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Swimming cells and microorganisms are as diverse in their collective dynamics

as they are in their individual shapes and propulsion mechanisms. Even for

sperm cells, which have a stereotyped shape consisting of a cell body connected

to a flexible flagellum, a wide range of collective dynamics is observed spanning

from the formation of tightly packed groups to the display of larger-scale, turbu-

lence-like motion. Using a detailed mathematical model that resolves flagellum

dynamics, we perform simulations of sperm suspensions containing up to 1000

cells and explore the connection between individual and collective dynamics.

We find that depending on the level of variation in individual dynamics from

one swimmer to another, the sperm exhibit eithera strong tendency to aggregate,

or the suspension exhibits large-scale swirling. Hydrodynamic interactions

govern the formation and evolution of both states. In addition, a quantitative

analysis of the states revealsthat the flows generated at the time scale of flagellum

undulations contribute significantly to the overall energy in the surrounding

fluid, highlighting the importance of resolving these flows.
1. Introduction
Swimming cells and microorganisms encompass the entire range of cell types and

exhibit a great variety of cell geometries and swimming strategies used to move in

viscosity dominated environments [1,2]. Some organisms, such as Volvox colo-

nies, can be nearly spherical and use for propulsion thousands of relatively

short flexible flagella distributed along their surface. Others, like sperm cells,

have a single, long flagellum that propagates bending waves, leading to a large

time-periodic shape change of the cell. Though stereotyped, the propagated

waveforms, frequencies and head shapes of sperm cells vary appreciably across

different species [3].

There is not only great variation among individual cells, but also in the pat-

terns that they form and in how populations are organized. This can range from

algal plume formation in bioconvection [4,5] to turbulence-like swirling in bac-

terial baths [6–9]. Great variation is exhibited by sperm suspensions of different

species that have been observed to form vortices near planar boundaries [10],

aggregate into coherent sperm trains [11] or exhibit turbulence-like swirling

as documented nearly 70 years ago by Lord Rothschild [12–15]. What is not

clear, however, is how the individual differences in sperm cells, such as geome-

try, flagellum length, waveform and flexibility, give rise to the differences in the

way sperm populations organize themselves. Mathematical modelling and

simulation provide a route to explore the connection between individual and

collective dynamics where experiments might otherwise be very challenging.

In the past 10–15 years, there has been much work on the development of

mathematical models [8,16–24] of microorganism suspensions, especially to

understand the turbulence-like state found in bacterial baths. To deal with large

numbers of cells, the models rely on a reduced description of the swimmers,

often treating them as simple, rigid objects (e.g. rods, dumbbells, spheres and
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ellipsoids) that interact through steady, dipolar flows and steric

repulsion. These models have been effective in reproducing the

large-scale motion of the population and relating its formation

to the sign of the coefficient of dipolar flow induced by

individuals.

While such models now broadly shape our thinking

about suspensions of swimming microorganisms, they

reduce the diversity of the microscopic world into a handful

of parameters and a limited number of degrees of freedom.

They ignore the complexity and time-dependence of cell

shapes, as well as the time-dependent and beyond-dipolar

features of the flows generated by the shape changes.

Indeed, many of these details have been included in models

of individual or small collections of swimmers. In the case

of sperm cells, the addition of flagellar motion leads to

hydrodynamically induced attraction, synchronization and

phase-locking of planar, flagellar waveforms [25–27]. In

simulations of 50–100 swimmers [28,29], these effects were

found to induce aggregation and clustering of cells. This

tendency to aggregate may aid sperm in forming coherent

groups such as sperm trains; however, it remains unclear

how a turbulence-like state could then be reached.

In this paper, we perform detailed simulations of up to 1000

interacting sperm, resolving the coupled flagellar dynamics

along with the flows generated at the undulation time scale

and at sub-flagellum length scales. We report that variation in

the individual dynamics across the population, here controlled

by the undulation frequency, can suppress the tendency to

aggregate and instead lead to a density-dependent turbu-

lence-like state with hydrodynamics still playing a key, but

now different role. Additionally, an analysis of the clustered

and turbulence-like states reveals the strong influence of flagel-

lar undulation on the quantities used to explore large-scale

motion in swimmer suspensions. These results suggest that

only minor variations in sperm behaviour across species are

needed to produce very distinct collective dynamics.
2. Mathematical model
Our swimmer model is closely related to several models

[30–34] employed to describe the dynamics of sperm cells

in a viscous fluid and extends directly from a model pre-

viously used to capture undulatory locomotion through

structured media [35]. We briefly summarize it here in the

context of a single swimmer and provide a more detailed

description in the electronic supplementary material.

