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Abstract

Prehistoric material culture proposed to be symbolic in nature has been the object of considerable archaeological work
from diverse theoretical perspectives, yet rarely are methodological tools used to test the interpretations. The lack of testing
is often justified by invoking the opinion that the slippery nature of past human symbolism cannot easily be tackled by the
scientific method. One such case, from the southwestern Iberian Peninsula, involves engraved stone plaques from
megalithic funerary monuments dating ca. 3,500–2,750 B.C. (calibrated age). One widely accepted proposal is that the
plaques are ancient mnemonic devices that record genealogies. The analysis reported here demonstrates that this is not the
case, even when the most supportive data and techniques are used. Rather, we suspect there was a common ideological
background to the use of plaques that overlay the southwestern Iberian Peninsula, with little or no geographic patterning.
This would entail a cultural system in which plaque design was based on a fundamental core idea, with a number of
mutable and variable elements surrounding it.
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Introduction

Prehistoric engraved plaques dating ca. 3,500–2,750 B.C.

(calibrated age) (Table 1) are found in archaeological sites across

the southwestern Iberian Peninsula. The plaques are thin slabs,

usually of slate or schist but in some cases of sandstone, that vary in

shape from rectangular to trapezoidal. Size is highly variable, but

most specimens range in length from 10 cm to 20 cm and have

maximum widths in the 5–10-cm range (Fig. 1). In addition to

geometric, anthropomorphic, or zoomorphic designs engraved on

one face, most specimens have one or two drilled holes at one end,

through which, it has been proposed [1], [2], strings were passed

so they could be worn. The majority of plaques have come from

burial sites (,200), in some cases resting directly on or to the side

of human skeletons [2]. Plaques are usually associated with

undecorated pottery, flint blades, and other chipped and polished

stone tools with no clear evidence of wear [2].

Interpretations of the intended function(s) of the stone plaques

extend back to the last quarter of the nineteenth century and

include

N a kind of ideographic writing system [3];

N prestige objects [1], [4], [5];

N symbolic items used by groups within a social hierarchy [6],

[7];

N heraldic objects [8], [9];

N amulets or cult objects [10], [11], perhaps used in superstitious

activities [12];

N apotropaic images of the deceased to ward off evil [13];

N idols [14]–[16], perhaps related to the devotion of specific

divine figures [17]–[21]; and

N symbolic expressions related to different specific geographical

regions and units of cultural identity [22], [23].

More recently, Katina Lillios combined two of those func-

tions—ideographic writing and heraldic items—hypothesizing that

the majority of the plaques codify genealogical information [2],

[24]–[27], whereas others perhaps were relics or specific

expressions of several individuals [28], [29]. She proposed that

decorative motifs on the lower portion of the plaque—the end

opposite the hole (Fig. 2)—identify individual descent groups and

that the number of decorative ‘‘registers’’—the horizontal rows of

triangles shown on the specimen in Fig. 2—indicates the

generational distance between the deceased and the founding

ancestor of his or her lineage. For example, a plaque containing

two rows of triangles would connote ‘‘a person two generations

removed from a founding ancestor [of the ‘triangle’ lineage]….

The increase in register [row] numbers suggests gradual demic

diffusion away from a core ‘ancestral’ area over time’’ ([2], p. 149).

Thus plaques with a higher number of rows should be later that

those with fewer rows. And, just as with the concentric circles that

radiate out from a pebble thrown in a pond, the number of rows

should increase with distance from the original center of plaque

development, as groups moved outward, carrying the plaque-

making tradition with them.
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Lillios created a sequence of types based on expected

chronological changes in various features of the plaques, with

emphasis on decorative motifs on the lower portion of the plaque.

She anchored the sequence with plaques containing vertical bands,

herringbone designs, or checkerboard patterning (Fig. 1), followed

by plaques with zigzag decoration, followed by plaques with

chevrons and triangles. Her reasoning was that many of the

examples with vertical bands, herringbone designs, and checker-

board patterning appeared to come from the Évora district of

southern Portugal, which many Iberian archaeologists consider to

be the original heartland of Late Neolithic peoples responsible for

the megalithic tombs in which many of the plaques have been

found [10], [30], [31]. So her reasoning went, as those peoples

moved out from Évora, the plaques they made became

increasingly younger in age, ending with triangle designs.

Lillios ([2], pp. 157–158) states that she used both the ‘‘proxy

method of ordering the plaques’’ as well as phyletic seriation [32]

to ‘‘propose a tentative chronological sequencing’’ of plaques, but

she presents no data that would allow us to examine the strength of

the sequence. A few comments are in order. First, her ‘‘proxy

method’’ is based on using row number as a chronological proxy

(fewer rows early, more rows later) and then placing the plaques in

sequence based on the number of rows they contain. This method,

however, assumes that row number is actually a measure of

elapsed time, which is what Lillios was trying to establish in the

first place. Thus, any results are tautological. We return to this

point later. Second, Lillios did not test the sequence either

stratigraphically or against radiometric dates. Admittedly, there

are only a small number of published radiocarbon dates available

(Table 1), but as we discuss later, they, together with published

stratigraphic information, are clear indicators that Lillios’s

sequence is suspect.

Despite these problems, Lillios’s hypothesis has gained consid-

erable weight among archaeologists working on the Iberian

Peninsula ([33], [34]; but see [21]). To test her hypothesis, we

turned to an evolutionary model—cladogenetic, or branching,

evolution—that reflects the nature of evolutionary change,

whether in organisms or material culture [35]–[37]. Instead of

collapsing all change into a single line of ancestry, as in the model

underlying phyletic seriation, the cladogenetic model recognizes

that ancestry is bushy, or tree-like. As we detail below, we designed

a series of phylogenetic exercises—similar to protocols used on

other archaeological materials [36], [38], [39]—to maximize the

expectations of Lillios’s hypothesis. This meant that we weighted

every experimental protocol and analytical decision in favor of her

hypothesis, our rationale being that if we tried every way possible

to meet the expectations but could not, then the hypothesis should

be rethought.

