and/5 chains in the corresponding SDS gels (shown in B) were 
quantified by phosphorimaging. The percentage of MHC class II at the 
plasma membrane was corrected for the efficiency of the biotinylation pro- 
cedure using established procedures (judged at 15 ~ of total; see Materials 
and Methods) (21). Leupeptin increased by >1 h both the initial lag and 
the completion of transport of or/5 dimers to the surface. (B) Leupeptin 
induces the transient accumulation of a 10-kD MHC class II-associated 
polypeptide. The upper panels (total) show the total amount of MHC 
class II immunoprecipitated using the/5 chain-specific antibody MKD6 
at the indicated times of chase after a 20-rain pulse. The amount of labeled 
c~/5 dimers increases as a function of time since MKD6 does not efficiently 
recognize ot/3-Ii complexes in the Elk. The lower panels show the propor- 

processed Ii, labeled A20 cells were homogenized  and frac- 
t ionated by sucrose gradient  centr i fugat ion and FFE, a tech- 
n ique  that allows the separation of  CI IV  from endosomes, 
lysosomes, as well as from other organelles (21). As found 
previously, the major  peak of membrane  protein was found 
in fractions 6-7,  a region that also contained markers of plasma 
membrane  and E R  (21, 29, 33). Most  of the lysosomal marker 
3-hexosaminidase was shifted towards the anode (fractions 
11-13, Fig. 3 A,  both in the presence and absence ofleupeptin). 
This  also marked the position of endosomes on the FFE profile 
(21). Class I I - con ta in ing  C I I V  migrated as a distinct peak 

tion of MHC class II molecules that had reached the plasma membrane 
and were biotinylated (surface). Longer exposures of the low molecular 
weight regions of both gels are shown under each panel. Leupeptin did 
not significantly affect the expression or turnover of oe/5 dimers. In con- 
trast, it increased the amounts of a 10 kD protein (Ii-pl0) that coim- 
munoprecipitated with MHC class II. The reversal of labeling ratios for 
c~ and /3 chains seen at early and late time points in the "total" im- 
munoprecipitates probably reflects the difference in the rates of ER degra- 
dation for the two chains. Since the/5 chain is more stable than the oe 
chain (48), it would be expected to have a slightly larger pool in the ER. 
Thus, dimers containing unlabeled /5 and labeled ~ chains might 
predominate at early times of pulse. Since the mAb used (MKD6) prefer- 
entially recognizes mature ol3 dimers, these "mixed" dimers would also 
predominate at early chase times since they would be among the first to 
exit the ER. 
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that was more anodaUy shifted than endosomes and lysosomes 
(21). The migrations of  these and other organelle markers 
were not changed by leupeptin. 

After the fractionation of leupeptin-treated cells by FFE, 
M H C  class II and Ii-pl0 were detected by immunoprecipita- 
tion using MKD6.  Labeled M H C  class II was found in the 
unshifted fractions (containing plasma membrane and ER), 
the partially shifted endosome/lysosome fractions, as well as 
in CI IV (Fig. 3 A,  top, shows the quantification of the gels 
shown in Fig. 3 B). Although, as expected, the amount  of 
class II in endosome/lysosome fractions was increased by 
leupeptin, the amount of dass II in CI IV was not significantly 
increased. Remarkably, however, almost all of  the copreci- 
pitating Ii-pl0 was found in fractions containing CIIV. Rel- 
atively little Ii-pl0 was detected in FFE fractions containing 
endosomes and lysosomes, and none in fractions containing 
plasma membrane, Golgi, or E R  (Fig. 3) (21). Therefore, 
the otB-Ii-p10 complexes that accumulated in the presence 
of leupeptin were selectively localized in CIIV-containing frac- 
tions. 

The accumulation of Ii-pl0-containing complexes in CIIV 
was also reversible. Upon  removal of  leupeptin and incuba- 
tion for an additional 1 h before fractionation, virtually all 
Ii-pl0 and a/~ chains disappeared from CI IV fractions (Fig. 
3 A, bottom). Since there was no loss of  total labeled ot and 
B chains due to degradation during this chase period, it is 
very likely that the ot~ dimers were transferred from CIIV 
to the plasma membrane. 

