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Abstract: Irregular inflammatory responses are a major contributor to tissue dysfunction and ineffi-
cient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation.
In particular, skin wound healing is dependent on a rapid, robust immune response and subse-
quent dampening of inflammatory signaling. While injury-induced inflammation has historically
been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability
of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this re-
view, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in
pro-inflammatory signaling after injury, and how altered cellular communication from these cells
can contribute to irregular inflammation associated with aberrant wound healing. Furthering our
understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal
new targets that can be manipulated to regulate inflammation and repair.
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1. Introduction

Skin is a complex, multilayered organ that provides protection from the external
environment. Skin can be divided into a thin outer epidermis and thick underlying
dermis. The epidermis is a stratified epithelial layer that is largely composed of tightly
interconnected keratinocytes that generate a watertight barrier to prevent invasion and
damage from harmful environmental agents [1]. The underlying dermis contains dozens of
unique cell types and is composed of flexible extracellular matrix (ECM) components, such
as collagen and elastin. The dermis can be further divided into a loose, highly vascular
superficial papillary layer, an ECM-dense reticular layer, and deep dermal white adipose
tissue (DWAT) [2,3]. While adipocytes and fibroblasts influence numerous aspects of skin
homeostasis and support hair follicle growth [4–7], these cells also actively participate in
tissue repair following injury [8–13].

Disruption of the skin’s barrier function can have catastrophic consequences by allow-
ing harmful pathogens to invade the body. To prevent dehydration and infection, skin has
evolved to rapidly respond to injury and reseal the epidermis. Upon injury, tissue-resident
cells mount robust cellular and molecular responses in coordination with recruited immune
cells (reviewed in [14,15]). This injury-response process has been well characterized as a
sequence of overlapping phases, with each phase performing specific functions to promote
efficient repair. Within minutes after injury, platelet activation and diversion of blood flow
away from the site of injury minimizes blood loss. This process, known as hemostasis,
is followed by an inflammatory phase that spans multiple days after injury. During in-
flammation, keratinocyte stores of interleukin 1α (IL1α) are released [16,17], triggering an
inflammatory chain reaction by adjacent keratinocytes [18,19]. This in turn promotes an
influx of neutrophils, monocytes, and macrophages to the site of injury [20,21]. Recruited
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neutrophils and inflammatory macrophages clear cellular debris and pathogens while
perpetuating inflammation through the release of cytokines such as chemokine (C-C motif)
ligand 5 (CCL5), IL1, IL6, and tumor necrosis factor α (TNFα) [15,20,22]. As inflammation
actively resolves, immune cells produce vascular endothelial growth factor (VEGF) to
initiate revascularization [23,24]. A subsequent phenotypic switch in macrophage polariza-
tion is regulated by many factors, including signaling from mesenchymal stem cells [25].
The transition from inflammatory to anti-inflammatory macrophage polarization supports
continued tissue repair into the proliferative phase, where reparative signals orchestrate
re-epithelialization and repopulation of the dermal compartment. In fact, multiple subsets
of anti-inflammatory macrophages produce transforming growth factor β (TGFβ) [14,26],
which is critical for activation of fibroblasts into ECM-producing myofibroblasts. The newly
generated tissue, frequently a scar in adult mammals, undergoes a remodeling phase. This
tissue maturation process attempts to restore the cellular and ECM composition to what
existed prior to injury; however, numerous skin components, such as epidermal accessory
structures (e.g., hair follicles) and deep dermal structures (e.g., DWAT), are typically not
regenerated in the repaired region [9,12].

Frequently, diseases associated with impaired wound healing do not properly activate
early inflammatory pathways or do not fully resolve inflammation, and therefore do not
successfully progress into the proliferative phase. A delayed or incomplete transition
from the inflammatory phase to the proliferative phase is associated with the persistence
of inflammatory neutrophils and macrophages [27–29], contributing to chronic or non-
healing wounds. These hard-to-treat wounds pose a significant medical challenge; as their
prevalence has steadily increased over time and only modest therapeutic advancements
have come from animal studies [30,31]. While tremendous efforts have uncovered de-
fects in cellular composition and function during the proliferative phase of repair, animal
models have recently revealed that reduced activation of early inflammatory responses
is associated with delayed healing [32–34]. Due to their role in ECM production, dermal
mesenchymal cells have been studied in the context of ECM formation and maturation;
however, emerging evidence has revealed that adipocytes and fibroblasts can also promote
inflammation. Their pro-inflammatory function is well supported in various in vivo dis-
ease models and in vitro studies that have unveiled tremendous cytokine production in
response to pro-inflammatory stimuli. Below, we discuss how these abundant skin-resident
mesenchymal cells play an active role in acute and chronic inflammation that follows injury.

2. Contribution of Adipocytes to Inflammation
2.1. White Adipose Tissue

White adipose tissue (WAT) is found throughout the mammalian body in various
depots. While visceral (VWAT) and subcutaneous WAT (SWAT) are widely studied due
to their role in metabolic disease, WAT exists in many other depots including muscle,
mammary gland, bone marrow, and skin [35,36]. There are major distinctions in struc-
ture, composition, and function between individual WAT depots [9,13,37–39]; however,
they are all predominantly composed of mature white adipocytes, immature adipocyte
precursors, immune cells and blood vessels. White adipocytes maintain energy homeosta-
sis by storing excess nutrients as triglycerides through lipogenesis and breaking down
stored lipids via lipolysis during times of metabolic need. In addition to energy storage,
adipose tissue has potent endocrine activity that is achieved through the release of growth
factors, cytokines, and inflammatory factors often referred to as “adipokines” [40–42].
Adipocytes directly influence the immune cell composition and activity in and around
WAT through secreted pro- or anti-inflammatory adipokines and lipids [42–45] and ex-
pression of immune checkpoint proteins [46]. For instance, human omental adipocytes
constitutively express the chemokines CCL2 (monocyte chemoattractant protein 1, MCP1),
and IL8/chemokine (C-X-C motif) ligand 8 (CXCL8) [47], and subcutaneous adipocytes
produce adiponectin, CCL3 (MIP1α), CCL5, CXCL1, CXCL5, and leptin [48]. Notably,
while macrophages and neutrophils exhibit pro-inflammatory responses when stimulated
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with leptin [49,50], adiponectin promotes anti-inflammatory macrophage polarization [51].
Consistent with their visceral and subcutaneous counterparts, dermal adipocytes also
influence their surrounding tissues through adipokine secretions [5,52], and possess similar
immune regulatory capabilities [9,13,53,54].