Our swimmers consist of two elements, the flagellum and

the cell head. The flagellum is treated as an inextensible, yet

flexible beam of length l and bending modulus KB, while an

oblate spheroid of semi-major and minor axes a and b,

respectively, represents the cell head. The overall swimmer

length is taken to be d ¼ 2.1a þ l, where the distance 0.1a
accounts for a linkage between the flagellum and the head.

The flagellum is parametrized by arclength s [ [0, l ] such

that the position of a point along the flagellum is Y(s) and

the unit tangent at that point is t̂(s) ¼ dY=ds. The flagellum

is driven internally by the moments per unit length, tD,

that arise due to the preferred curvature,

kðs,tÞ ¼ K0 sin ðks� vtþ wÞ �
2ðl� sÞ

l
, s .

l
2

1, s � l
2

,

8><
>:

ð2:1Þ
where v ¼ 2p/T is the undulation frequency, k is the wave-

number, w is the phase, and K0 is the amplitude. The linear

decay in the preferred curvature amplitude near the free end

is introduced to better reproduce observed flagellar wave-

forms. Allowing the flagellum to also be subject to external

applied forces, f, and torques, t, per unit length due to viscous

stresses, the force and moment balances along the flagellum are

dL

ds
þ f ¼ 0 ð2:2Þ

and

dM

ds
þ tD þ t̂�Lþ t ¼ 0, ð2:3Þ

where L is the internal force on flagellum cross sections and

M ¼ KB t̂� dt̂=ds is the bending moment. At one end (s ¼ 0),

the flagellum is attached via a clamped-end condition to the

cell head, while the other end (s ¼ l ) remains free.

The continuous beam equations (2.2) and (2.3) are discre-

tized to obtain force and torque balances on Nflag segments

of the flagellum, as well as the cell head (see the electronic sup-

plementary material for details). For the nth segment of the

flagellum, the balances are

FC
n þ FH

n ¼ 0 ð2:4Þ

and

TB
n þ TC

n þ TD
n þ TH

n ¼ 0, ð2:5Þ

where TB
n are torques arising due to bending, FC

n and TC
n are

constraint forces and torques associated with tension, TD
n are

the torques due to the preferred curvature, and FH
n and TH

n

are the hydrodynamic forces and torques on the segment.

The force and torque balances yield a low Reynolds number

mobility problem for the translational and angular motion

of the segments that is identical to that for a collection of

rigid particles. We solve this mobility problem using a regular-

ized multipole approach for Stokes flows known as the

force-coupling method (FCM) [35–39]. In the limit of large

Nflag, FCM provides an approximation of the hydrodynamics

consistent with a regularized version of slender body theory

[31,33,40–44]. After solving the mobility problem for the vel-

ocities and angular velocities of the flagellum segments and

cell head, the differential equations for their positions and

orientations are integrated in time using a second-order back-

wards differentiation scheme. Broyden’s method is then used

to solve the resulting system of equations for the updated

positions and orientations, and the Lagrange multipliers

associated with the forces and torques arising from the

inextensibility constraint.

We choose the parameters in our simulations to reproduce a

cell geometry, flagellar waveform and swimming speed close

to that reported for ram sperm [14,45] and in the range of

other mammalian sperm [46,47]. The head size a is such that

a/l ¼ 0.0470 and b ¼ a/3. The wavenumber is k ¼ 2p/l, and

the curvature amplitude is K0 ¼ 12.76/l. Finally, we set the

dimensionless parameter known as the sperm number, which

provides a measure of the ratio of the viscous to elastic forces

[2,35,48–50], to Sp¼ (4pvh/KB)1/4l ¼ 12.0, where h is the

dynamic viscosity. With these parameters, 23.7 undulation

periods are required for the sperm to swim its flagellum length.