One limitation of these results concerns the possible mis- 
targeting of ot~-Ii-pl0 complexes in the presence of leupeptin. 
Ii-pl0 was observed at 1 h of chase, even in the absence of 
leupeptin (Fig. 1 B). Since this was the time when a max- 
imum amount of M H C  class II molecules accumulate in CIIV 
before delivery to the plasma membrane (21), we attempted 
to detect Ii-pl0 in CI IV under these conditions. Because of 

Figure 3. Subcellular distribution of the li chain fragment li-pl0 in 
leupeptln-treated cells. (A) Quantitative distribution of c~i3 dimers and 
Ii-pl0 in leupeptin-treated cells. (Tbp) The bands corresponding to the 
coprecipitated MHC class II ~ chain and li-pl0 shown in panel B were 
quantified by phosphorimaging and plotted relative to/3-hexosaminidase 
activity. MHC class II ot/~ dimers were found in three major peaks around 
fractions 7-9 (plasma membrane, Golgi complex, and ER), fraction 12 
(j3-hexosaminidase peak, containing endosomes and lysosomes), and frac- 
tions 14-18 (containing CIIV). Ii-pl0 was found in a single major peak 
(fractions 14-18) corresponding to the position of CIIV. A fraction of the 

li-plO also overlapped with the endosome-lysosome peak. (Bottom) A20 
cells metabolically labeled for 1 h and chased for 1.5 h in the presence 
of leupeptin were incubated in the absence of leupeptin for an additional 
1 h before fractionation by FFE. MHC class II molecules were immuno- 
precipitated from the FFE fractions as before. The bands corresponding 
to the MHC class II c~ chain (coprecipitated by the anti-~ chain mAb 
MKD6) and Ii-plO were quantified by phosphorimaging and plotted rela- 
tive to ~-hexosaminidase activity. ~fl dimers were found in a single major 
peak around FFE fraction 8; this corresponded to the migration of the 
major peak of membrane protein and reflected class II on the plasma mem- 
brane (not shown). The two other class II peaks, as well as the Ii-pl0 
peak, were strongly reduced. Only small amounts of Ii-pl0 were detected 
after washing out the leupeptin; these were limited to the CIIV region 
of the fractionation profile. (B) Ii-pl0 is selectively localized in CIIV frac- 
tions. A20 cells metabolically labeled for 1 h and chased for 1.5 h in the 
presence of leupeptin before fractionation by FFE. The distribution of ~ 
dimers and ot/~-Ii-pl0 complexes were determined from FFE fractions by 
immunoprecipitation using MKD6 (as in Fig. 2); the positions of ~, 8, 
and Ii-pl0 chains are indicated, li-pl0 was detected only in the most ano- 
dally shifted CIIV fractions, while ot/~ dimers were found in both un- 
shifted and shifted fractions. This gel was used for the phosphorimager 
quantitation illustrated in A. 
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the lower amounts of Ii-pl0 in the absence of leupeptin, all 
the CIIV-containing FFE fractions were pooled before im- 
munoprecipitation of M H C  class II with MKD6 mAb. As 
shown in Fig. 4, even in the absence of leupeptin, Ii-pl0 was 
found in CIIV, but not in the unshifted plasma membrane 
fractions. Therefore, Ii-pl0 presence in CIIV was not artefac- 
tually induced, but only increased, by the presence of leupeptin. 

While the fraction of or/8 dimers that were associated with 
Ii-pl0 could not be determined precisely, the ratio of labeled 
Ii-pl0 to labeled ot (or/8) chain in CIIV fractions was 3-5- 
fold higher than in whole cell lysates (Fig. 3 B)  and 10-25- 
fold higher than in CIIV of untreated cells (Fig. 4). Since 
Ii-pl0 should include approximately the same number of me- 
thionine and cysteine residues as either oe or/8 chains, quanti- 
tation of  the Ii-pl0 vs c~/8 bands in CIIV fractions by phos- 
phorimaging suggested that at least 50% of the or/8 dimers 
in CIIV existed as c~/8-Ii-pl0 complexes. 

We next analyzed the effect of leupeptin on the distribu- 
tion of the intact Ii chain. Because the MKD6 mAb binds 
preferentially to Ii chain-free orb dimers, the Ii chain was 
immunoprecipitated from FFE fractions using IN1. In un- 
treated cells, the Ii chain was absent from endosomal frac- 
tions and instead it was found in a less anodally shifted peak 
that overlapped with markers of the Golgi complex and ER  
(21 and not shown). In leupeptin-treated cells, however, 
>50% of the total intact Ii chain was found in fractions con- 
taining endosomes and lysosomes (Fig. 5). Despite this in- 
crease of  Ii chain in endosomes and/or lysosomes, little, if 
any, intact Ii was detected in fractions containing CIIV. 