In summary, our analysis did not support Lillios’s hypothesis that

the plaques are genealogical mnemonic recording systems. We

should say that her hypothesis is not supported in its current form,

meaning that it is her proposed sequence of plaque designs that is

unsupported. Our analysis does not negate the possibility that the

plaques served as mnemonic devices or some other function tied to

‘‘external symbolic storage’’ [40], [41]. Whatever their purpose, it

appears there was a common ideological background to the use of

plaques that overlay the southwestern Iberian Peninsula—a

cultural system in which plaque design was based on a

fundamental core tradition, similar to Swadesh’s [42] ‘‘morpho-

logical kernel’’ of a language [43], [44], with a number of mutable

and variable elements surrounding it.

Table 1. Available radiocarbon dates directly associated with plaques.

Site and District1 Sample Date RCYBP Date BC
Cal Date BC2(1
sigma) Plaque (Esprit Number) Reference

Gruta da Lapa do Fumo (Set) ICEN-240 4420645 BP 2470645 BC 3101–3000 BC 658 [82]

Covas das Lapas I (Lei) ICEN-463 4550660 BP 2600660 BC 3238–3108 BC 1103 [20]

Gruta 2 da Marmota (San) OxA-5535 4605655 BP 2655655 BC 3509–3426 BC Unknown [82]

Gruta da Lapa do
Bugio (Set)

OxA-5507 44206110 BP 24706110 BC 3119–2919 BC Unknown [82]

Anta da Bola da Cera (Port) ICEN-66 4360650 BP 2410650 BC 3023–2909 BC Unknown [81]

Sala nu 1 (Bej) ICEN-448 41406110 BP 21906110 BC 2876–2618 BC Unknown [82]

Anta de STAM-3 (Evo) Beta-166422 4270640 BP 2320640 BC 2917–2877 BC 650 [82]

Olival da Pega 2b (Evo) ICEN-957 4130660 BP 2180660 BC 2763–2620 BC 137, 492, and 515 [82]

Olival da Pega 2b (Evo) ICEN-955 42906100 BP 23406100 BC 3034–2856 BC 137, 492, and 515 [82]

Olival da Pega 2b (Evo) ICEN-956 4180680 BP 2230680 BC 2817–2664 BC 137, 492, and 515 [82]

Anta 4 de Coureleiros
(Port)

ICEN-976 42406150 BP 22906150 BC 3022–2617 BC Unknown [81]

Pé da Erra (San) ICEN-587 4220645 BP 2270645 BC 2808–2755 BC Unknown [82]

Anta da Horta (Port) Beta-194313 4480640 BP 2530640 BC 3332–3214 BC [81] Figs. 138 (above)
and 147 (below)

[81]

Anta da Horta (Port) Beta-194312 4270650 BP 2320650 BC 2928–2866 BC [81] Figs. 136–149 [81]

Gruta Praia das
Maçãs (Lis)

OxA-5509 4410675 BP 2460675 BC 3107–2916 BC Unknown [82]

Gruta Praia das Maçãs (Lis) OxA-5510 4395660 BP 2445660 BC 3096–2916 BC Unknown [82]

1See Fig. 4 for district locations.
2Calibrations are made in software Calib 7.0 based on IntCal 13 data sets.
doi:10.1371/journal.pone.0088296.t001
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Materials

Our data were derived from the online Esprit (Engraved Stone

Plaque Registry and Inquiry Tool) database (http://research2.its.

uiowa.edu/iberian/index.php) created by Lillios and collaborators

[45]. It contains information on over 1400 plaques. Although

some archaeologists [46] have claimed that the data set does not

contain the total number of excavated plaques, which is likely, we

have no reason to think that it is not representative of the variation

in decoration that existed across the southwestern Iberian

Peninsula.

Because of inconsistencies in how plaque types have been

created by the authors of and contributors to Esprit—not an

unusual occurrence in archaeologywe used paradigmatic classifi-

cation to define analytical classes [35], [47]. In paradigmatic

classification, the investigator specifies a priori the characters and

character states that are of analytical interest, and each specimen is

then classified by linking the state of each character. Any character

state can combine with any of the states of the other characters to

create a class (taxon). Key to Lillios’s hypothesis is the character

‘‘base decorative motif’’ (DM), but five other characters are also

proposed to have chronological significance: ‘‘structure (ST),’’

‘‘tattoo straps (TT),’’ ‘‘necklace (NK),’’ ‘‘head motif (H),’’ and

‘‘number of registers (rows).’’ We excluded the last character

because, if we use Lillios’s reasoning, it is not an independent

variable. As we mentioned above, to her, rows of engraved lines

tell us about the use life of a plaque, not its chronological age. To use

our earlier example, a plaque with two rows signifies two

generations, whereas a plaque with five rows signifies five

generations. The first plaque could have been made many

centuries before the second one but did not record as many

generations before it was placed in the ground. Fig. 3 shows the

possible discrete states of each of the five characters used.

By excluding specimens that were broken, showed evidence of

re-engraving, or were not illustrated in the online database, we

ended up with a population of 735 plaques. We judged the

population to be too large to analyze because of the number of

unique classes involved (see below), so we reduced it to 349

specimens using a 5% error and a 99% confidence interval (http://

www.med.unne.edu.ar/biblioteca/calculos/calculadora.htm). Those

349 specimens were spread across 81 classes. Table 2 lists the number

of specimens by class and Esprit database identification number [45].

For the latter we used the first specimen listed in the database as the

class representative. For example, class 1 contains 15 specimens that

are identical in terms of character states. We list only one specimen

identification number for that class instead of all 15. Table 3 reorders

the data in Table 2 to show the number of duplicate cases across the

sample. For example, the first row of the table shows that 36 classes

contain only one specimen (there are zero duplicate specimens in those

36 classes). The second-to-last row shows that there is one class that

contains 27 specimens (one plus 26 duplicates). We can see from

Table 2 that that 27-specimen class is class 3.