We perform three-dimensional simulations in domains

of size L � L � Lz corresponding to two-dimensional periodic

thin films with finite thickness Lz ¼ 0.277d. The corresponding



Table 1. Simulation parameters.

parameter description
value in
simulation units

h viscosity 1

Sp sperm number 12

K0 curvature amplitude 0.2

KB bending modulus 1800

b segment radius and head

height

1

a head half axis 3

(a) (b)

Figure 1. Fluid flow induced by an individual swimmer. (a) Instantaneous streamlines (grey) and fluid velocity field (red arrows) at z ¼ Lz/2 produced by a single
swimmer at one instant in time. (b) Period-averaged streamlines and fluid velocity field in a co-moving frame at z ¼ Lz/2. Two snapshots of the swimmer are also
shown. (Online version in colour.)
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fluid flow is resolved on a grid of size Nx � Ny � Nz. Free

surface conditions at z ¼ 0 and z ¼ Lz are established

by restricting the motion of the swimmers to the mid-plane

z ¼ Lz/2 and applying periodic boundary conditions in all

three directions. This particular choice in boundary conditions

and film thickness corresponds to those commonly employed

in experiments on swimming microorganisms [6,16,51,52].

When simulating multiple swimmers, a short-ranged

repulsive force between nearly touching segments is included

to capture steric repulsion between swimmers (see the elec-

tronic supplementary material). The strength of this force at

contact is determined by the parameter FS. This and all simu-

lation parameters, including their values in simulation units,

are summarized in table 1.

d swimmer length 70.1

FS/d steric reference force 15p

Nx,y grid dimensions (in-plane) f2048, 3072g
Nz grid dimension (normal) 64

L linear domain size 931.3

Lz domain height 19.40

Nflag number of flagellum

segments per swimmer

29

N number of swimmers f100, . . ., 1000g
Nt/T time-steps per undulation 300

sv/v relative standard deviation of

frequencies

f0, 0.2g
3. Time-dependent and higher-order features
of the swimmer flow field

Examining the flow field produced by a single swimmer and

the force-moments associated with this flow, we see clear differ-

ences between their instantaneous and period-averaged values.

The flow at the mid-plane of the thin film and the swimmer at

an instant in time are shown in figure 1a, while figure 1b shows

the flow averaged over one undulation period. These flow fields

are comparable to those given by other computational studies

of individual swimmers propelled by an elastic filament [27–

30,53,54]. While the period-averaged flow closely resembles

the dipolar flow generated by a so-called pusher, we find that

the instantaneous flow field at any point in time is markedly

different, containing features of higher-order forces singular-

ities. To analyse this further, we compute (see the electronic

supplementary material and [49]) the in-plane dipole and

quadrupole force moments for the swimmer as functions of

time. The symmetric, trace-less dipole tensor G, the symmetric

(in the first two indices), trace-less quadrupole tensor KS and

the anti-symmetric quadrupole tensor KA are plotted over

two undulation periods in figure 2. The time periodic nature

of the force moments, especially their change in sign over the

course of a period, is consistent with experimental measure-

ments [51,54,55] on flagellate microswimmers. The anti-

symmetric dipole moment is always zero, as there is no net

torque on the swimmer. From these time series, we can extract

the non-vanishing time-averages, the largest of which are the

dipole coefficients k(GS
11, GS

22)l ¼ (21.050, 0.432) � 1023F0d,
and the quadrupole coefficients k(KS
111, KS

221)l ¼ (22.321,

0.822) � 1023F0d2, where F0 is the in-plane drag on the cell

head moving at the average swimming velocity. We note that

for both the dipole and quadrupole these average values are

much smaller than the maximum values attained during an

undulation period. Quadrupole components (KS
111 and KS

221)

are indeed expected to contribute substantially to the fluid

flow around spermatozoa [33,56] and have also been linked

to swimmer velocity correlations in bacterial suspensions

[57]. The maximum value of the dipole coefficient in our

model is more than a factor of 5.5 greater than its mean value,

while for the quadrupole this increases to a factor of 7. Addition-

ally, the relatively large values of the quadrupole coefficients

produce strong flows that, although they decay faster than
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Figure 2. The symmetric, trace-less dipole, Gij, and quadrupole, KS,A
ijk , coefficients as a function of time. The values are reported in the swimmer frame where the

origin is the swimmer’s center of mass and ê1 is the average swimming direction. Components that are zero at all times are excluded. Dipole entries are in units of
F0d, while the quadrupole entries have units of F0d2. (Online version in colour.)
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the dipolar flow, are non-negligible for significant distances

from the swimmer. We estimate that the instantaneous quadru-

polar flow dominates the dipolar flow up to separations of

approximately 3d.