To confirm that the vesicles containing the ot/8-Ii-pl0 com- 
plexes were actually CIIV, the anodally shifted CIIV frac- 
tions from leupeptin-treated cells were pelleted and analyzed 
by electron microscopy (EM) immunocytochemistry. Isolated 
vesicles were stained with both the an t i -MHC class II and 
the anti-Ii chain cytoplasmic domain (IN1) antibodies. CIIV 
from both leupeptin-treated and untreated cells were mor- 
phologically similar: 300-500 nm vesicles with multiple char- 
acteristic membrane infoldings or internal vesicles that stained 
strongly for M H C  class II (Fig. 6). In the case of  leupeptin- 

Figure 4. lntracellular distribution 
of Ii-pl0 in the absence of leupeptin. 
A20 cells were pulse labeled for 20 min 
and then chased for 1 h, conditions 
previously shown to result in the max- 
imum accumulation of MHC class II 
molecules in CIIV (21). The cells were 
then fractionated by FFE as before. 
The fractions corresponding to the 
protein peak (unshifted fractions con- 
taining plasma membrane, ER, and 
Golgi complex-derived membranes) 
and the fractions more shifted to the 
anode than the 3-hexosaminidase peak 

(CIIV-containing fractions) were independently pooled. The membranes 
in those pools were pelleted by centrifugation, lysed, and immunoprecipi- 
tated using MKD6 mAb. The samples were boiled (B) or not (NB) before 
separation by SDS-PAGE. MHC class II ot3 dimers in the compact (SDS- 
stable) peptide-loaded conformation are marked C. Ii-pl0 coprecipitated 
with MHC class II molecules only in the anodally shifted CIIV fractions. 

plasma endosomes C I I V 
membrane lysosomes 

1 

p r o t ~  B-hexosaminidase 

0.8 J 

m li chain 

0.6 

0.4 

0 4 8 12 16 20 

FFE fraction number 

Figure 5. Intracellular distribution of intact Ii chain in leupeptin-treated 
cells. A20 cells metabolically labeled for 1 h and chased for 1.5 h in the 
presence of leupeptin before fractionation by FFE. Ii chain was immuno- 
precipitated from FFE fractions pools using the anti-Ii chain cytoplasmic 
tail antibody IN1 and then subjected to SDS-PAGE. The gels were quantified 
by phosphorimaging, and the distribution of intact li chain was plotted 
relative to total cell protein and/3-hexosaminidase. In control ceils, Ii chain 
was found in a single broad peak that overlapped but was more anodally 
deflected than the major class II and protein peaks (which marked the 
positions of the plasma membrane and ER) (21) (not shown). In ]eupeptin- 
treated cells, much of the li chain was now found in fractions that comigrated 
with markers of both endosomes and lysosomes. As previously found for 
control cells (21), little, if any, intact Ii chain was detected in CIIV frac- 
tions, even after leupeptin treatment. Cathode, left; anode, right. 

treated cells, isolated CIIV were also positive for the cyto- 
plasmic domain of Ii chain as visualized using the IN1 mAb 
(arrows, large gold particles). In contrast, very little Ii chain 
was detected in CIIV isolated from untreated cells (Fig. 6). 
No labeling of CIIV (from untreated or leupeptin-treated 
cells) was found using P4H5, the mAb against a lumenal 
domain epitope of Ii chain that is not present in Ii-pl0 (data 
not shown), confirming the absence of intact Ii chain from 
CIIV even from leupeptin-treated cells. 

Together, these results show that leupeptin causes the re- 
versible accumulation of partially cleaved c~/8-Ii-pl0 complexes 
in CIIV. Given that oe/8-Ii-pl0 must be derived from the in- 
tact ot/8-Ii complex, these results are consistent with the pos- 
sibility that intact ot/8-Ii complexes are first delivered to en- 
dosomes, where they are processed, and then transferred to 
CIIV as partially cleaved ot/8-Ii-pl0 complexes. We determined 
whether ot/8-Ii-pl0 complexes in CIIV had yet acquired pep- 
tide, or if they were precursors of peptide-loaded c~/8 dimers. 

oe~-Ii-plO Complexes Are Nonameric. It seems likely that 
the same general region of Ii chain both stabilizes its interac- 
tion with and blocks peptide binding to ol/8 dimers (11-14), 
suggesting that as long as M H C  class II molecules remain 
as nonamers, the peptide-binding groove on the oe/8 dimer 
should remain inaccessible. Accordingly, the dissociation of 
or/8 dimers from the nonameric complexes is likely to pre- 
cede the loading of peptides onto M H C  class II molecules. 
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Figure 6. Morphological charac- 
terization of CIIV isolated from leu- 
peptin-treated cells. Leupeptin- 
treated (2.5 h of leupeptin treatment 
at 37~ or untreated A20 cells 
were fractionated by FFE. CIIV 
fractions were fixed, collected by 
centrifugation, cryosectioned, and 
double labeled with rabbit 
anti-MHC class II (5 nm protein 
A-gold) and anti-Ii chain cyto- 
plasmic tail antibody IN1 (10 nm 
protein A-gold, arrows). As found 
previously, the fractions contained 
a population of vesicles with char- 
acteristic membrane infoldings. 
Most of the vesicles were positive 
for MHC class II. While very few 
class II + structures were labeled 
with IN1 in the absence of 
leupeptin (left), most of the CIIV 
contained both dass II and Ii chain 
molecules in leupeptin-treated cells 
(,~ght). 