2.2. Dermal Adipocytes

DWAT has historically been considered subcutaneous tissue [3], leading to some over-
generalizations. While WAT depots have significant overlap in structure and function, key
differences exist between SWAT and DWAT [9,13,39]. Many of these differences implicate
dermal adipocytes as potent modulators of local immune responses [9,53]. For example,
when compared to subcutaneous adipocytes, dermal adipocyte triglyceride stores are en-
riched with lipids capable of regulating inflammation [9] and dermal adipocytes uniquely
express Ccl4 (macrophage inflammatory protein 1 β, MIP1β), and secrete cathelicidin
antimicrobial peptide (CAMP) to combat infection [13,53]. In humans, DWAT exists as
a relatively thin superficial layer above SWAT [13]. Interestingly, macrophages preferen-
tially infiltrate superficial subcutaneous WAT in humans [54], suggesting that DWAT has
a greater propensity to recruit macrophages and plays a potentially prominent role in
host defense.

2.3. WAT Inflammation

Supporting their role in immune regulation, adipocytes are equipped with receptors
that sense and respond to inflammatory cues. Human and murine adipocytes express toll-
like receptors (TLRs) that respond to both fatty acids and pathogen-associated molecular
patterns (PAMPS) [55–57]. Notably, subcutaneous human adipocytes express high levels
of TLR4, allowing them to respond rapidly to lipopolysaccharide (LPS) or other bacterial
stimuli [55]. TLR signaling in adipocytes activates the pro-inflammatory nuclear factor
kappa B (NF-κB) pathway, and stimulation with LPS results in the production of various
cytokines that promote inflammation, such as CCL3, CXCL10, intercellular adhesion
molecule 1 (ICAM1), IL6, IL8/CXCL8, and TNFα [55,56].

Adipocytes not only produce TNFα; they also express both receptors (TNFR1 and
TNFR2) [58], and respond to TNFα in a feedforward cycle that contributes to adipose tissue
dysfunction during metabolic disease [59]. Indeed, in vivo studies have linked circulat-
ing TNFα to decreased adiponectin production [60]. In vitro, TNFα treatment increased
adipocyte basal lipolysis while lowering hormone-sensitive lipase (HSL) expression [61],
altering glucose metabolism [58], and increasing IL1β and TLR2 expression in as little as
3 hours [57,62]. These changes in pro-inflammatory signals can be especially impactful
during the early stages of wound healing.

Adipocytes also respond to IL1 ligands, as IL1β reduces insulin sensitivity in cultured
human and murine adipocytes [63]. Notably, IL1 signaling can also modulate adipocyte
lipolysis in vitro [64]. These data clearly demonstrate that adipocytes express receptors
that integrate and propagate inflammatory signaling networks. How dermal adipocytes
utilize these pathways during efficient and impaired healing is another intriguing aspect of
wound healing that is actively unfolding.

2.3.1. Neutrophil Recruitment

WAT is well characterized in its ability to recruit neutrophils [65], and it is thought
that these early infiltrators contribute to subsequent macrophage inflammation in adipose
tissue [66]. Consistently, neutrophil infiltration is one of the first changes in adipose tissue
that is caused by high-fat dieting in mice [67,68]; and in humans, increased adipose tissue
abundance is correlated with increased circulating markers of neutrophil activity such as
neutrophil elastase [69]. WAT can communicate with neutrophils through both direct and
indirect interactions [65,67]. For example, neutrophils possess leptin receptor [50], which
exerts potent pro-inflammatory activity [70] and acts as a chemoattractant [71]. Neutrophils
also express free fatty acid receptors such as G protein-coupled receptor 84 (GPR84) [72],
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and are canonically recruited by the fatty acid-derived leukotriene b4 [73]. While crude
lipid extracts from human adipocytes rapidly recruit neutrophils [74], lipolysis in VWAT
also induces neutrophil recruitment and IL1β expression [65]. Specifically, oleic acid, the
most abundant free fatty acid (FFA) in humans [75], recruits neutrophils to the peritoneal
cavity in an IL1 receptor-dependent manner [76]. Whether similar or distinct mechanisms
are utilized by dermal adipocytes during wound healing remains a topic of great interest.

2.3.2. Macrophage Recruitment and Polarization

In addition to neutrophil recruitment, adipocytes directly regulate macrophage recruit-
ment and polarization [66]. In vivo, a positive correlation exists between adipocyte size and
macrophage numbers [77]. In vitro, differentiated adipocytes secrete numerous molecules
that recruit macrophages including CCL3, CCL4, CCL5, and colony stimulating factor
(CSF) [56]; and macrophages respond by encircling apoptotic WAT adipocytes [78]. In
addition to immune-modulating adipokines, the impact of adipocyte lipid signaling is also
emerging as a formidable mechanism of immune regulation [79,80]. Specifically, oleic acid
can recruit macrophages and induce macrophage IL1α production [74,76], and adipocyte-
derived palmitate increases macrophage TNFα production [81]. Moreover, macrophages
express numerous fatty acid receptors that trigger both pro- and anti-inflammatory re-
sponses necessary for wound healing [81–84]. This suggests that dermal adipocyte-derived
lipids might regulate anti-inflammatory and reparative processes in addition to early
inflammatory events.

2.4. Adipocyte Response to Injury

DWAT is tremendously dynamic; expanding and regressing while contributing to hair
follicle growth [4], cold stress [85], bacterial infection [53], and injury [8,9,13]. More recently,
mammalian adipocytes have been recognized for their contributions to reduced scarring
in large wounds [12]. Genetic lineage tracing experiments have revealed astounding plas-
ticity of dermal adipocyte conversion into fibrogenic myofibroblasts after injury [9,13]
and in a mouse model of fibrosis [86]. Interestingly, fat body cells, the Drosophila equiv-
alent to adipocytes, actively migrate towards the site of injury to help seal wounds [87],
demonstrating a conserved contribution of adipocytes to injury responses.

While systemic adipokines, such as adiponectin and leptin, promote re-
epithelialization [88,89], recent efforts have been made to define the local contribution
of DWAT to the injury response. Studies with fat-less A-ZIP/F-1 mice suggest that mature
adipocytes are required for efficient fibroblast recruitment during the proliferative phase
of repair [8]. Furthermore, blocking adipogenesis using peroxisome proliferator-activated
receptor gamma (PPARγ) inhibitors GW9662 and bisphenol A diglycidyl ether (BADGE)
resulted in similarly disrupted repair [8]. Consistently, adipocyte spheroid-derived secre-
tions are sufficient to activate dermal fibroblasts into myofibroblasts [90]. To temporally
regulate WAT ablation and prevent insulin resistance that occurs in constitutive mouse
models [91], Zhang et al. utilized FAT-ATTAC mice, which undergo induced apoptosis of
adipocytes through activation of caspase 8. Wounds in these mice healed slower, with di-
minished collagen deposition and delayed keratinocyte-mediated re-epithelialization [13].
These studies demonstrate that adipocytes are essential for reparative functions during
the profibrotic proliferation phase. Unfortunately, manipulating adipocytes systemically
makes it challenging to determine the contribution of adipocytes from specific depots.
Additionally, these reports largely focus on the proliferative and remodeling phases of
healing, leaving unanswered questions regarding the role of dermal adipocytes during
early injury responses.