From this, a picture emerges that not only are the time-

dependent aspects of the dipolar flow much stronger than the

average flow, but also that higher-order contributions are non-

negligible when time dependence is included. Both of these fea-

tures can impact the swimmer–swimmer hydrodynamic

interactions, especially in semi-dilute to dense suspensions. As

we will see in the following sections, these features, linked to

the dynamics at the level of individual cells, do indeed propa-

gate to larger scales and can significantly affect the observed

coherent structures and the processes by which they form.
4. Suspensions with a monodisperse distribution
of undulation frequencies form clusters

Using the methods described in the previous section, we

simulate the dynamics of a suspension of N ¼ 1000 swimmers

with Nflag ¼ 29 for 200 undulation periods. In this simula-

tion, all swimmers are driven by a prescribed preferred

curvature, equation (2.1), with the same undulation frequency,

v ¼ KB(Sp/l )4/(4ph), and wavenumber k ¼ 2p/l. Each swim-

mer has a different phase, w, drawn randomly from a uniform

distribution. The swimmers are initially distributed uniformly

in the domain and are aligned to swim in the 2x-direction.

Swimmer–swimmer hydrodynamic interactions are incorpor-

ated by solving the full mobility problem that couples the

motion of all swimmer segments and heads, while steric inter-

actions are included through short-ranged, pairwise, repulsive

forces between all flagellum segments and cell heads. The

effective area fraction is n ¼ Nd2/(4L2) ¼ 1.42. Based on the

film thickness, the effective volume fraction, as used in [22],

is approximately 2.56. For suspensions of pusher dipoles at

this effective volume fraction, one would expect rapid decay

of the initial polar order followed by the onset of large-scale,

fluctuating motion [19,22].

Figure 3a shows the suspension after 30 and 198 undulation

periods. The corresponding video showing the complete

evolution is provided as electronic supplementary material.

While the suspension quickly evolves from the initial polar

state, the dynamics are very different from the long-
wavelength bending instabilities predicted by both simulations

of rigid, steady pushers [18,22] and kinetic or continuum

models [17,19–21,24]. Instead, we find that the swimmers have

a strong tendency to aggregate and form clusters within which

flagella are aligned. A quantitative analysis of this cluster

growth is included in the electronic supplementary material.

Once small clusters have formed, they remain intact and can

attract other clusters in their vicinity. As two attracting clusters

approach each other, they either rotate to swim in the same direc-

tion and merge to form a bigger, synchronized cluster, or instead

swim in opposing directions and move apart at an enhanced

relative velocity. Earlier simulations of sperm [28,29] showed

similar aggregation dynamics in two-dimensional suspensions,

but here we see that aggregation also dominates in larger,

denser suspensions where long-range hydrodynamics could be

expected to produce large-scale swirls and jets.

The aggregation process is driven by the hydrodynamic

attraction and phase-locking behaviour that has been found pre-

viously with models of undulatory swimmers [26–29,34,58].

We measure this for our system by examining in detail the

pairwise interactions between two swimmers moving in the

2x-direction with phase differences Dw ¼ 0,p/2 and p.

The vector fields in figure 4 show the displacement over four

undulation periods of one swimmer centred at (x, y) relative to

another placed at the origin. When the swimmers are far

apart, all three vector fields resemble the displacement field

associated with pusher dipoles. At smaller separations, how-

ever, the fields differ and the influence of the phase difference

can be readily seen. We see that there is clear attraction, if the

swimmers are in phase. When the phase difference is p/2, the

swimmers attract and simultaneously move relative to each

other as to align the crests of the flagellar waves. If they are

out of phase, the swimmers again move relative to one another

attempting to align wave crests; however, the relative shift is

much larger. The large displacements observed near the swim-

mer’s ends are due to the steric forces between the head of one

swimmer and the flagellum of the other.
5. Suspensions with stochastically varying
frequencies reach a turbulence-like state

