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The accumulation of various metabolites appears to be associated with diverse

human diseases. However, the aetiological link between metabolic alteration

and the observed diseases is still elusive. This includes the correlation between

the abnormally high levels of homocysteine and quinolinic acid in Alzheimer’s

disease, as well as the accumulation of oncometabolites in malignant processes.

Here, we suggest and discuss a possible mechanistic insight into metabolite

accumulation in conditions such as neurodegenerative diseases and cancer.

Our hypothesis is based on the demonstrated ability of metabolites to form

amyloid-like structures in inborn error of metabolism disorders and the poten-

tial of such metabolite amyloids to promote protein aggregation. This notion can

provide a new paradigm for neurodegeneration and cancer, as both conditions

were linked to loss of function due to protein aggregation. Similar to the well-

established observation of amyloid formation in many degenerative disorders,

the formation of amyloids by tumour-suppressor proteins, including p53, was

demonstrated in malignant states. Moreover, this new paradigm could fill the

gap in understanding the high occurrence of specific types of cancer among

genetic error of metabolism patients. This hypothesis offers a fresh view on

the aetiology of some of the most abundant human maladies and may redirect

the efforts towards new therapeutic developments.
1. Metabolite accumulation and amyloid-like structure
formation

Many diseases stem directly from variation in activity, folding and stability of

proteins. While the role of altered protein function in diseases is well established,

an important aspect associated with failures in biosynthetic pathways is often

overlooked. Interference in a given metabolic process can lead to deficiencies

or accumulation of metabolites (figure 1). This can, in turn, affect multiple bio-

logical functions, including signalling, structural organization, stimulation and

inhibitory processes. Metabolites, such as amino acids, nucleobases, neurotrans-

mitters, organic acids and their downstream intermediates and products, play an

important part in cellular homeostasis. However, in many cases, the roles of

metabolites are not fully understood [1,2].

The maintenance of metabolite homeostasis is an important part of cellular

physiology, yet the accumulation of metabolites was observed in various diseases

when phenotypic variations occur. Inborn error of metabolism (IEM) disorders, a

group of well-known genetic diseases, are induced by mutations resulting in the

malfunction of specific enzymes, leading to disrupted biosynthetic pathways and
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Figure 1. Scheme of the biosynthetic pathway downstream to phenylalanine.
When enzyme deficiencies occur, specific metabolites accumulate (denoted in
red), leading to particular disorders (denoted in brown). PAH, phenylalanine
hydroxylase; TAT, tyrosine aminotransferase; HPPD, r-hydroxyphenylpyruvate
dioxygenase; HGD, homogentisate 1,2-dioxygenase; MAAI, maleylacetoacetate
isomerase; FAH, fumarylacetoacetase; FH, fumarate hydratase.

rsob.royalsocietypublishing.org
Open

Biol.8:170229

2

accumulation of metabolites. The accumulated metabolites can

be toxic and interfere with the normal function of cells and tis-

sues [3,4]. For example, in phenylketonuria (PKU) patients,

phenylalanine accumulates in the plasma, cerebrospinal fluid

and brain tissue due to a mutation in the gene encoding for

phenylalanine hydroxylase (PAH) (figure 1) [5,6]. Moreover,

several other IEM disorders result from downstream blockades

in this biosynthetic pathway, as illustrated in figure 1. Individ-

uals with such disorders can show severe symptoms,

including mental retardation, epilepsy, organ damage and

other developmental abnormalities, which can be avoided

only with a strict diet [1,7]. It should be noted that such

mutations can lead to very high concentrations of the metab-

olites. For example, in PKU, the blood concentration of

phenylalanine can reach values over 1.2 mM [8,9] in untreated

patients as compared with 35–85 mM in healthy individuals.