To spatially and temporally control dermal adipocyte ablation, we previously uti-
lized a genetic mouse model of diphtheria toxin-mediated adipocyte cell death [9]. We
discovered that dermal adipocytes were required to support efficient revascularization
and epithelial repair during the proliferation phase of repair, and that ablation of dermal
adipocytes resulted in a 50% reduction in inflammatory wound bed macrophages 1.5-days
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after injury [9]. Further examination revealed that the DWAT undergoes hypertrophic
expansion shortly after injury [9], similar to what is observed following Staphylococcus
aureus infection [53]. After this initial expansion, wound bed adipocytes undergo lipolysis
and revert to their original size concomitant with macrophage infiltration. Quantitative
lipidomic analysis revealed palmitoleic acid, oleic acid, α-linoleic acid and medium-chain
fatty acids as major products of injury-induced dermal adipocyte lipolysis [9]. Interestingly,
these fatty acids have been implicated in regulating macrophage inflammation [74,76,92];
and when dermal adipocyte lipolysis was impaired in mice lacking adipose triglyceride
lipase (ATGL), fewer inflammatory macrophages were detected [9] (Figure 1). Though the
mechanism by which lipolysis-mediated signaling supports the inflammatory macrophage
response after injury remains elusive, it is clear that dermal adipocyte-derived lipids are
capable of regulating this response.

Figure 1. Regulation of injury-induced inflammation by skin-resident cells. After injury, skin-resident cells release factors
that promote inflammation. Arrows indicate factors secreted from keratinocytes, adipocytes, and fibroblasts and the
prospective leukocyte interactions during wound healing. CAMP, cathelicidin antimicrobial peptide; CCL, chemokine (C-C
motif) ligand; CXCL, chemokine (C-X-C motif) ligand; FFA, free fatty acid; GCSF, granulocyte colony stimulating factor; IL,
interleukin; TNF, tumor necrosis factor.

3. Contribution of Fibroblasts to Injury-Induced Inflammation
3.1. Contribution of Fibroblasts to Tissue Inflammation

Since activated wound bed myofibroblasts are the main producers of ECM [93], they
have been extensively studied during the proliferative and remodeling phases of tissue
repair. Recent discoveries have demonstrated that fibroblasts also play an active role
in tissue inflammation. Following injury, fibroblasts contribute to early inflammatory
pathogen and damage responses in numerous tissues, such as skin, lung, liver, intestines,
heart, conjunctiva, urogenital tract and adipose tissue [94–98]. These pro-inflammatory
fibroblasts contribute to the immune response, frequently through the recruitment and
activation of myeloid cells. After inflammation subsides, fibroblasts mediate ECM deposi-
tion, indicating that fibroblasts can exist in a pro-inflammatory, profibrotic axis, similar to
macrophages and keratinocytes. While direct in vivo exploration of interactions between
dermal fibroblasts and immune cells is in its infancy, the inflammatory nature of fibroblasts
has been clearly demonstrated in other tissues.
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Multiomic characterization of murine fibroblasts from multiple organs recently illu-
minated an underappreciated immune function of these structural cells [94]. Transcrip-
tional analysis of dermal fibroblasts revealed enrichment for ligands and receptors that
predict a propensity for B cell, macrophage, and monocyte interactions. Subsequent
Assay for Transposase-Accessible Chromatin (ATAC) sequencing demonstrated transcrip-
tion potential at multiple immune gene loci in dermal fibroblasts, including interferon
gamma receptor 1 (Ifnγr1) [94]. Furthermore, chromatin accessibility and gene enrich-
ment cross-referencing predicted that dermal fibroblasts are poised to rapidly transcribe
genes associated with antigen processing and presentation, complement and coagulation
cascades, and sphingosine-1-phosphate signaling pathways. In another study, single-cell
RNA sequencing (scRNA-seq) was performed on fibroblasts from healthy human skin
and samples from inflammatory diseases (acne, alopecia areata, granuloma annulare, lep-
rosy, and psoriasis) [95]. Fibroblasts formed nine transcriptionally-distinct clusters with
fibroblast composition varying greatly across disease types; however, many immune genes
were upregulated in multiple clusters such as CCL2, CCL19, CXCL12, CXCL14, IL6, and
IL8/CXCL8 [95]. These studies highlight the broad pro-inflammatory capacity of dermal
fibroblasts. Interestingly, proteomic analysis of fibroblasts from psoriatic patients confirms
higher levels of inflammation-associated proteins, such as TNFα [99] and supernatant from
psoriatic fibroblasts induces an inflammatory macrophage phenotype [100]. Additionally,
fibroblasts from atopic dermatitis patients induce inflammatory gene expression in cul-
tured skin equivalents [101]. Since cultured human dermal fibroblasts upregulate CCL2,
CCL7, and IL6 when stimulated with supernatant from inflammatory macrophages [102],
it is likely that injury-associated signaling activates a pro-inflammatory phenotype in
dermal fibroblasts.

Additional insights can be gained from the injury response in cardiac fibroblasts.
Following myocardial infarction (MI), cardiac tissue progresses through an inflammation-
to-repair transition similar to skin repair. Gene expression analysis of cardiac fibroblasts
1 day after MI revealed upregulation of inflammatory cytokines, such as Ccl5, and Cxcl3,
coupled with a downregulation of TGFβ signaling component genes [98]. Furthermore, pri-
mary cultured cardiac fibroblasts from severe heart failure patients exhibited LPS-induced
cytokine production with increased expression of CCL2, IFNγ, IL1β, IL6, IL8/CXCL8,
and TNFα [103]. By 3 days after MI, cardiac fibroblasts transition towards proliferative
and pro-angiogenic function before shifting toward a collagen and fibronectin depositing,
profibrotic function 7 days after injury [104]. Due to the strong transcriptional similarity be-
tween dermal fibroblasts and cardiac fibroblasts [94,105], it is likely that dermal fibroblasts
contribute to inflammation through mechanisms parallel to cardiac fibroblasts.

3.2. Signaling Pathways Regulating Inflammatory Fibroblast Phenotype

While the direct influence of fibroblasts to injury-induced inflammation has been
limited by the genetic tools available, in vitro studies have revealed remarkable potential
for fibroblasts to produce pro-inflammatory signaling molecules. Fibroblasts upregulate
pro-inflammatory gene expression following stimulation from numerous cytokines present
during skin wound healing, such as IFNγ, IL1α, IL1β, and TNFα [22,106,107] (Figure 1);
and in response to irritants capable of inducing skin inflammation, such as PM10 and
cobalt chloride [108,109]. The results from these studies provide valuable insights into the
pro-inflammatory capacity of fibroblasts.