In the previous section, we saw that flagellum undulations

can produce flows that lead to hydrodynamically induced
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Figure 3. Evolution of suspensions of 1000 swimmers. (a) Snapshots of a system with fixed undulation frequency taken after 30 (i) and 198 (ii) periods.
(b) Snapshots after 340 undulation periods from two stochastically varying frequency RFT simulations starting from isotropic (i) and polar (ii) initial configurations.
(c) Snapshots of a simulation with randomly varying frequencies starting from a polar configuration at 60 (i) and 198 (ii) undulations.
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aggregation and cluster formation. While this provides a

mechanism for the formation of coherent groups, such as

wood mouse sperm trains [11], the patterns differ markedly

from the large-scale swirling found in experiments on ram

sperm suspensions [14,15]. In real samples, sperm cells

have distributions of waveforms, undulation frequencies or

geometries. Accordingly, the parameters appearing in our

model should not necessarily be the same for all individuals

and should be chosen to accurately describe variations from

individual to individual across the population.

We explore how variations in individual dynamics across

the population impact large-scale suspension dynamics by

introducing stochastic modulations of the undulation fre-

quency into the model, allowing flagellar waves to differ

from individual to individual and to vary over time [46,59].

As we solve for the flagellum dynamics, changing the fre-

quency also leads to changes in the waveform. The
individual frequencies are drawn from a lognormal distri-

bution after time intervals of length T ¼ 2p/v as described

in the electronic supplementary material. We set the mean

frequency to v and, in view of matching experimental data

[45,59], set the standard deviation sv to be v/5.

We repeat our simulations of 1000 swimmers, but now

allowing for stochastic variations in the frequencies. Snapshots

of the suspension evolution are shown in figure 3c and corre-

sponding videos can be found as part of the electronic

supplementary material. The stochastic variations in the wave-

forms suppress the ability of neighbouring flagella to

synchronize. Rather than forming clusters, the swimmers now

form waves, swirls and vortices, as seen in concentrated,

quasi-two-dimensional ram sperm suspensions [14]. By running

an equivalent simulation starting from an isotropic initial con-

figuration, it was verified that the qualitative features of the

fully nonlinear state are independent of the initial conditions.
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We also note that a sufficiently largesv is needed to successfully

suppress aggregation and observe large-scale motion of the sus-

pension. Simulations of smaller ensembles (see the electronic

supplementary material) show that lower values of sv still exhi-

bit cluster formation (e.g. sv ¼ v/20 or sv ¼ v/50). In these

cases, stochastic frequency changes are rarely large enough to

break the synchronization of adjacent flagella.

While hydrodynamic interactions no longer lead to aggre-

gation, they still play a strong role in the evolution of the

suspension. We perform simulations where we have removed

the hydrodynamic interactions by solving the mobility pro-

blem using resistive force theory (RFT) instead of FCM. As

described in the electronic supplementary material, the drag

coefficients appearing in the RFT are chosen as to closely

match the swimming speeds and flagellar waves obtained

with the full FCM model. Figure 3b shows snapshots from

two different RFT simulations with n ¼ 1.42 and N ¼ 1000

where the initial swimmer directions are either all aligned or

distributed isotropically. The corresponding videos are pro-

vided as part of the electronic supplementary material. The

time-evolution of these suspensions is very different from

those with hydrodynamic interactions. Most strikingly, for

the initially polar suspension, long bending-waves are entirely

absent and at long times we observe ‘laning’ states similar to

those found in simulations of self-propelled rods without

hydrodynamic interactions [9,29,60]. When the initial state is

isotropic, laning is not observed (figure 3b), indicating further

differences between the RFT and full simulations. Addition-

ally, in thin films, the hydrodynamic interactions between the

swimmers are longer ranged than they would be in bulk. As

a result, we find that as we increase the film thickness,

though the instability of the polar state takes longer to develop,

we still observe (see the electronic supplementary material) the

eventual onset of large-scale motion qualitatively similar to

that found in the thinner film cases.
6. Order parameters exhibit density dependence
The polar and nematic order of the suspension is depen-

dent on the effective area fraction, n. We perform a series of

smaller stochastic simulations (sv ¼ v/5) ranging from

170 to 500 swimmers run to t ¼ 400 T and compare the

order parameters

S1(t) ¼ k�x̂ � n̂n(t)ln ð6:1Þ
and

S2(t) ¼ k2(x̂ � n̂n(t))2 � 1ln, ð6:2Þ

which measure the global alignment with the initial swimming

direction (S1) and the global nematic order with respect to the

initial direction (S2) [22]. Here, n̂n is the nth swimmer’s mean

orientation and k . ln denotes the average over all swimmers.