It was therefore important to define the oligomeric structure 
of murine olfl-Ii-pl0 complexes. 

A20 cells were labeled with [35S]methionine, chased with 
or without leupeptin under conditions that maximized the 
accumulation of ctfl-Ii complexes, c~fl dimers, or otfl-Ii-pl0 
complexes. The cells were lysed in CHAPS and the lysates 
were analyzed by HPSEC, a technique previously used to dem- 
onstrate the nonameric structure of human olfl-Ii complexes 
(30). MHC class II was immunoprecipitated from the HPSEC 
fractions using either MKD6 (anti-I A a fl chain), IN1 
(anti-Ii chain cytoplasmic tail), or P4H5 (anti-Ii chain lu- 
menal domain) antibodies. 

After a 20-min pulse in the absence of leupeptin, intact 
ol~-Ii complexes immunoprecipitated by IN1 (or P4H5, not 
shown) eluted from the HPSEC column as high molecular 
weight complexes consistent with a nonameric structure (30). 
On the other hand, but as expected, most of the fl chain 
and coprecipitating ct chains detected after a 3-h chase using 
the dimer-selective mAb MKD6 chromatographed as lower 
molecular weight species in elution volumes expected for Ii 
chain-free txfl dimers (Fig. 7) (30). 

We next determined the oligomeric structure of otfl-Ii- 
pl0 complexes by chromatographing CHAPS lysates from 
leupeptin-treated cells. As detected by immunoprecip!tation 
with IN1 (or MKD6, not shown), most of the Ii-pl0 eluted 
in the high molecular weight region of the elution profile 
close to intact Ii chain, indicating that Ii-pl0 was also likely 
to be contained in a nonameric complex (Fig. 7). The otfl-Ii- 
pl0 complexes had a slightly higher elution volume than intact 
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ot/%Ii complexes, consistent with the slightly lower molec- 
ular weight expected for Ii-pl0-containing nonamers (intact 
Ii chain trimers vs the putative Ii-pl0 trimers would be ~93 
vs ~30 kD, respectively). Taken together, these results indi- 
cate that as long as Ii or Ii-pl0 are associated with c~/~ dimers, 
the resulting complexes behaved as high molecular weight 
oligomers. Therefore, in addition to being able to associate 
with ot~ dimers, Ii-pl0 must also retain the capacity to form 
homotrimers since the formation of nonamers requires the 
trimerization of Ii chain (34, 35). 

ct/%Ii-pl0 was not detected in lysates of leupeptin-treated 
cells immunoprecipitated with P4HS, an antibody that binds 
the Ii chain lumenal domain whose determinant is not present 
in Ii-pl0 (Fig. 2). Thus, the o~/%Ii-p10 detected in the high 
molecular weight fractions of the HPSEC columns did not 
represent mixed complexes containing both Ii-pl0 and intact 
Ii chain. Moreover, when the chromatography was performed 
in octylglucoside instead of CHAPS, intact Ii chain, Ii-pl0, 
and ot/~ dimers were found in low molecular weight frac- 
tions (not shown), indicating that, as shown for human MHC 
class II molecules, octylglucoside dissociated nonameric com- 
plexes (30). 

otfl Dimers in ~tfl-Ii-plO Complexes Are Not in the Compact 
Peptide-loaded Confirmation. The Ii chain fragment Ii-plO thus 
appeared to stabilize nonamers in a manner similar to intact 
Ii chain. Given this property, as well as the size of Ii-plO 
itself, it appeared likely that Ii-plO should contain sequences 
at or near its NH2 terminus corresponding to the CLIP pep- 
tide previously identified in human cells. In human Ii chain, 
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Figure 7. otB-li-pl0 complexes are high molecular weight nonamers. 
Detergent lysates from metabolically labeled A20 cells were separated by 
gel filtration (HPSEC) before immunoprecipitation to determine the size 
of otB-li, orB, and ~xfl-Ii-pl0 complexes. To analyze otfl-Ii complexes, cells 
were pulse-labeled for 20 min, detergent extracts were separated by HPSEC, 
and the complexes were immunoprecipitated from the resulting fractions 
with the anti-Ii chain antibody IN1. As expected, intact ot3-Ii complexes 
chromatographed as high molecular weight species corresponding to 
nonamers of three ~x3 dimers and a single Ii chain trimer (30). To analyze 
the ot3-Ii-pl0 complexes, the cells were labeled for 1 h and chased for 
1.5 h in the presence of 2 mM leupeptin. The complexes were immuno- 
precipitated using IN1. The otB-Ii-pl0 complexes chromatographed in a 
position only slightly smaller than that of nonameric complexes containing 
intact Ii chain. The gels were quantified by phosphorimaging, and the 
corresponding plots are shown. The elution volume of oe3-Ii complexes 
was 17.5 ml, which corresponds to the predicted elution volume of nona- 
meric complexes composed of one Ii chain trimer associated with three 
cz3 dimers (30). The elution volume of ~fl dimers was 19.5 ml. It was 
similar to the elution volume of human ~xfl dimers (30). The elution volume 
of otB-li-pl0 complexes was 17.75 ml. This elution volume corresponds 
to high molecular weight nonameric complexes composed of a trimer of 
Ii-pl0 and three olfl dimers. To analyze otfl dimers, the cells were pulsed 
for 20 min and chased for 3 h, under which conditions most of the Ii 
chain had been degraded and/or dissociated from newly synthesized class 
II molecules. ~xfl chains were immunoprecipitated from the HPSEC frac- 
tions using MKD6, and they were found to chromatograph in the posi- 
tions expected for class II dimers. 