3.2.1. IL1 Signaling

The alarmin cytokine IL1α promotes an inflammatory fibroblast phenotype in cultured
primary fibroblasts from human lung [110] and infrapatellar fat pad [111]. IL1α stimulation
leads to NF-κB pathway activation in fibroblasts with subsequent production of CCL2,
IL6, and IL8/CXCL8 [110,111]. Through a series of Transwell migration assays, Paish
et al. (2018) showed that IL1α-stimulated fibroblasts promote monocyte recruitment
through CCL2 [111]. Importantly, keratinocyte-derived IL1α induces dermal fibroblast
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secretion of CCL2, CXCL1, IL6, and IL8/CXCL8 [112], and co-stimulation with IL1α and
TNFα synergistically enhances the pro-inflammatory phenotype of dermal fibroblasts [112].
Since both IL1α and TNFα are rapidly-released by keratinocytes during the early injury
response [17], this interaction could instigate fibroblast cytokine production following
injury, though interrogations of fibroblast responses to IL1α signaling in vivo are necessary
to functionally validate these findings in an injury-based context.

IL1β modulates inflammation by both inducing pro-inflammatory gene transcrip-
tion and extending mRNA longevity and translation potential through mRNA transcript
stabilization [113,114]. In both human and canine cultured dermal fibroblasts, IL1β stim-
ulation induces transcription of IL8/CXCL8 and IL6 in a dose-dependent manner and
elevates IL6 at the protein level [114,115]. Fibroblast IL6 upregulation is further amplified
by IL1β/TNFα co-stimulation [114], which is important to note due to the myriad of
pro-inflammatory mediators simultaneously released during the early injury response.
This pro-inflammatory response to IL1β is observed by fibroblasts derived from numerous
tissues, including embryonic lung [114], shoulder capsule [116], and peritoneal tissue [113].
Indeed, IL1β activates non-dermal fibroblasts to produce CCL20, IL6, and IL8/CXCL8 [116]
as well as polymorphonuclear leukocyte (PMN)-attractant chemokines CXCL1, granulo-
cyte colony stimulating factor (GCSF), and IL8/CXCL8 [113]. These results demonstrate a
well-conserved pro-inflammatory response to IL1 signaling in fibroblasts.

3.2.2. TNFα Signaling

Shortly after injury, wounded skin is enriched with high levels of TNFα derived
from multiple cell types [117]. In vitro, human dermal fibroblasts respond to acute TNFα
stimulation through rapid expression of potent pro-inflammatory and myeloid cell re-
cruitment factors, such as CCL2, CCL3, CCL4, CXCL1, CXCL8, CXCL12, Il1β, IL6, serine
proteinase inhibitor 1 (SERPINE1), and TNFα [106,118]. While inducing a pro-inflammatory
fibroblast polarization, TNFα suppresses fibroblast proliferation, migration, and transition
toward the profibrotic myofibroblast phenotype [119], and induces the expression of matrix
metalloproteinase 9 (MMP9) in dermal fibroblasts and active MMP2 in collagen-latticed
fibroblast cultures [106,120].

Fibroblasts also express cluster of differentiation 40 (CD40), a TNFα receptor family
member capable of transducing pro-inflammatory signals. The CD40 receptor is expressed
by human fibroblasts isolated from lung, spleen, skin, synovium, gingiva, and periodon-
tal ligament [121–123]. CD40 activation initiates the NF-κB pathway, culminating in the
transcriptional upregulation of pro-inflammatory genes such as CCL2, CCL5, ICAM1, IL6,
and IL8/CXCL8 [122,124,125]. Inflamed gingival tissue contains greater amounts of CD40
relative to controls, and fibroblasts upregulate CD40 expression in response to IFNγ [122],
including a 10-fold CD40 transcriptional increase in cultured dermal fibroblasts 24 hours
after stimulation [121]. In cultured lung fibroblasts, CD40-CD40L interactions result in the
upregulation of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) [123]. When stimu-
lated by both IFNγ and CD40L, fibroblasts dramatically increased COX2 and PGE2 over
12-fold [123]. COX2 and PGE2 are associated with tissue inflammation, with PGE2 acting as
a chronic inflammatory mediator and fibrotic inhibitor [93,123]. Interestingly, in the absence
of a disease phenotype, dermal fibroblast-derived COX2 and PGE2 support a transition
from inflammatory to anti-inflammatory macrophage polarization in vitro [126]. These
findings suggest that IFNγ stimulates fibroblasts to increase expression of CD40, which
responds to CD40L on infiltrating activated immune cells to support a pro-inflammatory
secretory profile [123].

3.2.3. TLR Signaling

Human dermal fibroblasts constitutively express TLRs 1–10 [127,128]. Stimulation of
dermal fibroblasts with TLR1/2, 3, and 4 ligands activates extracellular signal-related kinase
(ERK) and NF-κB cascades [128], resulting in the production of IL6 and IL8/CXCL8 [128]. In-
terestingly, compared to keratinocytes, dermal fibroblasts were shown to be transcriptionally-
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enriched for TLRs [128], with greater protein enrichment for TLR2, TLR3, and TLR4 [128].
A strong damage/pathogen response role of skin fibroblasts was observed in vitro through
the targeted stimulation of TLR-1 and 2 with a synthetic triacyl lipopeptide (Pam3CSK4) [128].
Both 10 and 24 hours after stimulation, fibroblasts were enriched for IL6 and IL8 mRNA
compared to keratinocytes [128]. Similarly, cultured human dermal fibroblasts showed
elevated CCL2, IL8/CXCL8, and NF-κB signaling in response to a 72-hour stimulation with
LPS, the major ligand for TLR4 [109]. Since dermal fibroblasts are capable of mounting a
powerful response to various damage or pathogen-derived molecular cues, future lines of
investigation will likely reveal that TLR signaling activates a pro-inflammatory fibroblast
profile in additional inflammatory contexts.

3.3. Molecular Regulation of Fibroblast Polarization

Since fibroblasts can have a pro-inflammatory or profibrotic phenotype, researchers
have begun investigating molecular modulators that regulate fibroblast polarization. The
PU.1 transcription factor is associated with a profibrotic phenotype in fibroblasts from
various tissues, including skin, lung, liver and kidney [129]. In inflammatory fibroblasts
PU.1 is post-transcriptionally inhibited through micro-RNA 155 (miR-155), which induces
a pro-inflammatory profile in fibroblasts and inhibits fibroblast proliferation [129,130]. The
pro-inflammatory effect of miR-155 was observed to enhance CCL2, IL1β, IL6, and TNFα
expression in cardiac fibroblasts in vitro and following MI [130]. Consistent with a pro-
inflammatory, profibrotic polarization axis, miR-155-null mice exhibited greater collagen
deposition and numbers of fibroblasts enriched for α smooth muscle actin (αSMA/actin
alpha 2, Acta2), collagen 1 (Col1/Col1α), and Col3α [130]. These diverging fibroblast profiles
illustrate a bi-faceted fibroblast role in inflammation and fibrosis that is modulated by
miRNA-155 and PU.1. In addition to PU.1, the transcription factor early B-cell factor 2
(EBF2) can influence the gene expression profile of fibroblasts, as Ebf2 depletion results in
decreased expression of fibroblast activation genes Acta2, Il6 and Ccl1 [131].