Videos of the simulations are provided as the electronic

supplementary material.

We find that the directional order, given by S1, decreases

with time and the decay rate increases with swimmer density

(figure 5a). The time scale of the decay is comparable to that

found for rod models [22,23]. The nematic order, given by S2,

initially decreases with time. However, for higher densities,

we see large fluctuations emerge after the initial decay

(figure 5b). The appearance of these fluctuations during the

relatively gentle decay of S1 reflects periodic folding and

rotation of large patches of aligned swimmers. Figure 5 also

shows S1 and S2 for initially polar RFT simulations with the

same effective area fractions. With hydrodynamic interactions

removed, we find that higher density suspensions retain their

alignment for longer times due to enhanced local caging.
7. Flagellar undulations contribute significantly
to the energy and velocity spectra

To further quantify the large-scale motion, we compute the

fluid energy spectrum,

S(k) ; kkkjû(k, t)j2lkkk¼klt, ð7:1Þ

where û(k, t) is the spatial Fourier transform of the fluid vel-

ocity and k . lt denotes time-averaging while k . lkkk¼k signifies

averaging over all wave vectors of magnitude k. Figure 6a
shows S(k)/N from simulations with both fixed and stochasti-

cally varying frequencies and for different values of n. With the

exception of the pronounced peak near the undulation wave-

length, the spectra are similar to those found in experiments

on concentrated sperm suspensions [14]. In particular, we

also find that the spectra decay like k23 for large k (figure 6a).

Given that this power-law decay appears over sub-swimmer

length scales, we associate it with random forcing of the fluid

by the flagella. A calculation presented in the electronic sup-

plementary material demonstrates that an identical decay is

obtained when the fluid is driven by spatially uncorrelated
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forcing. This is different from the k24 decay observed at small

scales in suspensions of self-propelled rods [23]. This decay

was attributed to the sharp jump in the forcing along the

length of each swimmer. Thus, the details regarding how

the swimmers propel themselves can lead to changes in the

spectrum at length scales comparable to the swimmer size.

Further, we find that the fluid energy spectrum is

dominated by contributions at the time scale of flagellar

undulations, even at long length scales. Despite qualitative

differences in their dynamics and the quantitative differences

in the evolution of the order parameters, S(k)/N is nearly iden-

tical for all stochastic simulations, regardless of n. The collapse

illustrates that S(k) scales with the number of swimmers. This is

in contrast with large increases with n seen at low k in simu-

lations of self-propelled rod suspensions [23]. Surprisingly,

the S(k)/N curves for the fixed and stochastically varying fre-

quency simulations also do not differ drastically, despite the

striking differences in their suspension evolution. We expect

that this is due to the energy injected at the short time scales

associated with flagellar undulations being large compared

with that due to the large-scale motion of the suspension. To

limit the contribution of short time scales to S(k), we apply a

low-pass filter to û(k, t) by computing a running time-average

of u(x, t) with a window of 8T before performing the transform.

The spectra, �S(k)=N, computed using the filtered velocity fields

are shown in figure 6b. With the short time scales suppressed,

the dependence on n becomes visible. We now observe larger

values of �S(k)=N at low k when the sperm density is high,
revealing quantitatively the large-scale fluid motion at the

time scale of suspension evolution. Additionally, the spectrum

for the fixed-frequency simulations is now almost flat at small k
indicative of the lack of long-range correlations.

Following from previous work on bacterial suspensions

[9,60], we also examine the spectrum of the centre of mass velocity

field, Ucm(x,t) ¼
PN

m¼1 U(m)
cm (t)d(x� X(m)

cm (t)), where X (m)
cm and

U (m)
cm are the centre of mass position and velocity, respectively,

as defined in the electronic supplementary material. Figure 6c
shows the swimmer velocity spectrum, kjÛcm(k)j2lt, for different

values ofn. For eachn, the lowest spatial modes (lowest k) provide

the largest contribution to the total spectrum, with the contri-

bution increasing as n increases. From these maximum values,

the spectra then quickly decrease with k to a flat profile at scales

below the flagellum length, corresponding to the level of noise

generated in constructing the swimmer velocity field.