CLIP corresponds to amino acids 81-104, residues that are 
71% conserved in murine Ii chain; antibodies to human CLIP 
do not cross-react with murine CLIP, nor are specific an- 
timurine antibodies yet available. As discussed earlier, CLIP 
is thought to serve a dual purpose: stabilizing the interaction 
between the Ii chain trimer and three cz3 dimers and simul- 
taneously preventing the binding of peptide to c~ and fl chains 
(11-13, 36). Therefore, we next determined whether orb dimers 
in Ii-pl0-containing nonamers were likely to be empty or 
peptide loaded using as a criterion stability to dissociation 
ofoefl dimers by SDS at room temperature (37). Since leupeptin 
treatment did not completely prevent the formation of peptide- 
loaded compact dimers (see below), it remained possible that 
oe3-Ii-pl0 complexes were peptide loaded. 

We addressed the stability of o~3-Ii-p10 complexes in SDS 
in two independent ways. First, we determined whether the 
SDS-stable dimers present in leupeptin-treated cells were in- 

cluded in high molecular weight nonamers (as oe3-Ii-pl0 com- 
plexes). All of the SDS-stable dimers generated in the pres- 
ence ofleupeptin eluted in the low molecular weight fractions 
containing or3 dimers that were well separated from Ii-pl0, 
which eluted as high molecular weight complexes (not shown). 

Second, the anti-Ii chain cytoplasmic domain antibody IN1 
was used to precipitate ot3-Ii-pl0 complexes from leupeptin 
treated cells and to test the stability of those orb dimers in 
SDS at room temperature. As shown in Fig. 8, although both 
IN1 and MKD6 mAb precipitated Ii-pl0, only MKD6 re- 
covered the small amount of SDS-stable "compact dimers" 
found after leupeptin treatment; SDS-stable dimers were never 
coprecipitated using IN1 mAb. Therefore, the (x3 dimers in 
Ii-pl0-containing complexes are not stable in SDS, suggesting 
that Ii-pl0-associated class II molecules were not tightly as- 
sociated with peptides. 

oel~-Ii-plO Complexes Are Precursors of SDS-stable otfl Dimers. 
Since most of the ot/3-Ii-pl0 complexes were not SDS stable, 
it seemed likely that they represented an intermediate between 
intact Ii complexes and mature SDS-stable or3 dimers. If true, 
the fact that ot3-Ii-pl0 complexes were selectively localized 
to CIIV would strongly suggest that all of the final steps 
in acquisition of SDS stability could occur in CIIV. Such a 
situation would provide functional evidence that CIIV are 
a site of peptide loading in the pathway of antigen processing 
and presentation. To determine whether the ot3-Ii-pl0 com- 
plex was a precursor of peptide-loaded o~3 dimers, we ana- 
lyzed the effect of leupeptin on the kinetics of appearance 
of Ii-pl0 and the formation of SDS-stable MHC class II o~fl 
dimers. 

A20 cells were labeled for 20 min with [3SS]methionine, 
chased in the presence or absence of 2 mM leupeptin for up 
to 4 h, and class II complexes were immunoprecipitated at 
various time points using the anti-fl chain antibody MKD6. 
Fig. 9 shows the quantitation of SDS-stable or3 dimers and 
Ii-pl0 detected in the gels. Small amounts of Ii-pl0 were tran- 
siently detected in untreated control cells beginning at '~45 
min of chase; this was also about the time when SDS-stable 
dimers first began to appear. A likely precursor-product rela- 
tionship between Ii-pl0 and peptide-loaded cz3 dimers was 
much more dearly illustrated in the case of leupeptin-treated 
cells. Leupeptin greatly increased the amount of Ii-pl0 that 
transiently appeared at 60-90 min of chase and also caused 