Another characteristic of metabolites, which until recently

was attributed solely to proteins and peptides, is their ability to

form ordered amyloid-like assemblies [10–13]. Amyloid-

associated diseases, in which proteins and polypeptides form
ordered aggregated assemblies, are a group of very common

degenerative disorders, including Alzheimer’s disease (AD), Par-

kinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and

type II diabetes. The fibrillary deposits in these pathological con-

ditions are located in the intracellular or extracellular milieu of

various organs and tissues, where they may induce apoptotic

cell death [14,15]. In recent studies, it was established that

under physiological conditions, various metabolites associated

with IEM disorders could form ordered structures that highly

resemble protein amyloid assemblies [16–22]. Specifically,

phenylalanine, adenine, orotic acid, cystine, tyrosine, trypto-

phan, glycine, histidine and uracil, which individually

accumulate in specific IEM disorders (table 1), were found to pos-

sess the capability to form amyloid-like structures. The

metabolite amyloids have aclear fibrillarystructure, bind to amy-

loid-specific dyes and show a dose-dependent apoptotic effect

[11–13]. Using centrifugation to pellet the structures from sol-

utions, it was confirmed that the toxic effect is due to the

formation of supramolecular metabolite structures, rather than

the concentration of metabolite monomers [12]. Furthermore,

phenylalanine fibrils could be specifically detected using anti-

bodies raised against the formed structures, another amyloid-

like property [13,37]. Thus, it can be hypothesized that part of

the pathologies reported in IEM disorders are a result of metab-

olite accumulation and amyloid formation. This hypothesis was

further supported by demonstrating the presence of phenyl-

alanine deposits in post-mortem brain sections of PKU patients

using immunohistochemistry and Congo red staining [13].
2. Seeding of proteins by metabolite
assemblies

Recent studies demonstrated that metabolites could cross-

seed proteins [23]. Phenylalanine formed fibrils initiated the

aggregation of several non-amyloidogenic proteins under

physiological conditions [23]. Globular proteins, including

lysozyme, serum albumin, insulin, myoglobin and cyto-

chrome c, spontaneously self-assembled into amyloid fibrils

in the presence of phenylalanine seeds [23]. Another obser-

vation was the accelerated aggregation of a soluble mixture

of amino acids following the addition of phenylalanine fibrils

[23]. Additional study demonstrated the cross-seeding of pro-

teins by homogentisic acid (HGA), a metabolite related to

alkaptonuria [24], a rare IEM disorder which was lately

classified as secondary amyloidosis. Alkaptonuria is charac-

terized by the accumulation of HGA due to deficiency of

homogentisate 1.2-dioxygenase enzyme (figure 1, table 1).

HGA was shown to induce the aggregation and fibrillization

of amyloidogenic proteins, such as serum amyloid A, b-amy-

loid polypeptide (Ab) and a-synuclein. HGA was suggested

to be an important amyloid co-component in alkaptonuria

amyloidosis [24]. Self- and cross-seeding of proteins by amy-

loid assemblies is well established in the literature [28,38],

and we propose to extend this concept to include metabolite

assemblies as possible seeds that may be formed upstream to

protein aggregation and may facilitate this process.

This ability of simple metabolites to form ordered structures,

and the seeding effect demonstrated by phenylalanine and HGA,

provides new paradigm for numerous diseases that could be

tested experimentally. Structure formation and cross-seeding

of proteins may be a possible mechanism in which accumula-

ted metabolites interfere with protein function and folding



Table 1. Metabolites that accumulate in human diseases.

name of metabolite related disease molecule characterization

phenylalanine phenylketonuria structure formation [12,13,16,19 – 21]

cross-seeding [23]

tyrosine tyrosinaemia II structure formation [12,16 – 20]

adenine adenine

phosphoribosyltransferase

deficiency

structure formation [12]

orotic acid ornithin transcarbamylase

deficiency

structure formation [12]

cystine cystinuria, cystinosis structure formation [12]

uracil dihydropyrimidine

dehydrogenase deficiency

structure formation [12]

tryptophan hypertryptophanemia structure formation [11,18,19]

glycine non-ketotic hyperglycaemia structure formation [16]

histidine histidinaemia structure formation [19]

homogentisic acid alkaptonuria cross-seeding [24]

quinolinic acid Alzheimer’s disease coexistance in plaques [25 – 27]

homocysteine Alzheimer’s disease [28 – 30]

dopamine Parkinson’s disease [31,32]

succinylacetone

fumarylacetoacetate

maleylacetoacetate

tyrosinaemia I

cancer

[33 – 35]

fumarate cancer

fumaric aciduria

[33,36]

succinate cancer

succinate dehydrogenase

deficiency

[33,36]

2-hydroxyglutarate cancer

glutaric aciduria

[33,36]
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(figure 2). Disrupting the function and folding of tumour-

suppressor proteins, such as p53, or amyloidogenic proteins,

such as a-synuclein, Ab and tau, may induce corresponding

pathological effects. We propose that metabolite accumulation

and molecular self-assembly can be the early event in a cascade

that leads to neurodegeneration and malignant processes.