Due to flagellar undulations, the swimmers’ centre of mass

velocities oscillate about their mean values at the time scale of

the undulation frequency. We can again remove contributions

of the short time scale by filtering the swimmers’ centre of mass

velocities using a running time-average with window size 8T.

Figure 6d shows the spectra kj �̂Ucm(k)j2lt associated with the fil-

tered swimmer velocity field. Filtering reduces values of the

swimmer velocity spectrum for all k, indicating contributions

at short time scales at all length scales. For lower values of n,

the spectrum is reduced by an approximately constant factor

across all k, while for higher values of n, the reduction is

more pronounced at shorter scales.
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8. Discussion and conclusions
In this study, we have used numerical simulation to show that

variability in sperm flagellum dynamics across a suspension

can lead to large changes in collective dynamics. We have incor-

porated these variations through stochastic changes in the

actuation frequency that, in turn, lead to changes in waveform

and amplitude. In actual sperm suspensions, variations are also

likely to be present in flagellum length and cell geometry, and

further, the flagellar waveform is likely to be more complex

and fully three-dimensional [47,61]. We expect these features

to have a similar, aggregation-limiting effect as the stochastic

variation in frequency. As such, measurements quantifying

the distributions of individual sperm properties could not

only provide a better classification of the individual cells, but

also a better understanding of their collective dynamics.

Our fixed frequency simulations show that flagellar syn-

chronization leads to aggregation and clustering. Certain

properties associated with sperm that are found to self-

organize into coherent groups, such as wood mouse sperm,

might promote synchronization. It is known that these

sperm typically have flagella that are longer than those

of sperm from other species. By allowing for larger amplitudes,

longer flagella may enhance the higher-order, time-dependent

flows that we find are responsible for aggregation. Longer,

thinner flagella would also bend and flex with greater ease in

response to flows generated by neighbouring sperm, further

reinforcing the tendency to synchronize and aggregate.

Additionally, microtubule sliding driving the undulations

may depend on the external load experienced by the flagellum.

This could allow for a non-trivial coupling between the actua-

tion mechanism and the surrounding flow field, which, in turn,

may also promote synchronization of neighbouring flagella

and cluster formation.

The turbulence-like state achieved when there is sufficient

variation in the undulation frequency is both quantitatively

and qualitatively similar to that observed in suspensions of

ram and bull semen. While longer time simulations would be

needed to explore this state in more detail, simulations starting

from either polar or isotropic states eventually exhibit similar

qualitative dynamics and have the same fluid energy spectrum

at the final simulation times. Both this and the many previous

results obtained using reduced models suggest that the

observed jets and swirls are features of a final turbulence-like

state. The presence of this state has been empirically correlated

with sample fertility [62]. We have shown that its onset

depends on sperm density, and its observation could therefore

be serving as an indicator of sperm count, a well-known

measure of sample fertility.

While in the simulations presented here the fluid domain is

fully three-dimensional, the motion of the sperm cells is

restricted to a plane. Even though layering in sperm suspensions

has been observed in experiments [14] and sperm are attracted

to move along planar surfaces [63], the imposed two-

dimensional motion in our simulations may enhance the role
of steric interactions. For example, in a real sample when two

sperm cells collide, it is likely that one will pass over the other

and they will both experience some change in their swimming

directions. In our simulations, the sperm cannot pass by each

other as easily and the collisions can dramatically affect their

swimming directions, leading to near alignment or anti-align-

ment. The interactions of self-driven filaments [58] and the

trajectories of interacting sperm pairs [34] have recently been

explored in simulation. These studies have shown that pertur-

bations from planarity can lead to more complex trajectories,

as well as a dependence on the elasticity of the flagella.

With further advances in numerical methods for simulating

flexible filaments and more accurate models for three-

dimensional flagellar waveforms, it will be possible to explore

these effects through direct simulation of sperm suspensions.