3.4. Functional Diversity in Fibroblasts

Lineage tracing, RNA sequencing and cellular surface marker profiling have defined
tremendous dermal fibroblast heterogeneity in uninjured skin and wound beds [10,11,132].
This vast heterogeneity between fibroblast subsets is coupled with functional diversity
during repair. In particular, fibroblasts residing in the papillary dermis can regenerate
arrector pili muscles and dermal papillae [132,133]; and deep dermal and subcutaneous
fascia fibroblasts expressing dipeptidyl peptidase 4 (Dpp4)/CD26 can differentiate into
ECM producing myofibroblasts [10,11,132–134].

Though in vivo data examining functional cellular heterogeneity during the inflam-
matory phase of wound healing are lacking, we previously reported differential expression
of pro-inflammatory genes in fibroblast subsets 5 days after injury. Specifically, elevated
Ccl2 expression was observed in stem cell antigen 1 (SCA1)+; CD34+; CD26+ fibroblasts
and elevated Il1α, Il1β, and Tnf expression was observed in Sca1−; CD34−; CD29high

fibroblasts [10]. Similarly, in murine and human skin, a pro-inflammatory gene expression
profile was observed within fibroblasts residing in the reticular dermis, which illustrates
a possible inflammatory inclination of specific fibroblast populations [135]. Not only do
these findings implicate a pro-inflammatory role for fibroblasts as early responders and
modulators of the injury response, but they also highlight the possibility that cellular
diversity contributes to differential inflammatory responses during wound healing.

Similar to skin, scRNA-seq of VWAT revealed heterogeneity among mesenchymal
cells, with a distinct lymphocyte antigen 6 complex (LY6C)+; platelet-derived growth factor
β (PDGFRβ)+ population enriched for both inflammatory and fibrotic genes [136]. In vitro,
these “fibro-inflammatory” progenitors produced Col1 and Col3 in response to TGFβ sig-
naling. Similarly, both LPS and TNFα stimulation promoted increased gene expression
of inflammatory signaling molecules Ccl2, Cxcl2, Cxcl10, and Il6 [136]. Pro-inflammatory
fibroblasts were able to activate macrophage inflammatory gene expression following
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in vitro stimulation and in vivo during high-fat dieting, contributing to immune cell re-
cruitment [136]. Interestingly, these responses were significantly greater than the response
generated from tissue-resident adipocyte precursor cells. Similar functional diversity has
been observed using scRNA-seq in rheumatoid arthritis and osteoarthritis. Podoplanin
(PDPN)+; CD34+; thy-1 cell surface antigen 1 (THY1)+ synovial fibroblasts are enriched
for pro-inflammatory gene expression, and robustly producedCCL2, CXCL12, and IL6
when stimulated with TNFα in vitro [137]. In another report, PDPN+; fibroblast activation
protein α (FAPα)+; THY1+ fibroblasts promoted persistent and severe joint inflammation,
immune cell recruitment, and production of IL6, IL33, IL34, and leukemia inhibitory factor
(LIF) [138]. These data support that specific fibroblast subsets may be biased in their ability
to elicit inflammatory responses. While further investigation is required to define the role
of individual fibroblast populations to injury-induced inflammation, it is likely that biases
in the pro-inflammatory, profibrotic capacity of fibroblast subsets contribute to contrasting
phases of inflammation.

3.5. Communication between Adipocytes and Fibroblasts

In addition to direct interactions with immune cells, there is substantial crosstalk
between dermal fibroblasts and adipocytes. Indeed, human dermal fibroblasts express
receptors for numerous adipokines, including leptin and adiponectin [139]. Consistent
with its anti-inflammatory properties, adiponectin plays an attenuative role in dermal
fibrosis through reducing fibroblast activation [140]. Furthermore, UV exposure associated
with aging decreases dermal adipocyte production of leptin and adiponectin, which in
turn reduces dermal fibroblast production of pro-inflammatory TNFα [141]. Contrastingly,
UV irradiated fibroblast conditioned media increased dermal adipocyte expression of pro-
inflammatory cytokines including CCL5, CCL20, and CXCL5 in vitro [48]. These findings
suggest that communication between adipocytes and fibroblasts likely contributes to their
pro-inflammatory function after injury.

4. Altered Inflammatory Response during Impaired Wound Healing

Aging and diabetes are associated with a myriad of skin conditions, the most pre-
dominant of which is delayed wound healing [142,143]. Elderly and diabetic individuals
are susceptible to chronic wounds, with up to 25% of type 2 diabetics experiencing dif-
ficulties with healing [142,144]. Both aged and diabetic skin feature alterations in ECM,
including irregular collagen cross-linking [145,146] and increased disintegration associated
with greater MMP activity [146–148] that contribute to impaired wound healing [142,149].
While this diminished fibrotic capacity could reduce scar formation [11,150], it often leads
to chronic inflammation by allowing bacterial [151,152] or fungal [153] overgrowth with a
subsequent overproduction of cytokines and proteases [154,155]. Since chronic wounds
can persist for over a year and are frequently observed in an inflammatory state [155],
studies have historically focused on factors that promote reparative processes during the
proliferative phase in control groups. These studies produced prospective targets for im-
proved healing outcomes, including administration of mesenchymal stem cells to dampen
inflammation and promote ECM production [156]. Interestingly, new lines of investigation
have uncovered a need for robust, efficient recruitment of leukocytes to support proper
repair [33,34,157], making factors that impact early inflammation a critical area of research.
In particular, delayed or sustained neutrophil or macrophage function can have detrimental
effects on multiple facets of downstream wound resolution and healing [158,159].

4.1. Impaired Early Leukocyte Infiltration and Function

Although early healing time points can be challenging to obtain from humans, diabetic
mouse studies have detected epigenetic- [160] and chemokine-mediated [157] delays in
macrophage recruitment and activation at early time points after injury. Thorough analysis
of wound bed myeloid cells revealed a marked delay in peak macrophage numbers of
diabetic mice as well as various changes in transitioning immune cells [33,34]. In the
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elderly population, lower basal hematopoiesis [161] may compound decreased macrophage
responsiveness and inflammatory polarization [162,163]. Notably, delayed macrophage
infiltration was observed in human wound biopsies from aged individuals [164] and
macrophages in wounds of aged mice lack proper phagocytic activity [165].

4.2. Persistence of Inflammation

In addition to a delay in the initial macrophage response, a second influx of inflam-
matory macrophages impairs healing in high-fat diet-induced diabetic mice [166]. Both
diabetes and aging are characterized by systemic inflammation [167,168], likely contribut-
ing to persistence of inflammatory neutrophils and macrophages at later time points after
injury [28,33]. Pro-inflammatory skewing of diabetic macrophages [169,170] begins in
the bone marrow [171], and macrophages from aged mice have a diminished capacity to
respond to external polarization signals [162], reducing their ability to transition during
repair. Consistently, elevated levels of pro-inflammatory macrophage chemoattractants
have been identified in human chronic wounds [172,173]. The resulting inflammation
is exacerbated due to reduced numbers and function of anti-inflammatory cells, such as
mesenchymal stem cells [156]. This pro-inflammatory environment prevents macrophages
from transitioning into anti-inflammatory macrophages, leading to recalcitrant inflam-
mation [27] that prevents proper transition into the proliferative and remodeling phases
of repair.