Indeed, the accumulation of metabolites was extensively

associated not only with IEM disorders but also with other

human diseases. Many observations, which will be discussed

below, support the concept that metabolites might play signifi-

cant roles in these major epidemiological maladies. Briefly, the

accumulation of several metabolites was demonstrated to be

involved in AD [25–27,29,30,39–42] (table 1). Quinolinic

acid (QA), an endogenous metabolite, was shown to
accumulate in amyloid plaques [29,30,40] and to affect tau

protein aggregation [39]. Homocysteine (Hcy), a non-coded

amino acid, was identified as a risk factor in AD due to its

high concentration in the plasma of patients and its cytotox-

icity effect on hippocampal and cortical neurons [25,41,42].

In addition, few studies demonstrated that dopamine, which

is strongly related to PD, induces a-synuclein aggregation

into soluble oligomers [33,36,43]. Likewise, accumulation of

several metabolites was linked with increased cancer risk.

Fumarate, succinate and 2-hydroxyglutarate (2HG) (table 1)

have been described as ‘oncometabolites’ that promotes malig-

nancy [44,45]. Furthermore, hepatocellular carcinoma (HCC),

a common cancer type among IEM disorders patients [46],

may be induced by metabolite accumulation [45].
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Figure 2. Metabolite seeding hypothesis. A schematic putative model for the seeding of proteins by metabolite assemblies. Accumulated metabolites self-assemble
into ordered structures. In turn, the structures serve as seeds to increase further aggregation of proteins. Loss of function of different proteins induces various
pathological effects, as shown on the right.
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Taken together, in addition to IEM disorders, metabolites

might also play a significant role in cancer and neurodegen-

eration. However, the specific role of metabolites in the

pathology of these diseases is still elusive. We suggest metab-

olite assembly and cross-seeding following accumulation as a

fundamental mechanism that might explain some unidenti-

fied epidemiological aspects associated with pathological

conditions (figure 2).
3. Metabolite accumulation in
neurodegeneration

QA is an endogenous metabolite that is involved in the pathol-

ogy of neurodegenerative diseases [40,47,48] (table 1). It is a

downstream product of the kynurenine pathway, the primary

route of tryptophan degradation in mammalian cells. QA is pro-

duced by macrophages and activated microglia. Under normal

conditions, the metabolite is catabolized by the quinolinate

phosphoribosyltransferase (QPRTase) enzyme to maintain its

cellular levels at very low concentrations [49–51]. While neurons

are unable to synthesize QA, intracellular QPRTase has been

detected in these cells [52,53]. Under pathological conditions,

due to inflammatory responses, the kynurenine pathway is

over-activated and the production of QA increases [54,55].

Excess QA can be internalized by neurons in an unknown mol-

ecular mechanism [29,39], resulting in saturated QPRTase

activity and QA accumulation outside and inside neurons

[39,56]. In post-mortem brain sections of AD patients, intracellu-

lar QA has been detected as punctate structures, in

co-localization with tau protein fibrillary structures [39,48]. It

has been demonstrated that treatment of primary cultures of

human neurons with QA increases both total and phosphory-

lated tau [39]. Interestingly, QPRTase knock-out has been

identified to significantly increase Ab accumulation in mouse

brain [57], highlighting the importance of QPRTase in

accumulation of aggregated proteins. This suggests that QA

accumulation may be an important factor in the complex

cascade that eventually leads to neurodegeneration [48,56]. We

hypothesize that excess QA accumulation may lead to metab-

olite amyloid-like fibril formation, which cannot be degraded

by QPRTase. The putative QA fibrils co-localize with aggregated

endogenous proteins, and may serve as a seed to increase further

aggregation of pathological, aggregation-prone proteins, such as

tau, Ab and a-synuclein (figure 2).