Our theoretical model for the elastic flagellum and the FCM

approach to the mobility problem carry over to fully three-

dimensional simulations. While there will be additional compu-

tational costs associated with the increased size of the fluid

domain, more limiting is the technical challenge involved in

keeping track of the fully three-dimensional deformation of

the flagellum and, at the same time, using implicit time inte-

gration to handle numerical stiffness. We are currently

developing the numerical methods to address this challenge.

Additionally, it would be of interest to ascertain suspension

dynamics at even larger length scales and for longer time scales

than those that may be accessible through direct simulation.

Continuum models incorporating the time dependence of the

flows generated by the swimmers have recently been devel-

oped [64–66] and could possibly be adapted to capture the

effects of flagellar undulations seen in our simulations and

used to explore nonlinear suspension dynamics at these scales.

Along with variations among the cells, collective

dynamics are likely to be influenced by more complex

features of the environment, such as nearby boundaries

that could curve sperm trajectories [59], or particles or other

microscale structures in the surrounding fluid that are

known to enhance swimming speeds of undulatory

swimmers [35]. Non-Newtonian features of the surrounding

fluid, such as viscoelasticity, typically associated with bio-

logical fluids have also been found to promote clustering

[67]. These, and other important, perhaps more complex

effects, such as chemotaxis, could further contribute to the

richness and diversity of sperm collective dynamics.
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Degond P, Druart X. 2015 Mass sperm motility is
associated with fertility in sheep. Anim. Reprod. Sci.
161, 75 – 81. (doi:10.1016/j.anireprosci.2015.08.006)

63. Rothschild L. 1963 Non-random distribution of bull
spermatozoa in a drop of sperm suspension. Nature
198, 1221 – 1222. (doi:10.1038/1981221a0)

64. Fürthauer S, Ramaswamy S. 2013 Phase-
synchronized state of oriented active fluids. Phys.
Rev. Lett. 111, 238102. (doi:10.1103/PhysRevLett.
111.238102)

65. Leoni M, Liverpool TB. 2014 Synchronization and
liquid crystalline order in soft active fluids. Phys.
Rev. Lett. 112, 148104. (doi:10.1103/PhysRevLett.
112.148104)

66. Brotto T, Bartolo D, Saintillan D. 2015 Spontaneous
flows in suspensions of active cyclic swimmers.
J. Nonlinear Sci. 25, 1125 – 1139. (doi:10.1007/
s00332-015-9261-x)

67. Tung C-k, Lin C, Harvey B, Fiore AG, Ardon F, Wu M,
Suarez SS. 2017 Fluid viscoelasticity promotes
collective swimming of sperm. Sci. Rep. 7, 3152.
(doi:10.1038/s41598-017-03341-4)

http://dx.doi.org/10.1103/PhysRevLett.105.168102
http://dx.doi.org/10.1103/PhysRevLett.105.168102
http://dx.doi.org/10.1073/pnas.1107046108
http://dx.doi.org/10.1073/pnas.1107046108
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1103/PhysRevLett.118.124501
http://dx.doi.org/10.1103/PhysRevE.92.063019
http://dx.doi.org/10.1103/PhysRevE.92.063019
http://dx.doi.org/10.1063/1.2742423
http://dx.doi.org/10.1103/PhysRevE.87.032720
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1088/0953-8984/24/46/464130
http://dx.doi.org/10.1073/pnas.1515159112
http://dx.doi.org/10.1016/j.anireprosci.2015.08.006
http://dx.doi.org/10.1038/1981221a0
http://dx.doi.org/10.1103/PhysRevLett.111.238102
http://dx.doi.org/10.1103/PhysRevLett.111.238102
http://dx.doi.org/10.1103/PhysRevLett.112.148104
http://dx.doi.org/10.1103/PhysRevLett.112.148104
http://dx.doi.org/10.1007/s00332-015-9261-x
http://dx.doi.org/10.1007/s00332-015-9261-x
http://dx.doi.org/10.1038/s41598-017-03341-4

	From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions
	Introduction
	Mathematical model
	Time-dependent and higher-order features of the swimmer flow field
	Suspensions with a monodisperse distribution of undulation frequencies form clusters
	Suspensions with stochastically varying frequencies reach a turbulence-like state
	Order parameters exhibit density dependence
	Flagellar undulations contribute significantly to the energy and velocity spectra
	Discussion and conclusions
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