5. Contribution of Adipocytes to Impaired Wound Healing
5.1. Diabetes-Associated Changes in Adipocyte Inflammatory Function

An estimated 83% of diabetic individuals are overweight or obese, with the highest
prevalence of diabetes in the most obese individuals [174]. Diabetes- and obesity-related
changes go hand in hand, as insulin resistance develops in a spectrum of systemic al-
terations as adipocytes increase in size and undergo functional changes related to lipid
metabolism [77,175] and inflammation [176]. Although adipocyte-mediated inflamma-
tion is necessary for proper glucose metabolism and WAT expansion [177,178], it also
contributes to systemic inflammation and macrophage infiltration that cause metabolic
dysfunction [176,179]. While changes in VWAT have functionally been implicated in sys-
temic inflammation associated with diabetes [180,181], WAT can also contribute to local
tissue inflammation. For example, periprostatic adipocyte size is correlated with higher
prostatic inflammation [182], and greater intramuscular adipose tissue is associated with
increased IL6 levels and muscle inflammation [183]. As a consequence, changes in the
pro-inflammatory function of dermal adipocytes likely play a role in altered inflammation
during diabetic wound healing (Figure 2).

5.1.1. Impaired Early Leukocyte Infiltration and Function

Larger adipocytes are less responsive to external stimuli [184,185]. Consequently,
diabetes is associated with impaired stimulated lipolysis as a result of reduced expression
of lipases involved in lipid catabolism [186,187]. Since obesity leads to increased dermal
adipocyte size [13,85], DWAT function is likely altered with diabetes. Given that injury-
induced lipolysis generates pro-inflammatory factors at the site of injury [9], impaired
stimulated lipolysis can significantly reduce macrophage recruitment and the downstream
phases of wound healing. In addition to reduced macrophage numbers during early
stages of repair, diabetic wounds also exhibit deficiencies in macrophage polarization and
function [188,189]. The emerging role of CAMP as a myeloid regulator [190] suggests that
a lack of CAMP would significantly impact macrophage inflammation. Indeed, CAMP
promotes phagocytosis [191] and inflammatory macrophage polarization [192]. Notably,
while CAMP levels have been positively correlated with adipocyte size [193], wound
from diet-induced obese mice and human diabetic foot ulcers have reduced levels of
cathelicidin [194,195]. Thus, an inability of adipocytes to respond to wound-induced
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stimuli may decrease the pro-inflammatory response in early wound healing and impact
later stages of repair.

Figure 2. Changes in mesenchymal cell-derived immune regulators during impaired wound healing. Diagrams show
representative changes to diabetic and aged skin. Diabetic skin undergoes expansion of the dermal white adipose tissue
(DWAT) and a reduction in fibroblasts. Aged skin is thinner, with flatter keratinocytes, diminished DWAT, and fewer
fibroblasts. Initially after injury, there is an impaired initial activation and recruitment of leukocytes to the site of injury. At
later time points after injury, there is a persistence of inflammatory neutrophils and macrophages. Panels designate changes
in pro- and anti-inflammatory factors from fibroblasts and adipocytes that can contribute to the altered leukocyte responses
that occur with diabetes and age.

5.1.2. Persistent Inflammation

Despite decreased stimulated lipolysis, diabetics exhibit elevated basal lipolysis in
visceral adipocytes, which contributes to VWAT inflammation [184,196–198]. Increased
elevated basal lipolysis likely results in a greater concentration of pro-inflammatory fatty
acids. While the initial burst of injury-induced lipolysis is necessary for macrophage
inflammation [9], prolonged, elevated basal lipolysis may contribute to persistent pro-
inflammatory macrophages or reduced anti-inflammatory macrophage differentiation
necessary for wound resolution.

Adipokines also recruit immune cells into diabetic WAT, including neutrophils and
inflammatory macrophages. These immune cells respond and contribute to increased circu-
lating inflammatory adipokine levels [169,199], providing clues to how dermal adipocytes
function may contribute to diabetic wound healing. For example, VWAT from dia-
betic individuals produces higher levels of CCLs that recruit macrophages [200] and
pro-inflammatory factors including CCL2, IL1, IL6, IL18, Leptin, and TNFα [169,199],
with lower levels of anti-inflammatory adipokines such as adiponectin and its paralogs
(C1q/TNF-receptor proteins (CTRPs)) [201,202]. Similarly, as obesity increases, subcuta-
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neous adipocytes secrete greater amounts of IL1β and TNFα [180]. These elevated basal
pro-inflammatory signals may in turn prevent anti-inflammatory macrophage polariza-
tion and maintain greater neutrophil and inflammatory macrophage numbers in chronic
diabetic wounds [27].

Biofilms also contribute to significant tissue destruction and sustained inflammation
in diabetic wounds [203]. In addition to its potential role in early inflammation, reduced
cathelicidin LL37 in diabetic wounds [194] may also contribute to biofilm control [204].
Thus, loss of adipocyte cathelicidin LL37/CAMP may promote biofilm-mediated inflam-
mation and contribute to chronic wounds. Whether dermal adipocytes contribute directly
to biofilm formation and other aspects of altered diabetic wound healing has yet to be
revealed; however, their potential to alter the local inflammatory environment makes them
an intriguing focus for future studies.

5.2. Age-Associated Changes in Adipocyte Inflammatory Function

With age, adipose tissue undergoes significant redistribution, resulting in decreased
peripheral WAT and increased VWAT [205]. Additionally, aging is associated with higher
baseline inflammation [168]. One major distinction between diabetes and aging is dermal
adipocyte prominence. There is tremendous variability in the proportions of WAT depots
throughout aging, including reported discrepancies in age-related changes in DWAT abun-
dance in mice (discussed in [206]). Nevertheless, when gender, hair cycle, and location are
accounted for, aged murine DWAT decreases in prominence [207,208] and differentiation
potential [209]. In general, human DWAT also decreases in prominence with progressive ag-
ing [205,210] and elderly individuals undergo alterations in circulating adipokines [211,212].
These and other age-related changes in dermal adipocytes may alter immune function and
likely contribute to defective inflammation that occurs during wound healing in the elderly
(Figure 2).

5.2.1. Impaired Early Leukocyte Infiltration and Function

Given the age-related decrease in DWAT size, wound healing is likely impacted by
deficiencies in adipocyte-derived factors. For example, an age-related decrease in adipocyte
CAMP production [209] can reduce macrophage phagocytosis [191,213] and inflamma-
tory macrophage polarization [192], reducing the initial response to injury. Indeed, aged
adipocyte precursors display impaired potential for differentiation [214,215], which is es-
sential for CAMP production [53,209]. Additionally, aging is associated with reduced lipid
storage and processing in adipocytes [216]. The combination of decreased wound-induced
lipolysis and diminished DWAT prominence can result in a deficit of FFA signaling [9],
compounding the impaired macrophage response in elderly individuals.