Because the tree-building computer program we used—PAUP*

4.0 [48] (see below)—could not accommodate that number of

classes, we took a weighted random sample (with replacement

[SPSS v. 20]) from the 81-class sample to create 4 samples of 20

classes each. (The weight of each class was determined by the

number of specimens in it.) Table 4 lists the classes in each sample

and their character states; Fig. 4 shows the distribution of classes

geographically.

Method

Phylogenetic reconstruction is the main method used in biology

to construct testable hypotheses of ancestor–descendant relation-

ships [49]–[52]. It has also begun to see wide usage in archaeology

[37–39], [53–58] and other studies of material culture [59]–[67].

As Riede ([58] p. 799) points, cultural phylogenetics

has advantages over traditional typological approaches in

that a given phylogeny constitutes a quantitative hypothesis

of the historical relatedness among the chosen units of

analysis…. Such

hypotheses can then be evaluated statistically and in relation

to external datasets, such as stratigraphic, geographical or

radiocarbon dating information. While a phylogenetic

quantification of material culture relations alone can reveal

important new insights in its own right, phylogenies can also

be used in additional comparative analyses.

Figure 1. Engraved plaques from the Iberian Peninsula. a,
Valencina de la Concepción, Sevilla, Spain (Museo Arqueológico de
Sevilla [MAS]); b, S. Geraldo, Montemor-o-Novo, Évora, Portugal (Museo
Nacional de Arqueologia de Portugal [MNAP]); c, Monsaraz, Reguengos
de Monsaraz, Évora (MNAP); d, Mora, Évora (MNAP); e, Jabugo, Aracena,
Huelva, Spain (MAS); f, Ciborro, Monte-o-Novo, Évora (MNAP); g,
Marvão, Portalegre, Portugal (MNAP); h, Estremoz, Évora (MNAP); and I,
Pavia, Mora, Évora (MNAP).
doi:10.1371/journal.pone.0088296.g001
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Phylogenetics is based on a model of descent with modification

in which new taxa arise from the bifurcation of existing ones.

Phylogenetic relationships are defined in terms of relative recency

of common ancestry: Two taxa are deemed to be more closely

related to one another than either is to a third taxon if they share a

common ancestor that is not also shared by the third taxon. The

evidence for exclusive common ancestry is the sharing of

evolutionarily novel, or derived, character states, termed synapo-

morphies.

Various methods have been used for phylogenetic inference,

each based on different models and each having its own strengths

and weaknesses [68]–[72]. The one we used, maximum parsimo-

ny, is based on a model that seeks to identify the least number of

evolutionary steps required to arrange the taxonomic units under

study. In simplest form, the method consists of four steps:

1. Generation of a data matrix that shows the states of the

characters exhibited by each taxon.

2. Establishment of direction (polarity) of evolutionary change

among the states of each character. One method for doing this

is outgroup analysis [73], which entails examining a close

relative of the study group. When a character occurs in two

states among the study group, but only one of the states is

found in the outgroup, the principle of parsimony is invoked

(see above), and the state found only in the study group is

deemed to be evolutionarily novel with respect to the outgroup

state.

3. Construction of a branching diagram of relationships for each

character by joining the two most derived taxa—those at the

branch tips of a tree—and then successively connecting each of

the other taxa according to how derived they are. Ideally, the

distribution of character states among the taxa will be such that

all the character trees imply relationships among the taxa that

are congruent with one another. Normally, however, a number

of the character trees will suggest relationships that are

incompatible—a phenomenon known as homoplasy. This

problem is overcome through the fourth step:

4. Construction of an ensemble tree that is consistent with the

largest number of characters and therefore requires the smallest

number of homoplasies to account for the distribution of

character states among the taxa. We refer to such a tree as the

‘‘most parsimonious’’ solution. Parsimony trees are evaluated

on the basis of the minimum number of character-state

changes required to create them, without assuming a priori a

specific distribution of trait changes. This compensates for the

process pathways, biases, and random variation that charac-

terize ‘‘cultural transmission’’ [74]–[76]. It is worth underscor-

ing that trees are hypothetical statements of relatedness, ‘‘given

the model and parameters used’’ ([68] p. 189), not irrefutable

statements of precise phylogenetic relationships.

Numerous techniques are available for measuring the goodness

of fit between a data set and a given tree, with the consistency

index (CI), the retention index (RI), and the rescaled consistency

index (RC) being the most commonly used. The CI measures the

relative amount of homoplasy in a data set but is dependent on the

Figure 2. Characters used in the analysis and abbreviations: Decorative Motif (DM), Structure (ST), Traps/Tattoo (TT), Necklace
(NK), and Head (H). Terms in parentheses are particular character states for this example (see Fig. 3). After [31].
doi:10.1371/journal.pone.0088296.g002
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number of taxa. Thus, the expected CI for a given tree must be

assessed relative to the number of taxa used in the analysis [77].

The RI measures the number of similarities in a data set that are

retained as homologies in relation to a given tree. It is insensitive to

both the presence of derived character states that are present in

only a single taxon and the number of characters or taxa

employed. Thus, it can be compared among studies. The rescaled

consistency index (RC) is the product of the consistency index and

the retention index. Indices range from zero, which indicates a

lack of fit between a tree and the data set used to generate it, to

1.0, which represents a perfect fit.