Figure 8. c~3 dimers in oeB-li-pl0 
complexes are not SDS stable. A20 B 
lymphoma cells were metabolically 
labeled for 1 h and then chased for 
1.5 h in the continous presence ofleu- 
peptin. MHC class II molecules were 
then immunoprecipitated using either 
anti-MHC class MKD6 or anti-li 
chain mAbs. Both antibodies precipi- 
tated similar amounts of li-pl0, but 
only MKD6 precipitated any SDS- 
stable (x3 dimers. SDS-stable c~B 
dimers are therefore not associated 
with li-pl0. 
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Figure 9. c~-Ii-pl0 complexes are precursors of MHC class If-pep- 
tide complexes. A20 cells were pulse labeled for 20 rain, chased for the 
indicated time periods with or without 2 mM leupeptin, and MHC class 
II (I-A a) molecules were immunoprecipitated using the/3 chain-specific 
mAb MKD6. The samples were not boiled before SDS-PAGE. SDS-stable 
(sds st) compact dimers (c[c~B]) exhibited an electrophoretic mobility slower 
than free c~ or/3 chains. The fraction of SDS-stable class II dimers reached 
a maximum of 16% of the total precipitated ~/~ dimers after 90 min of 
chase. The bands corresponding to SDS-stable dimers and Ii-pl0 in the 
gels were quantified by phosphorimaging. In the absence of leupeptin, 
a small amount of Ii-pl0 was transiently detected and then degraded; SDS- 
stable class II dimers began to appear after 60 min of chase, reaching a 
maximum by 90 min. Leupeptin markedly delayed the degradation and/or 
dissociation of Ii-pl0 and caused a corresponding delay in the appearance 
of SDS-stable compact dimers. The amount of Ii-pl0 reached a maximum 
at 90 rain and decreased rapidly thereafter. Compact dimers did not begin 
to appear until after Ii-pl0 began to disappear (120 min) and did not reach 
a maximum until 180 min. 

a corresponding delay in the formation of SDS-stable com- 
plexes (not detectable until 120 rain). The appearance of most 
of the peptide-loaded orb dimers was delayed until after Ii- 
pl0 began to disappear, that is, at ~120 min of chase. The 
amount of SDS-stable compact dimers that had accumulated 
by 4 h of chase was comparable to the maximum amount 
that had accumulated in untreated cells (10.4 vs 14.3% of 
total class II) by 1.5 h of chase. As expected, the compact 
dimers (c[ot +/3]) detected both in control and leupeptin- 
treated cells were abolished upon boiling the 240-min samples 
before SDS-PAGE (not shown). 

MHC class II molecules were not detected at the plasma 
membrane until Ii-pl0 disappeared and SDS-stable dimers 

formed (see Fig. 1 A). Thus, as long as Ii-pl0 remained as- 
sociated with orb dimers, both SDS stability and transport 
to the cell surface were inhibited. Together, these results 
strongly suggest that the ot3-Ii-pl0 complexes were nona- 
meric SDS-unstable precursors of SDS-stable a ~  dimers. Since 
most of ot3-Ii-pl0 complexes were found in CIIV, conver- 
sion of these peptide-free otB-Ii-pl0 complexes into peptide- 
loaded or3 dimers was likely to have occurred within CIIV. 

Discussion 
B lymphoblasts and other MHC class II-expressing cells 

have been found by several groups to transiently sequester 
newly synthesized class II molecules in novel organdies that 
are related to but distinct from conventionally defined endo- 
somes and lysosomes (21-24). Although direct evidence is 
lacking, it seems reasonable to presume that the vesicle popu- 
lations identified by each group are related to each other as 
well as to the MIIC originally observed by EM immunoey- 
tochemistry (38). However, there is also significant hetero- 
geneity among the class II vesicles described thus far. CIIV 
isolated from mouse cells are low density structures that con- 
tain markers of the receptor recycling pathway (e.g., trans- 
ferrin receptor, membrane Ig [mlg]), making them more 
closely related to early endosomes (21, 25; Drake, J., P. Web- 
ster, J. C. Cambier, and I. Metlman, manuscript in prepara- 
tion). On the other hand, MIIC from human cells are of 
somewhat higher buoyant density than CIIV and they con- 
tain markers also found in lysosomes (e.g., lgp/LAMPs) (22, 
23, 38). CIIV may also be distinguished from MIIC by the 
presence of a novel 50-kD glycoprotein related to the mlg- 
associated signaling molecule Ig-c~ (Drake, J., P. Webster, 
J. C. Cambier, and I. Mellman, manuscript in preparation). 

Although it will be important to resolve the biogenetic 
relationship between CIIV and MIIC, an even more critical 
unknown relates to the function of these structures in an- 
tigen processing. They clearly serve as intermediates during 
the transport of newly synthesized class II molecules from 
the TGN to the plasma membrane. They also appear to tran- 
siently accumulate peptide-loaded olB dimers (21, 23, 25). 
These observations are consistent with at least two possibili- 
ties. The formation of immunogenic complexes could occur 
within these vesicles, suggesting that CIIV or MIIC may 
represent a specialized site for peptide loading. Alternatively, 
or in addition, peptides could be loaded onto MHC class II 
before delivery to these vesicles, in which case CIIV or MIIC 
may serve to regulate the transport of immunogenic class II 
molecules to the plasma membrane. 