5.2.2. Persistent Inflammation

Age-related changes in dermal adipocytes are likely to contribute to the persistence
of inflammatory immune cells at later time points after injury. By decreasing the ini-
tial macrophage response and phagocytic ability, while simultaneously decreasing an-
timicrobial CAMP, bacterial infection can persist in aged skin [204,209]. This creates a
condition with greater pathogen burden, requiring the persistence of pro-inflammatory
macrophages and neutrophils that establish a cycle of inflammation. Additionally, in vitro,
aged adipocytes have greater production of CCL2 and IL6 while simultaneously decreasing
adiponectin [217]. This baseline increase in adipocyte-produced pro-inflammatory factors
may directly contribute to persistent immune cell infiltration during wound healing.

6. Contribution of Fibroblasts to Impaired Wound Healing
6.1. Diabetes-Associated Changes in Fibroblast Inflammatory Function

Diabetic fibroblasts exhibit decreased proliferation, adhesion, and migration as well
as altered MMP expression and ECM production [218,219]. This fibroblast dysregulation
hinders fibrosis and results in significant delays in dermal repair [29,32,220]. Mounting
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evidence supports that impaired responsiveness and an exaggerated pro-inflammatory
phenotype in fibroblasts contributes to reduced macrophage recruitment shortly after injury
and subsequent persisting inflammation at later time points (Figure 2). Exciting new lines
of investigation have been defining how these changes in fibroblast-driven inflammation
contribute to impaired diabetic wound healing.

6.1.1. Impaired Early Leukocyte Infiltration and Function

In vitro evidence suggests that diabetic human dermal fibroblasts lack responsiveness
to TNFα stimulation [106]. Diminished TNFα-induced expression of CCL2, IL6, IL8/CXCL8,
and SERPINE1 in diabetic fibroblasts [106,157] implicates fibroblast dysregulation as a
contributor to delayed macrophage recruitment during the early injury response. Diabetic
fibroblasts may similarly impair neutrophil recruitment and activation, due to diminished
CXCL1 and IL8/CXCL8 expression following stimulation [106,221]. While there is a clear
gap in our knowledge of how fibroblasts respond and contribute to early inflammatory
events in diabetic wounds, these findings demonstrate an impaired responsiveness by
dermal fibroblasts under the diabetic diseased conditions.

6.1.2. Persistent Inflammation

Diabetic fibroblasts undergo early senescence [218], and acquire a senescence-associated
secretory phenotype (SASP) [222]. These changes result from genotoxic stimuli and ox-
idative stress [223] due to long-term TNFα [224] and glucose exposure [225]. The diabetic
SASP in fibroblasts is associated with elevated expression of pro-inflammatory cytokines,
chemokines, and ECM-degrading molecules [106,226]. Indeed, hyperglycemia can elevate
reactive oxygen species (ROS) in fibroblasts, while increasing expression of apoptotic and
pro-inflammatory genes, including (caspase 3/CASP3), CCL13, IL8/CXCL8, SERPINE1, and
TNFα [225,227]. Furthermore, fibroblasts cultured in hyperglycemic and hypoxic condi-
tions exhibit an innate immunity hypervigilance, namely elevated expression of TLR4,
NF-κB signaling components, caspase 3, and IL6 [228]. Broadly, TLR4 hyperexpression in
diabetic wounds sustains inflammation and impairs wound closure [228,229]. Recently,
these findings were confirmed in primary human fibroblasts grown in hyperglycemic and
hypoxic conditions, wherein blocking TLR4 improved fibroblast migration and lowered
caspase 3, IL6, and high mobility group box 1 (HMGB1) secretion [228].

In addition to in vitro studies, analysis of chronic wounds demonstrates that fibrob-
lasts can support persistent inflammation. Specifically, fibroblasts within chronic diabetic
ulcers exhibit diminished heterogeneity that favors populations that are enriched for
inflammation-related gene expression [29,32]. The elevated pro-inflammatory state can
also be observed across different populations of fibroblasts, as diabetic ulcer papillary
fibroblasts have elevated IL11, IL24, MMP1, and MMP3 expression and another identified
fibroblast cluster is enriched with IL6, MMP12, and prostaglandin endoperoxide synthase
2 (PTGS2) expression [32]. Locked in this pro-inflammatory state, diabetic fibroblasts are
anti-angiogenic and antifibrotic with reduced transcription of growth factors and genes
involved in proliferation and collagen organization [29,32]. This anti-angiogenic and antifi-
brotic polarization is epigenetically-encoded and maintained by diabetic fibroblasts after
repeated passages in culture [230]. Thus, diabetic fibroblasts have impaired fibrogenic
function and become affixed in a pro-inflammatory state, potentially driving persistent
inflammation while resisting a profibrotic transition during wound healing.

6.2. Age-Associated Changes in Fibroblast Inflammatory Function

Studies of dermal fibroblasts during aging have discovered numerous changes that
contribute to impaired wound healing. Elderly human skin contains fewer fibroblasts, and
dermal fibroblasts exhibit reduced motility and proliferation, with substantial changes in
collagen deposition [148,219]. With age, human dermal fibroblasts lose differential expres-
sion of cellular identity genes [231] and exhibit diminished fibrogenic potential through
the downregulation of ECM-related genes [232]. An age-related decrease in fibroblast
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traction and spreading simultaneously induces a pro-inflammatory and antifibrotic effect,
in which increased production of PGE2 dampens protocollagen production necessary for
ECM maintenance [233]. Finally, RNA-seq analysis of fibroblasts predicts an age-related
reduction in receptor-ligand interactions with other skin cell types [231], which are critical
for efficient repair.

6.2.1. Impaired Early Leukocyte Infiltration and Function

The age-dependent contribution of fibroblasts to impaired early inflammation is begin-
ning to be revealed through signaling interactions with immune cells. Wall et al., assessed
how cultured fibroblasts isolated from chronic wounds and normal patient-matched skin
respond to a wound-mimicking stimulation [234]. Interestingly, chronic wound fibroblasts
from aged individual exhibit diminished transcriptional induction of pro-inflammatory
genes after in vitro wound simulation, including lower levels of CXCL1, CXCL2, CXCL3,
CXCL5, CXCL6, ICAM1, and IL1R1 [234]. Subsequent protein analysis confirmed decreased
CXCL1 and CXCL5 secretion from chronic wound fibroblasts [234]. Functionally, this
altered chemoattractant profile of aged chronic wound fibroblasts corresponded to de-
layed neutrophil recruitment within a chemotaxis assay [234]. These findings suggest that
age-related changes in dermal fibroblast responsiveness contribute to delayed myeloid
cell recruitment immediately after injury (Figure 2). However, heightened inflammatory
responsiveness to LPS stimulation has been observed in primary dermal fibroblasts iso-
lated from aged individuals [235]. Since age-related human studies have relied on in vitro
stimulation of fibroblasts, future lines of investigation are needed to determine whether
human dermal fibroblasts exhibit delayed activation in vivo after injury.