Our phylogenetic analysis consisted of four exercises (Table 5),

each of which was carried out on each of the four samples listed in

Table 4. Each exercise searched for the best-supported tree using

the same tree-building methods and character/character-state

parameters (Table 4). We used the ‘‘parsimony heuristic search’’ in

PAUP*. All searches were carried out using the stepwise-addition

strategy for the addition of classes, with a simple addition sequence

and keeping only one tree at every step; the tree bisection and

reconnection method, with the branch-swapping algorithm in

relation to the tree rearrangements; and a maximum set of 100 for

the initial trees. The following scores were extracted from all

searches: number of trees, length of trees, consistency index (CI),

retention index (RI), and rescaled consistency index (RC). We

generated three kinds of consensus trees—strict, semi-strict, and

majority-rule—to reconcile different outcomes. We also generated

bootstrap trees using the following parameters: 100 bootstrap

replicates; simple weighting; randomly starting seed; parsimony

Figure 3. Character states used in the analysis.
doi:10.1371/journal.pone.0088296.g003
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optimality criterion; and 500 saved trees in each bootstrap

replicate step.

Certain characters can be hypothesized as being more

important than others in determining phylogenetic relationships,

and thus more analytical weight can be placed on them. As

mentioned, our goal was to stack the deck in favor of Lillios’s

hypothesis, in which character DM plays a crucial role, so for

exercises 2 and 4 (Table 5), we assigned it a weight of 2, whereas

characters ST, TT, NK and H were each assigned a weight of 1.

Character states can also be ordered, which means there are

defined pathways that a character transformation can take [78].

Thus, for example, it may be the case that evolutionary ‘‘laws’’

dictate that an organism can lose or gain only one toe at a time. It

could move from five toes to four toes, or vice versa, but never

from five to three or from two to four. The character ‘‘number of

toes,’’ then, is said to have ordered character states. In reality, an

Table 2. Distribution of specimens across the 81 classes.

Class Esprit Identification Number of Specimens

1 1 15

2 2 1

3 3 27

4 8 5

5 12 2

6 13 6

7 14 23

8 15 3

11 18 4

12 19 1

13 23 17

14 29 22

15 30 5

16 31 3

18 33 2

20 35 1

21 36 10

24 44 6

25 45 1

26 46 8

32 53 24

39 61 2

41 63 5

42 64 6

44 66 7

45 68 9

50 75 5

56 85 3

59 89 4

91 157 10

94 160 18

96 163 4

97 164 3

107 175 5

111 180 1

114 183 3

138 226 4

146 236 4

150 241 11

151 243 3

155 253 2

161 259 2

169 268 1

174 275 5

177 279 1

180 282 1

189 296 1

211 321 1

219 332 2

Table 2. Cont.

Class Esprit Identification Number of Specimens

222 335 1

225 340 2

244 365 1

249 370 3

271 405 1

304 466 2

313 479 2

321 489 1

328 499 1

330 501 1

342 513 3

344 515 1

355 536 1

361 544 1

401 612 1

415 637 1

420 650 2

432 676 1

438 700 1

442 709 1

478 836 1

483 844 1

497 861 1

498 862 1

616 1074 1

618 1076 1

623 1084 1

638 1109 1

660 1165 1

670 1178 1

681 1191 1

690 1221 1

doi:10.1371/journal.pone.0088296.t002
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ordered transformation series is a hypothesis about a particular

pathway because rarely will we know absolutely what is possible in

nature. Lillios’s hypothesis assumes that the lower portion of the

plaques, containing character DM, represents lineage affiliations,

whereas the number of rows represents the generations back to the

founding ancestor of the lineage [2], [24], [25]. With respect to

character DM, Lillios suggests that plaques with checkerboard

(DM4) and herringbone (DM6) designs are ancestral to plaques

with other decorative designs, given that the former are more

limited to her suspected core area of plaque manufacture and use

(the Évora district of southern Portugal).

For exercises 3 and 4 (Table 5), we assigned costs to changes

that violated the order of character states indicated by Lillios’s

hypothesis. As shown in Fig. 5, transformations from supposed

ancestral character states to derived states—say, from herringbone

(DM6) to zigzag (DM3)—have the lowest cost (1), meaning that

they have evolved in the manner Lillios suggested. At the other

end of the spectrum, a transformation from a derived state to the

original ancestral state—say, from triangle (DM2) to herringbone

(DM6) or from unipartite (ST0) to bipartite (ST2)—has a cost of 3.

Any transformation between a derived state and one immediately

preceding it (an intermediate state)—say, from triangles (DM2) to

zigzag (DM3)—has a cost of 2, as does any transformation between

derived states of character H. Here, Lillios proposed that the

inverted triangular head (H1) was immediately ancestral to all

three other states (H0, H2, and H3), meaning she identified no

intermediate states between the ancestral state and the three

derived states. We find it difficult to believe, however, that there

are no intermediate states and view the situation as a polytomy—

an unresolved (nondichotomous) branching episode. If so, there

are more possible reversals than there are nonreversals and thus

we gave all changes among H0, H2, and H3 a cost of 2 [79]. If

anything, this move stacked the deck even further in favor of

Lillios’s hypothesis, given that the best two trees (see below) both

contained ordered character states. We did not order characters

TT and NK because Lillios’s hypothesis is unclear as to their

chronological ordering.

Two exercises were carried out with outgroups (ROOT in

Table 5) and two without outgroups (UNRT in Table 5). We used

classes 21, 59, 146, and 618 as outgroups because they display all

or most of the presumed ancestral states in Lillios’s hypothesis—

again, a deliberate decision to maximize polarity in favor of the

hypothesis. In summary, exercise 1 used unweighted characters,

unordered character states, and unrooted trees; exercise 2 used

weighted characters, unordered character states, and unrooted

trees; exercise 3 used unweighted characters, ordered character

states, and rooted trees; and exercise 4 used weighted characters,

ordered character states, and rooted trees (Table 5).

Results

Table 6 presents the following scores for each heuristic search:

number of most-parsimonious trees returned, branch length of

trees, consistency index (CI), retention index (RI), and rescaled

consistency index (RC). The number of most-parsimonious trees

obtained in the exercises is high, running into the tens of

thousands. The CI, RI, and RC show strong differences among

the exercises. In particular, the CI decreases dramatically between

exercises 1 and 2, with a mean of 0.56, and exercises 3 and 4, with

a mean of 0.16. The RI, however, decreases from 0.65 to only

0.52. The RC indicates the same trend as the CI: Exercises 1 and

2 have a mean of 0.36, whereas exercises 3 and 4 have a mean of

0.08.