Where Do SDS-stable Dimers Form? Our conclusion that 
SDS-stable dimers can form in CIIV is based on the iden- 
tification of an intermediate in the peptide loading reaction 
(ot~-Ii-pl0) and its subcellular localization to CIIV. Several 
considerations indicate that o~ dimers in otB-Ii-pl0 com- 
plexes were not associated with peptides, but rather repre- 
sented precursors of peptide-loaded MHC class II. First, even 
in the absence of leupeptin, Ii-pl0 was transiently detected 
before SDS-stable complexes formed. Leupeptin did not affect 
the kinetics of Ii-pl0 appearance, but delayed its dissociation 
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from c~3 dimers and caused a corresponding delay in the for- 
mation of SDS-stable compact dimers. Thus, as long as Ii- 
pl0 was present, peptide loading onto oe3 dimers did not 
occur. Second, although most of the oe3-Ii-pl0 complexes 
were high molecular weight oligomers similar to nonameric 
c~3-Ii complexes, SDS-stable dimers were only found in low 
molecular weight fractions containing free c~3 dimers. Fi- 
nally, after releasing the leupeptin block (by washing out the 
drug or by allowing accumulated intermediates to pass through 
the block after extended incubation in leupeptin), the c~3-Ii- 
p10 complexes disappeared, an event that was immediately 
followed by the formation of SDS-stable oe3 dimers and trans- 
port to the plasma membrane. Thus, there was a kinetic 
precursor-product relationship between c~3-Ii-pl0 complexes 
and SDS-stable, presumably peptide-loaded, oe3 dimers. 

If o~3-Ii-p10 complexes are precursors of peptide-loaded 
c~3 dimers and c~3-Ii-pl0 complexes are found predominantly 
in CIIV, then the peptide-loading reaction itself must occur 
either within CIIV or in an as yet to be identified compart- 
ment existing between CIIV and the cell surface. Loading 
within CIIV is the more likely possibility since these struc- 
tures, and their possible equivalents in other cell types, have 
been found to contain SDS-stable oe3 dimers (21-24). The 
fact that peptide loading can occur in CIIV does not neces- 
sarily mean that it cannot also occur somewhere else. How- 
ever, the fact that CIIV represent a novel vesicle population 
on the pathway of class II transport strongly implies that 
they have a novel functional role as well. 

While we cannot completely eliminate the possibility that 
our results at least in part reflected an unspecified effect of 
leupeptin on class II transport or processing, such an effect 
appears unlikely, c~-Ii-pl0 was found to be a normally oc- 
curring intermediate in the conversion of oe3-Ii nonamers 
to peptide-loaded oe3 dimers and, even in the absence of 
leupeptin, localized to CIIV. Leupeptin simply served to in- 
crease their concentration by reducing the rate of Ii-pl0 cleavage 
and/or dissociation. The leupeptin-induced accumulation 
of cr complexes was needed to generate sufficient 
amounts of the precursor to analyze its biochemical features 
and precise intracellular localization. Despite its effects on 
transport (39), leupeptin itself had no effect on the fraction- 
ation profile of A20, unlike many lysosomotropic agents, 
which are well known to affect the morphology and proper- 
ties of endocytic organelles. Final proof of the peptide-loading 
activity of CIIV, however, must await its reconstitution in 
vitro. 

By following the formation of SDS-stable c~3 dimers rather 
than that of single antigen-derived peptides, our conclusions 
concern the pool of naturally occurring peptides. Several pep- 
tides eluted from MHC class II molecules in A20 cells have 
been sequenced (40). They were derived from various pro- 
teins having access to the endocytic pathway, including trans- 
ferrin receptor, a secreted protease inhibitor (cys-C), or MHC 
class II itself. Our conclusions only apply to the peptides that 
confer SDS stability to I-A d ol3 dimers. It remains possible, 
if not likely, that other peptides that do not induce stability 
in SDS behave differently. Preliminary results show that the 

transient association of MHC class II with a 10-kD fragment 
also applies to other class II molecules, such as I-A k and I-A b, 
which were expressed by transfection in A20 cells or expressed 
endogenously in other B cell lines (unpublished observations). 
In the case of I-A b, >75% of which is converted by endog- 
enous peptides to SDS stability, leupeptin induces an almost 
complete block of both peptide loading and transport. The 
block is reversed only upon leupeptin, removal and again, 
the dissociation of Ii-pl0 kinetically precedes the formation 
of compact dimers, albeit at a slower rate than for I-A d mol- 
ecules (Amigorena, S., and I. Mellman, unpublished obser- 
vations). 