Accumulation of Hcy was identified as a clear risk factor in

AD (table 1). High levels of Hcy in the plasma (denoted as
hyperhomocysteinaemia or HHcy) were observed in AD

patients [25] and are associated with markers of AD. For

example, as determined by MRI, the hippocampal and cortical

volume of patients decreased significantly with increasing Hcy

plasma concentration [58]. Furthermore, Hcy-rich medium was

shown to be cytotoxic to hippocampal and cortical neurons,

resulting in increased Ab-induced cell death [41,42]. Further-

more, HHcy induced in the brains of AD transgenic mouse

models caused an elevation of Ab deposition. Hcy was found

to bind Ab40, thereby stimulating a b-sheet structure formation

to facilitate its deposition [31,32,59]. Recently, it was reported

that Hcy can induce hyperactivity of a key kinase, the

mechanistic target of rapamycin complex 1 (mTORC1), a

newly identified risk factor for sporadic AD. The mTORC1

hyperactivity can inhibit neuronal clearance and autophagy

pathways, leading to abnormal Ab and phosphorylated tau

accumulation and aggregation [27]. We speculate that Hcy

might undergo fibril formation and induce the seeding of Ab

polypeptide resulting in plaque formation (figure 2).

Furthermore, a recent report suggested another possible link

between metabolite assembly and amyloid formation in PD. It

was shown that increased dopamine levels induce the formation

of toxic oligomers of mutated a-synuclein [33]. While alternative

models that are associated with neuromelanin formation were

suggested, the seeding of a-synuclein by dopamine supra-

molecular species cannot be ruled out. This may explain

the observation that neuromelanin polymers do exist in

healthy individuals with no PD symptoms. Taken together,

the metabolite seeding hypothesis (figure 2) should be tested

experimentally to assess the possible link, based on indications

found in the literature for dopamine accumulation [34,35].
4. Oncometabolite accumulation in cancer
Metabolic dysregulation by IEM disorders is associated with

cancer, as lately reviewed by Erez et al. [45]. Several disorders

associated with a single gene mutation leading to enzymes

deficiency have been linked with increased cancer risk, and

the accumulation of toxic metabolites has been described as a

major event in the pathway to malignancy [45]. For example,

Tyrosinaemia type I is the result of deficiency in fumarylaceto-

acetase (FAH), the last enzyme of the tyrosine degradation

pathway (figure 1, table 1). As a result, the accumulation of

the toxic metabolites succinylacetone, fumarylacetoacetate and

maleylacetoacetate toxic metabolites can cause tissue damage,

fibrosis and cirrhosis when taking place in the liver [60,61].

These conditions can promote malignant processes, and were
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specifically connected to HCC, a common cancer type among

IEM disorder carriers [46]. Preventing the accumulation of

toxic metabolites using nitisinone, an inhibitor of r-hydroxy-

phenylpyruvate dioxygenase (figure 1), showed to reduce

cancer risk in tyrosinaemia type I patients and improve organ

function. Induced HCC by metabolite accumulation was also

observed in haemochromatosis, porphyria and Wilson disease,

and other cancer types, such as renal cell carcinoma and haema-

tological cancers, were shown to be associated with Fabry disease

and Gaucher disease, respectively [45,61]. All of these diseases

are IEM disorders that include chronic and toxic accumulation

of metabolites. Furthermore, several other metabolites have

been described as ‘oncometabolites’ that promote malignancy

upon accumulation. For example, fumarate, succinate and 2HG

(table 1), accumulate due to mutations in the genes encoding

fumarate hydratase (FH), succinate dehydrogenase and isocitrate

dehydrogenase 1 or 2 (IDH1/2), respectively, enzymes of the tri-

carboxylic acid cycle [45]. These oncometabolites were

demonstrated to alter the activity of proteins and transcription

factors, leading to dramatic remodelling of gene expression pat-

tern and DNA epigenetic modification. Such alteration can

promote DNA damage, oncogenic cell survival and prolifer-

ation, formation of blood vessels and impairment of cellular

differentiation, all characteristics of tumour development and

malignancy [44,45].