Table 3. Frequency and percentage of classes that have multiple specimens.

Number of Multiple Specimens Frequency Percentage of 349 Specimens
Cumulative Percentage of 349
Specimens

0 36 10.3 10.3

1 10 5.7 16.0

2 8 6.9 22.9

3 5 5.7 28.6

4 6 8.6 37.2

5 3 5.1 42.3

6 1 2.0 44.3

7 1 2.3 46.6

8 1 2.6 49.2

9 2 5.7 54.9

10 1 3.1 58.0

14 1 4.3 62.3

16 1 4.9 67.2

17 1 5.1 72.3

21 1 6.3 78.6

22 1 6.6 85.2

23 1 6.9 92.1

26 1 7.7 99.8

Total 81 99.8

doi:10.1371/journal.pone.0088296.t003
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The RI scores from all the exercises indicate that the data set

has some consistency and phylogenetic structure. The sharp

contrast observed for CI and RC values between the first two and

the last two exercises indicates a significant difference related to

the methodological parameters applied, specifically the switch

from parameter US (unordered states) to parameter OS (ordered-

states). In contrast, parameter WC, which implements different

weights for a couple of characters, has no influence on the values.

Table 4. Data matrix for the four samples.

Class ID1 DM2 ST3 TT4 NK5 H6

Sample 1

2 Evo7 2 1 2 2 1 1

6 Evo 13 3 2 0 1 1

12 Evo 19 2 2 0 1 2

13 Evo 23 2 2 1 1 1

14 Evo 29 3 2 1 1 1

15 Evo 30 5 2 2 0 1

18 Evo 33 3 0 0 0 2

26 Evo 46 5 0 0 0 0

32 Evo 53 2 2 1 0 1

59 Evo 89 4 2 1 0 1

94 Lis 160 2 2 0 0 1

96 Far 163 2 2 0 1 1

107 Lis 175 5 2 0 0 1

169 Port 268 5 2 0 1 2

222 Port 335 2 1 3 0 1

342 Set 513 1 2 1 1 1

415 Port 637 6 0 0 1 1

420 Evo 650 2 0 0 0 2

478 Cac 836 1 0 0 0 3

497 Evo 861 3 1 4 0 1

Sample 2

4 Evo7 8 3 2 4 0 1

8 Evo 15 1 2 2 0 1

12 Evo 19 2 2 0 1 2

21 Evo 36 4 2 2 0 1

26 Evo 46 5 0 0 0 0

32 Evo 53 2 2 1 0 1

39 Evo 61 2 2 3 0 1

114 Lis 183 3 1 2 0 1

138 Lis 226 3 2 0 0 0

177 Port 279 2 1 0 0 0

222 Port 335 2 1 3 0 1

321 Bad 489 3 2 2 0 0

401 Evo 612 5 1 1 1 1

415 Port 637 6 0 0 1 1

442 Port 709 2 1 0 1 2

483 Set 844 3 2 1 0 0

616 Evo 1074 3 2 0 0 1

618 Evo 1076 6 2 1 0 1

660 Set 1165 3 1 1 1 1

681 Bad 1191 2 2 2 1 1

Sample 3

1 Evo7 1 3 2 1 0 1

12 Evo 19 2 2 0 1 2

14 Evo 29 3 2 1 1 1

15 Evo 30 5 2 2 0 1

16 Evo 31 3 0 0 1 1

21 Evo 36 4 2 2 0 1

Table 4. Cont.

Class ID1 DM2 ST3 TT4 NK5 H6

24 Evo 44 2 2 0 0 2

25 Evo 45 6 1 0 0 1

32 Evo 53 2 2 1 0 1

45 Evo 68 5 2 1 0 1

138 Lis 226 3 2 0 0 0

146 Evo 236 6 2 1 1 1

177 Port 279 2 1 0 0 0

189 Evo 296 2 1 0 1 1

304 San 466 5 2 0 0 2

321 Bad 489 3 2 2 0 0

344 Evo 515 1 2 3 0 1

361 Evo 544 3 2 0 2 2

438 Cac 700 2 2 1 0 0

442 Port 709 2 1 0 1 2

Sample 4

3 Evo7 3 2 2 2 0 1

4 Evo 8 3 2 4 0 1

11 Evo 18 2 0 0 0 1

13 Evo 23 2 2 1 1 1

14 Evo 29 3 2 1 1 1

16 Evo 31 3 0 0 1 1

24 Evo 44 2 2 0 0 2

32 Evo 53 2 2 1 0 1

96 Far 163 2 2 0 1 1

146 Evo 236 6 2 1 1 1

151 Bej 243 3 0 0 0 0

174 Port 275 5 2 0 0 0

177 Port 279 2 1 0 0 0

249 Evo 370 1 0 0 0 0

342 Set 513 1 2 1 1 1

415 Port 637 6 0 0 1 1

432 Lei 676 3 1 2 1 1

438 Cac 700 2 2 1 0 0

498 Evo 862 1 2 0 1 1

618 Evo 1076 6 2 1 0 1

1ID = specimen number in the ESPRIT database [45].
2DM = decorative motif.
3ST = structure.
4TT = tattoo straps.
5NK = neck.
6H = head.
7Abbreviations to the right of the class numbers refer to the geographic
provinces shown in Fig. 5.
doi:10.1371/journal.pone.0088296.t004
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This indicates that the suspected order of character states in the

hypothesis is inaccurate.