6.2.2. Persistent Inflammation

Similar to what is observed with diabetes, dermal fibroblasts undergo numerous
age-related changes that can support sustained inflammation (Figure 2). Dermal fibroblasts
experience age-dependent telomere shortening and ROS accumulation [223], resulting in
a greater number of senescent fibroblasts [147,231] and the development of a SASP [236].
Correspondingly, dermal fibroblasts feature age-related upregulation of genes associated
with pro-inflammatory cytokine synthesis, leukocyte recruitment, and MMPs [147]. No-
tably, conditioned medium from aged murine fibroblasts shows significantly higher levels
of pro-inflammatory cytokines IFNγ, IL1α, IL1β, IL2, IL6, IL18, LIF, and TNF, than young
counterparts [131]. It is likely that the elevated pro-inflammatory state of dermal fibrob-
lasts directly perpetuates inflammatory signals, resulting in persistence of neutrophils and
inflammatory macrophages during wound healing. Additionally, fibroblast composition
during the proliferative phase shows that aging skews wound bed fibroblasts away from
profibrotic gene expression and toward pro-inflammatory cytokine production [10,131].
Studies of wound healing in aged mice revealed changes in wound bed fibroblast prolifera-
tion and heterogeneity that result in increased numbers of pro-inflammatory fibroblasts
with fewer fibrogenic fibroblasts [10,131]. Specifically, wound beds from aged mice possess
diminished populations of Acta2, Cxcl5, Dpp4/CD26, and microfibrillar associated protein
5 (MFAP5) expressing fibroblasts [10,131,147]. These data indicate that fibroblasts exhibit a
failed pro-inflammatory to profibrotic transition with age that contributes to the delayed
progression of repair.

7. Methods

PubMed searches were performed for different combinations of the terms “fibroblast”,
“adipocyte”, “inflammation”, and “wound healing” for the period January 1900–January
2021. This resulted in greater than 39,000 total results. Manuscripts were narrowed for
relevance based on providing empirical evidence that described mechanisms for how
fibroblasts or adipocytes respond and contribute to inflammation. Skin studies and more
recent reports received greater emphasis per the guidelines of the journal. Approximately
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500 articles were found to be relevant to the topic and further examined for inclusion in the
article. This review should be considered a narrative rather than a systemic review.

8. Conclusions and Future Directions

The ability of an organism to rapidly promote and resolve inflammation is critical to
combat pathogens and promote repair. Recently, the stroma has emerged as a key com-
ponent in the inflammatory response of various tissues. Growing evidence has revealed
that skin-resident adipocytes and fibroblasts are two prominent dermal mesenchymal cell
populations that contribute to cutaneous inflammation. Additionally, both adipocyte and
fibroblast functions are altered by diseases such as diabetes and aging, in which these cells
exhibit a higher transcriptional baseline of pro-inflammatory gene expression but their
ability to rapidly respond to stimulatory cues is significantly dampened. Future investiga-
tions are needed to reveal the magnitude and precise molecular mechanisms connecting
mesenchymal cells to inflammation in both efficient and dysfunctional inflammation. These
studies will allow new lines of translational research to exploit inflammatory signaling
pathways and fine-tune tissue inflammation, similar to approaches that target later stages
of repair [12,93]. For example, increasing adipocyte and fibroblast responsiveness and
production of cytokines that initially recruit and activate immune cells may encourage a
robust influx of myeloid cells in the early phases of wound healing (Table 1). Contrastingly,
by reducing adipocyte and fibroblast cytokine production during the later stages of chronic
wounds, the recalcitrant pro-inflammatory cycle may be disrupted to allow for proper
resolution (Table 1). Further discovery of critical signaling pathways and target cells could
allow therapeutics to bypass the defects in adipocyte and fibroblast function by directly
targeting the cells and receptors that they affect. This progression in our understanding
of how tissue inflammation is regulated can more broadly advance the treatment of dis-
eases associated with irregular tissue inflammation, such as cancer, metabolic disease,
and infection.

Table 1. Adipocyte- and fibroblast-based therapeutic targets to improve wound healing.

Inflammatory Defect during
Wound Healing

Mesenchymal Cell-Based Approach to Treat Inflammatory Defect

Adipocytes Fibroblasts

Impaired early myeloid cell
recruitment

↑ Stimulated lipolysis
↑ Cathelicidin (CAMP/LL37)

↑ Chemokine expression (CCL2, CXCL1,
CXCL2, IL8/CXCL8)

Persistent inflammation

↓ Basal lipolysis
↑ Cathelicidin (CAMP/LL37)
↑ Anti-inflammatory adipokine

expression (Adiponectin)
↓ Pro-inflammatory adipokine

expression (CCL2, IL1, IL6, IL18,
Leptin, TNFα)

↓ Pro-inflammatory cytokine
expression (IL1, IL6, IL8/CXCL8, TNFα)

↓ SASP
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Abbreviations

ACTA2 actin alpha 2
ATAC Assay for Transposase-Accessible Chromatin
ATGL adipose triglyceride lipase
BADGE bisphenol A diglycidyl ether
CAMP cathelicidin antimicrobial peptide
CCL chemokine (C-C motif) ligand
CD cluster of differentiation
COL collagen
COX2 cyclooxygenase-2
CSF colony stimulating factor
CTRP C1q/TNF-receptor proteins
CXCL chemokine (C-X-C motif) ligand
DPP4 dipeptidyl peptidase 4
DWAT dermal white adipose tissue
EBF2 early B-cell factor 2
ECM extracellular matrix
ERK extracellular signal-related kinase
FAP fibroblast activation protein
FFA free fatty acid
GCSF granulocyte colony stimulating factor
GPR84 G protein-coupled receptor 84
HMGB1 high mobility group box 1
IFNγ interferon gamma
ICAM intercellular adhesion molecule
IL interleukin
LIF leukemia inhibitory factor
LPS lipopolysaccharide
LY6C lymphocyte antigen 6 complex
MCP monocyte chemoattractant protein
MFAP5 microfibrillar associated protein 5
MI myocardial infarction
MIP macrophage inflammatory protein
MMP matrix metalloproteinase
NF-κB nuclear factor kappa B
PDGF platelet-derived growth factor
PDPN podoplanin
PGE2 prostaglandin E2
PMN polymorphonuclear leukocyte
PPARγ peroxisome proliferator activated receptor gamma
PTGS2 prostaglandin endoperoxide synthase 2
ROS reactive oxygen species
SARS-CoV2 severe acute respiratory syndrome coronavirus 2
SASP senescence-associated secretory phenotype
SCA1 stem cell antigen 1
scRNA-seq single-cell RNA sequencing
SERPINE1 serine proteinase inhibitor 1
SMA smooth muscle actin
SWAT subcutaneous white adipose tissue
TGFβ transforming growth factor beta
THY1 thy-1 cell surface antigen 1
TLR toll-like receptor
TNFα tumor necrosis factor alpha
VEGF vascular endothelial growth factor
VWAT visceral white adipose tissue
WAT white adipose tissue
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