We hypothesize that these oncometabolites, like other

metabolites mentioned, could also undergo self-assembly

into ordered structures, which can interfere with the function

of cells. One possible interference is the seeding of tumour-

suppressor proteins such as p53 and VHL [62,63], both

demonstrated to have marginal stability and to be prone to

aggregation and amyloid formation, which in turn results

in their loss of function [64–66] (figure 2). However, the mol-

ecular basis of the aggregation of tumour-suppressor proteins

is still not fully understood. Our hypothesis could provide a

new direction for elucidating this observation.
5. Concluding remarks
Metabolite self-assembly and cross-seeding of proteins should

be further investigated as it may serve as new target for therapy.

The accumulation of metabolites and alterations in specific

metabolic pathways may contribute to many pathological effects

[2–4] (figure 2) and thus should be specifically monitored using

high-throughput ‘metabolomics’ approaches. Recent studies of

metabolite profiling in body fluids and brain regions have

revealed alterations in specific metabolic pathways in a set of

different diseases. For example, phenylalanine, tryptophan
and tyrosine metabolism is commonly altered in PD, ALS,

PKU and Huntington’s disease, and metabolism of the first

two is also altered in AD [67–70]. This observation suggests

that shared pathological symptoms may be the result of accumu-

lation and structure formation of these aromatic amino acids.

There are also indications for alterations in glycine and histidine

metabolism in PD and ALS, respectively [70]. Indeed, these

amino acids were shown to accumulate in IEM disorders and

to form structures (table 1) [12,16,19]. Specifically for AD and

PD, it was observed in many metabolomics studies that the

kynurenine pathway of tryptophan metabolism is increased

[67,71], consistent with the observations of QA (a downstream

intermediate) accumulation in amyloid plaques [30]. This pro-

vides further support to our hypothesis, that QA accumulation

may be toxic and alters protein function, leading to neuronal

dysfunction (figure 2). Another important direction is the cross

analysis of information from genetic studies. Such studies

demonstrated that aminocarboxymuconate semialdehyde

decarboxylase (ACMSD), a key enzyme in the kynurenine

pathway is associated with PD [72]. Furthermore, mutations in

ACMSD cause an increase in the level of QA [73–76]. Taken

together, ACMSD and QPRTase enzymes deficiencies may

lead to very high concentrations of QA, similar to IEM disorders.

Therefore, the accumulation of QA as well as other metabolites

that are mentioned here should be further examined using

metabolomics approaches.

Finally, while a priori it appears counterintuitive that

metabolites could form ordered and stable structures that

could seed much larger biomolecules, it should be remem-

bered that aggregation into ordered macroscopic structures

is well known in the formation of gallstone, kidney stones

and gout-related crystals [77]. Therefore, very simple metab-

olites contain all the molecular information needed to form

stable and well-ordered structures. Since no clear similarity

between the various amyloid-forming metabolites is evident,

additional metabolites could have the potential to form such

structures. This resembles the ability of numerous non-

disease-related proteins to form amyloid structures and the

recognition of the amyloid as a generic organization of pro-

teins [78–81]. Thus, the soluble state of metabolites may be

parallel to the meta-stable state of soluble proteins.
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74. Martı́-Massó JF et al. 2013 The ACMSD gene,
involved in tryptophan metabolism, is mutated in a
family with cortical myoclonus, epilepsy, and
parkinsonism. J. Mol. Med. 91, 1399 – 1406. (doi:10.
1007/s00109-013-1075-4)

75. Fukuwatari T, Ohsaki S, Fukuoka SI, Sasaki R,
Shibata K. 2004 Phthalate esters enhance
quinolinate production by inhibiting?a-amino-b
carboxymuconate e-semialdehyde decarboxylase
(ACMSD) a key enzyme of the tryptophan pathway.
Toxicol. Sci. 81, 302 – 308. (doi:10.1093/toxsci/
kfh204)

76. Brundin L et al. 2016 An enzyme in the kynurenine
pathway that governs vulnerability to suicidal
behavior by regulating excitotoxicity and
neuroinflammation. Transl. Psychiatry 6, e865.
(doi:10.1038/tp.2016.133)

77. Ragab G, Elshahaly M, Bardin T. 2017 Gout: an old
disease in new perspective. J. Adv. Res. 8, 495 –
511. (doi:10.1016/j.jare.2017.04.008)

78. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson
CM. 1998 Amyloid fibril formation by an SH3
domain. Proc. Natl Acad. Sci. USA 95, 4224 – 4228.
(doi:10.1073/pnas.95.8.4224)
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