We next created four trees per exercise and sample—three

consensus trees (strict, semistrict, and 50% majority rule) and a

bootstrap tree (Table 5). The result was 64 trees (1664). We then

reduced the number of trees to two in order to focus on those that

best fit the expectations of Lillios’s hypothesis (Table 6). Those two

trees come from exercise 2 (sample 3)—termed the ‘‘2/3 tree’’

(Fig. 6)—and exercise 4 (sample 2)—the ‘‘4/2 tree’’ (Fig. 7). Both

are 50% majority-rule trees [80]; the 2/3 tree was unrooted, and

the 4/2 tree was rooted. When PAUP* creates rooted trees, it sets

polarity—the direction of character-state change—using out-

groups selected by the analyst. The 4/2 tree (Fig. 7) was rooted

using class 21 (Table 5), the class in the sample that displayed the

highest number of presumed ancestral states in Lillios’s hypothesis.

When PAUP* creates unrooted trees, its default is to start with the

first taxon in the input list and build from there. PAUP*

constructed the 2/3 tree using class 1 as a starting point. After

examining the tree, however, we went a step further in favoring

the hypothesis. We swapped class 146 for class 1 because it is

another class that displays all or most of the presumed ancestral

states in Lillios’s hypothesis. The CI, RI, and CR remained

unaffected.

In general, the two trees have large sections that exhibit poor

structural and topological resolution. Both have some large

polytomies (unresolved branches) close to their roots. In the 2/3

tree (Fig. 6), the basal branching episode creates class 25, but it

also creates nine unresolved branches (class 14 through class 361).

The 4/2 tree (Fig. 7) has a basal polytomy, five branches of which

(class 4 through class 8) are completely unresolved. Both trees also

exhibit sections where relationships are more resolved. The 2/3

tree (Fig. 6), for example, contains a seven-class clade, shown in

red, with considerable branching structure. The 4/2 tree (Fig. 7)

also contains a seven-class clade, shown in green, that contains two

smaller, multiclass clades.

Given the overall lack of deep structure, it is not surprising that

no character is free of homoplasy. In the 2/3 tree (Fig. 6), only 9 of

the 32 character-state changes are nonhomoplastic, and only 4 of

Figure 4. Distribution map of the four data sets. Sample 1: red; sample 2: green; sample 3: blue; and sample 4: pink. Gray numbers reference
plaques that belong to more than one sample. The names of Portuguese districts are Leiria (Lei), Lisboa (Lis), Setúbal (Set), Beja (Bej), Faro (Far), Évora
(Evo), and Portalegre (Port), and the Spanish provinces are Cáceres (Cac) and Badajoz (Bad).
doi:10.1371/journal.pone.0088296.g004
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those are synapomorphic (TT1R0 and NK1R0 at the base of the

tree; DM6R3 at the next node up; and DM3R2 in the seven-class

red clade). The character with a balance between nonhomoplastic

(not necessarily synapomorphic) and homoplastic change is DM,

which has four instances of the former and three of the latter.

There are several reversals to ancestral states as a result of

convergence. In the 4/2 tree (Fig. 7), only six changes are

nonhomoplastic. Of these, four are synapomorphies (DM4R3 and

TT2R0 at the base; DM3R2 in the seven-class green clade; and

H1R2 in the clade comprising classes 12 and 442). All characters

exhibit at least one instance of homoplasy.

Discussion

Synapomorphies help resolve trees, but here our interest is

primarily in the polarity of specific character states: How well does

polarity meet the expectations of Lillios’s hypothesis? We identified

the following expectations:

1. With respect to DM, states other than DM4 and DM6—the

presumed ancestral states (Fig. 5)—should be located nearer to

the branch tips;

2. ST2 (bipartite structure) is ancestral to ST1 (transitional) and

ST0 (unipartite); and

3. H1 (inverted triangles) is presumed to be ancestral to H0 (no

head), H2 (triangles and appendages), and H3 (appendages and

figurative features).

To assess how well the expectations are met, we created the

trees shown in Figs. 8 and 9. With two exceptions, the character-

state transformations are the same as in Figs. 6 and 7, but they

have been converted to binary states in which character-state

changes either meet or do not meet expectations. The two

exceptions are character states for NK and TT because, although

Lillios [2] believes they have chronological significance, her

hypothesis is silent as to their polarity. Based on its location on

trees 2/3 and 4/2 (Figs. 6 and 7), character NK has no clear

nonrandom patterning in the former, and it has the direction

NK0R1 in the latter (three instances of convergence). With respect

to character TT, there is no clear, nonrandom patterning.

How do the expectations fare in the 2/3 tree, which has

weighted characters and unordered character states (Fig. 8)? In

general, the majority of changes appear in the direction Lillios [2]

suggested. Of the 19 changes, only 5 show an unexpected polarity,

indicated by black boxes. Nevertheless, 13 are homoplastic

changes, which are indicated by asterisks. Specific expectations

are considered below:

1. Only one of the seven changes in character DM has an

unexpected direction (three are homoplastic changes), the

transition DM3R4 (zigzagsRcheckerboard) in class 21. The

majority of the changes (five out of seven) are located on

terminal branches and thus contribute nothing to the tree

structure. Only two synapomorphies are consistent with the

expected polarity: DM6R3 (herringboneRzigzags) in the large

polytomy and then DM3R2 (zigzagsRtriangles), which creates

the clade of seven classes.

2. Character ST has four changes that fit the expected polarity

(three are homoplastic), and none is a synapomorphy. The

ancestral state (ST2) is highly conserved, appearing in 15 of the

20 classes.

3. Character H exhibits eight changes (all involve homoplasy),

four of them in the hypothesized direction and another four in

the opposite direction, with repeated transitions H2R0 (triangle

& appendageRabsence) and H2R1 (triangle & appenda-

geRtriangle). In addition, the two H2R1 reversals are located

in unexpected places along the tree. Instead of appearing close

to the basal node (H1 is the ancestral state), they are at the

branch tips of classes 32 and 189. Also, the ancestral trait (H1)

is highly conserved, appearing in 15 of the 20 classes.