The notion that progressive degradation of Ii chain from 
its COOH-terminal lumenal end exposes the class II pep- 
tide-binding domain derives from experiments showing that 
Ii chain inhibits peptide binding both in vitro and in intact 
cells (9, 41, 42). Recently, a small Ii chain-derived peptide, 
CLIP, was shown to be sufficient to inhibit peptide binding 
to human class II molecules (14). Furthermore, any Ii chain 
fragment that contains CLIP remains associated with o~3 
dimers and inhibits peptide binding (11-13). Since Ii-pl0 re- 
mained associated with a 3  dimers and since these dimers were 
not SDS stable, one would predict that Ii-pl0 includes CLIP, 
a possibility supported by the apparent molecular weight of 
Ii-pl0 and the position of the CLIP-homologous domain in 
the murine Ii chain sequence (residues 85-99). We are pre- 
paring antibodies to routine CLIP to test this possibility 
directly. 

The proteolytic removal of the CLIP region of Ii is there- 
fore likely to have at least two important consequences. First, 
it exposes the peptide-binding groove in oe3 dimers, providing 
MHC class II molecules a chance to bind peptides. Second, 
it induces the dissociation of the remaining portion of Ii, 
which includes Ii cytoplasmic tail and the intracellular reten- 
tion signals found there, allowing transport to the plasma 
membrane. It is not clear yet whether peptide association 
is needed for efficient cell surface expression, despite some 
suggestions that peptide loading protects MHC class II from 
aggregation and degradation (43). 

Is There an Endosomal Intermediate in the Transport of MHC 
Class II to CIIV? Until recently, it seemed clear that MHC 
class II molecules en route from the ER to the cell surface 
transiently reside in endosomes (4-6). However, the discovery 
of CIIV and perhaps other specialized class II compartments 
requires a redefinition of this long-held understanding. Newly 
synthesized class II molecules may be targeted directly from 
the Golgi complex to CIIV, perhaps bypassing conventional 
early and/or late endosomes entirely. Such a mechanism would 
be difficult to reconcile with our finding that intact Ii chain 
is never observed in CIIV. Thus, at present, it seems more 
likely that the bulk of class II molecules reach CIIV after 
leaving endosomes. Several lines of evidence, both biochem- 
ical and immunocytochemical, suggest that class II transits 
through conventional endosomes before reaching the cell 
surface. For example, it has long been known that newly syn- 
thesized cr complexes can be digested by transferrin- 
coupled or free neuraminidase before reaching the cell sur- 
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face (44, 45). Thus, the newly synthesized class II molecules 
become accessible to endocytic tracers before dissociating from 
the Ii chain and appearing in CIIV. 

In control cells, we have found that class II molecules and 
Ii chain are largely absent from both early and late endosomes 
isolated from A20 cells (21). Thus, if there is an endosomal 
intermediate in these potent APCs, class II molecules must 
reside there only very briefly. It thus may be significant that 
leupeptin also appeared to induce the accumulation of orb 
dimers and intact Ii chain in FFE fractions containing endo- 
somes and lysosomes. Unless leupeptin causes a significant 
alteration in the pathway of intracellular transport, this ac- 
cumulation of ccB-Ii complexes in endosomes suggests an 
endosomal intermediate between the TGN and arrival in CIIu 
It is unlikely that leupeptin causes a nonselective alteration 
in either the endocytic or secretory pathways since the drug 
had no effect on the transport of other non-class II-related 
membrane proteins or the internalization of endocytic tracers 
(Amigorena, S., and I. Mellman, unpublished observations). 
Our results also suggest the reason why so little new MHC 
class II is normally found in endosomes. Not only do newly 
synthesized ot~ dimers reside only briefly in endosomes, but 

this compartment normally mediates a very rapid degrada- 
tion of Ii chain. 

If MHC class II molecules are selectively transported first 
from the TGN to endosomes and then from endosomes to 
CIIV, at least two independent sorting events may occur be- 
fore peptide-loaded c~/~ dimers are found at the cell surface. 
Sorting in the TGN is likely to be determined by the cyto- 
plasmic domain of the Ii chain, which bears targeting and/or 
retention signals inducing endosomal localization in trans- 
fected fibroblasts (7, 8). On the other hand, it is unlikely 
that these signals also determine endosomal sorting and trans- 
port from endosomes to or retention in CIIV. In this instance, 
we would have expected to find o~  dimers bound to the in- 
tact Ii chain in CIIV, at least in leupeptin-treated cells. Ac- 
cordingly, o~B-Ii-pl0 must bear some type of sorting deter- 
minant that is absent from its o#%Ii progenitor. One attractive 
possibility is that Ii chain cleavage to form Ii-pl0 unmasks 
a sorting signal in the ectodomain of MHC class II mole- 
cules (46, 47). As long as ot/~ dimers remain associated with 
the intact Ii chain, this determinant may be hidden and the 
Ii chain-containing complexes would be retained in endosomes. 
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