How do the expectations fare in the 4/2 tree, which has

weighted characters and ordered character states (Fig. 9)? At first

glance, portions of this tree also seem consistent with expected

polarity. Only two of the 15 character-state changes are

unexpected, although only four are nonhomoplastic. Specific

expectations are considered below:

1. Five of the seven changes in character DM exhibit the expected

polarity, but two of those are homoplastic. The only two

synapomorphies that are consistent with the expected polarity

are DM4R3 (checkerboardRzigzags) in the basal node and

DM3R2 (zigzagsRtriangles), which creates the green clade.

2. All seven changes in character ST have the expected polarity,

but all of them are homoplastic. Also, the ancestral state (ST2)

is very conserved, remaining in 12 of the 20 classes.

3. The three changes in character H meet the expected polarity,

but two are homoplastic. The one synapomorphy—H1R2

(triangleRtriangle & appendage)—sorts only classes 12 and

442. The ancestral state (H1) is also highly conserved,

remaining in 13 of the 20 classes.

What does the combined topology of two trees tell us about

Lillios’s hypothesis, especially in combination with radiocarbon

dates and stratigraphic information? With respect to character

Table 5. Conditions of the four phylogenetic exercises.

Exercise Sample Methods Parameters Outgroup

1 1 PHS1/ACT2/BT3 UC4/US5 UNRT6

1 2 PHS/ACT/BT UC/US UNRT

1 3 PHS/ACT/BT UC/US UNRT

1 4 PHS/ACT/BT UC/US UNRT

2 1 PHS/ACT/BT WC7/US UNRT

2 2 PHS/ACT/BT WC/US UNRT

2 3 PHS/ACT/BT WC/US UNRT

2 4 PHS/ACT/BT WC/US UNRT

3 1 PHS/ACT/BT UC/OS8 ROOT9 (no. 59)

3 2 PHS/ACT/BT UC/OS ROOT (no. 21)

3 3 PHS/ACT/BT UC/OS ROOT (no. 146)

3 4 PHS/ACT/BT UC/OS ROOT (no. 618)

4 1 PHS/ACT/BT WC/OS ROOT (no. 59)

4 2 PHS/ACT/BT WC/OS ROOT (no. 21)

4 3 PHS/ACT/BT WC/OS ROOT (no. 146)

4 4 PHS/ACT/BT WC/OS ROOT (no. 618)

1Parsimony Heuristic Search.
2All Consensus Trees (strict, semistrict, and 50% majority rule).
3BooTstrap.
4Unweighted Characters.
5Unordered States.
6UNRooTed trees (no predefined outgroup).
7Weighted Characters.
8Ordered States.
9ROOTed trees (predefined outgroup).
doi:10.1371/journal.pone.0088296.t005
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DM, the data might appear at first glance to support Lillios’s

prediction that plaques with herringbone and checkerboard

decoration at the bottom may be the oldest forms. However,

there are several reversals (DM3R4 [zigzagsRcheckerboard] and

DM3R6 [zigzagsRherringbone]) in both trees, which undermine

the suspected relative late position of plaques containing zigzag

decoration. Also, most changes in character DM occur at the

branch tips in both trees, which reduces the consistency of this

presumptive positive result (recall that DM was weighted in the

heuristic searches).

Radiocarbon dates and stratigraphic information also call into

serious question the proposed sequence, with several of the oldest

dated plaques exhibiting the triangle motif at their base (DM2), as,

for example, at Cova das Lapas I, in the district of Leiria, with a

radiocarbon date of 4550660 B.P. (3238–3108 B.C. [1 sigma]) [20],

and the oldest level of Anta da Horta, in the Portalegre district of

Portugal [81], with a radiocarbon date of 4480640 B.P. (3332–

3214 B.C. [1 sigma]) [81] (Table 1). According to Lillios’s

hypothesis, triangles should be the most derived character state.

Conversely, the checkerboard motif (DM4), supposedly the most

ancestral in the suggested sequence of character states, is a late

occurrence at Olival da Pega 2b, in the district of Évora, with

three calibrated dates [82] that average 2830 B.C. (Table 1). With

respect to stratigraphic positioning, plaques from the earliest levels

at Anta da Horta exhibit the triangle motif (DM2) but so do those

from later levels. There also are late plaques that exhibit zigzag

motif (DM3), when, according to the hypothesis, they should be

older than plaques with triangles.

Figure 5. Characters and character states used in the analysis reported here, together with polarities and cost of transitions
between states for characters DM, ST, and H, with polarity set by Lillios’s hypothesis. Plaques appearing within one rectangle have the
same polarity. Continuous lines indicate less-costly transitions, and dashed lines indicate more-costly transitions. Numbers indicate cost values for
corresponding transitions in exercises 3 and 4 (Table 5).
doi:10.1371/journal.pone.0088296.g005
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With respect to character ST, character state ST2 (bipartite)

appears to be ancestral to ST1 (transitional) and ST0 (unipartite)—

in line with predictions. In fact, the bipartite structure (ST2) is

highly conserved. The few relevant dates and available strati-

graphic evidence support the conservatism in ST2 as well as the

derived nature of ST0. Whereas dated bipartite (ST2) plaques

occur (in Cova das Lapas I, and Sala nu 1) at least throughout the

period 4550660 B.P. to 41406110 B.P. (3238–3108 B.C., and 2876–

2618 B.C. [1 sigma]), dated unipartite (ST0) plaques occur only in

the early part of the third millennium (from 4270640 B.P. [2917–

2877 B.C. 1 sigma] in Anta de STAM-3). At Anta da Horta, all of

the plaques in the oldest level are bipartite (ST2), and the majority

of plaques in the later levels are unipartite (ST0).

Recall that predictions relative to character H are not well met

in the 2/3 tree (Fig. 8), but they are, broadly, in the 4/2 tree

(Fig. 9). There, the inverted-triangle head (H1) is the ancestral

character state, and appendages (H2) and plain (H0) are the

derived states. H1 is highly conserved in the 4/2 tree, and

radiocarbon and stratigraphic data bear this out. At Anta da Horta

[81], one of the two earliest plaques displays character-state H1

and the other H2. Plaques from the latest levels exhibit states H0

and H3. At Olival da Pega 2b [82], H2 lasts throughout the

sequence, becoming associated with other character states in the

later levels.

Conclusions

The overall implications of Lillios’s hypothesis with respect to

the evolutionary history of stone plaques on the Iberian Peninsula

are not met by a phylogenetic model, even when the two best

trees—one with weighted characters (the 2/3 tree) and the other

with weighted characters and ordered character states (the 4/2

tree)—are considered. There are at least three possible causes for

the poor and arbitrary topology of large sections of both trees, with

numerous polytomies and instances of homoplasy:

1. The people who created the plaques were free to use any of the

possible states in the design palette at any time and any place. If

this were the case, however, we would expect to see unlimited

and totally random character-state reversals, which is not the

case.

2. There was a high rate of cultural borrowing or horizontal

transfer of information among populations scattered across the

southwestern Iberian Peninsula, which tended to swamp most

of the phylogenetic signal. This would mean that different

genealogical and heraldic clans (according to Lillios) shared

and transferred much of the information reflected in this

material culture, an assumption that would run counter to the

hypothesis that the plaques were linked to specific lineages

and/or clans.

3. There was a common ideological background (whether

religious, apotropaic, and the like) to the use of plaques that

overlay the southwestern Iberian Peninsula. This would entail a

cultural system in which plaque design was based on a

fundamental core idea, with a number of mutable and variable

elements surrounding it.

We suspect number 3 was the case, at least in part. It seems

reasonable to conclude that most cultures have a conservative

‘‘core tradition’’—similar to Swadesh’s [42] ‘‘morphological

kernel’’ of a language [43], [44]. The question is whether we

can identify it [59]. We might start by examining how

archaeologists have long viewed traditions, going back to Willey’s

[83] definition: a line or related lines of development through time

within the confines of a certain technique or constant. A tradition

includes broad categories of such things as plaque designs that

undoubtedly have value in expressing historical relationships when

the relationships are confined to the geographic boundaries of

cultures. We thus should not be surprised that some of the

phylogenetic trees derived from the plaque data exhibit internal

branching because cultural evolution is, after all, a process that

produces cladogenesis [56].

Table 6. Parsimony heuristic search scores.

Exercise Sample Number of Trees Length of Trees Consistency Index Retention Index
Rescaled Consistency
Index

1 1 69800 25 0.600 0.655 0.393

1 2 54368 26 0.538 0.636 0.343

11 3 21545 24 0.583 0.667 0.389

1 4 73400 24 0.500 0.625 0.312

2 1 73400 33 0.606 0.649 0.393

2 2 71100 33 0.576 0.659 0.379

2 3 71600 32 0.594 0.658 0.391

2 4 69100 31 0.516 0.625 0.323

3 1 72900 29 0.172 0.467 0.080

3 2 72100 27 0.185 0.532 0.099

3 3 71600 27 0.185 0.500 0.093

3 4 71600 26 0.154 0.511 0.079

4 1 70900 36 0.139 0.516 0.072

4 2 72100 34 0.147 0.554 0.081

4 3 72100 34 0.147 0.532 0.078

4 4 72900 31 0.129 0.565 0.073

1Bold indicates samples with the best general scores for every exercise.
doi:10.1371/journal.pone.0088296.t006
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Nor should we be surprised that within the broad trees

comprising classes of Neolithic slate plaques from the southwestern

Iberian Peninsula, several character-state polarities suggested by

Lillios seem broadly successful. After all, people learn from those

with whom they are culturally related and/or with those with

whom they are in contact, and ideas as well as people move across

the landscape. Thus we should expect some structure in the data. In

fact, given the manner in which we stacked the analysis in favor of

Lillios’s hypothesis, one might have expected more structure in the

plaques from the southwestern Iberian Peninsula, irrespective of

Figure 6. Fifty-percent majority-rule consensus tree from exercise 2, sample 3. The tree, which uses weighted characters but unordered
character states, has a CI of 0.594, an RI of 0.658, and an RC of 0.391. When generated by PAUP, the tree was unrooted, but it subsequently was
rooted with class 146 to resolve the topology in favor of Lillios’s hypothesis. Numbers at nodes are bootstrap values.
doi:10.1371/journal.pone.0088296.g006
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Figure 7. Fifty-percent majority-rule consensus tree from exercise 4, sample 2. The tree, which uses weighted characters and ordered
character states, has a CI of 0.147, an RI of 0.554, and an RC of 0.081. Numbers at nodes are bootstrap values.
doi:10.1371/journal.pone.0088296.g007
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Figure 8. Fifty-percent majority-rule consensus tree from exercise 2, sample 3 (the 2/3 tree) showing character-state changes states
according to the assumed polarities for characters DM, ST, and H. Changes of states for characters TT and NK do not appear here because
Lillios’s hypothesis makes no assumptions about polarity. Numbers at nodes are bootstrap values.
doi:10.1371/journal.pone.0088296.g008
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Figure 9. Fifty-percent majority-rule consensus tree from exercise 4, sample 2 (the 4/2 tree) showing character-state changes states
according to the assumed polarities for characters DM, ST, and H. Changes of states for characters TT and NK do not appear here because
Lillios’s hypothesis makes no assumptions about polarity. Numbers at nodes are bootstrap values.
doi:10.1371/journal.pone.0088296.g009
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whether they served the purpose(s) assigned to them. Certainly the

available stratigraphic evidence and radiocarbon dates do not

impart clear chronological structure to the plaques, which is yet

another strike against Lillios’s hypothesis that they served as

genealogical mnemonic recording systems.
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