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Partitioning space into cells with certain extreme geometrical properties is a central problem

in many fields of science and technology. Here we investigate the Quantizer problem, defined

as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized ‘sphere-like’

polyhedra that tile space are preferred. We employ Lloyd’s centroidal Voronoi diagram

algorithm to solve this problem and find that it converges to disordered states associated

with deep local minima. These states are universal in the sense that their structure factors are

characterised by a complete independence of a wide class of initial conditions they evolved

from. They moreover exhibit an anomalous suppression of long-wavelength density fluc-

tuations and quickly become effectively hyperuniform. Our findings warrant the search for

novel amorphous hyperuniform phases and cellular materials with unique physical properties.
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Hyperuniformity1 is a geometric concept to probabil-
istically characterise the structure of ordered and dis-
ordered materials. It is defined as the anomalous

suppression of density fluctuations on large length scales. For
point patterns this is reflected in the vanishing structure factor
S(k) for small wavenumbers k, see reference1. A point pattern is
hyperuniform if S(k), which is directly observable in X-ray,
light, or neutron scattering experiments, decays to zero as k=
2π/λ tends to zero (i.e., in the infinite-wavelength limit λ →∞).
In the context of amorphous structures, hyperuniformity
implies a hidden form of order, in which the system remains
macroscopically uniform, despite not being crystalline. The
concept of hyperuniformity sheds light on a variety of see-
mingly unrelated fields, including density fluctuations in the
early universe2, biological tissue3, statistical physics4–6, colloi-
dal7,8 or granular9 packings, microfluids10,11, driven none-
quilibrium systems12,13, photonic band gap materials14–16,
enhanced pinning in superconductors17 and terahertz quantum
lasing18.

As hyperuniformity is defined as an asymptotic limit
½limk!0SðkÞ ¼ 0�, it is hard to establish via computer simula-
tions strict hyperuniformity for a given system. The develop-
ment of a strict statistical test for hyperuniformity in simulated
systems is a hard mathematical problem of great importance,
and no such test is currently available. In the absence of a
statistical test of hyperuniformity, a standard method for
asserting ‘effective hyperuniformity’ (that is, hyperuniformity
for all practical intents and purposes) is by numerical evalua-
tion of a hyperuniformity index H, defined below. Recent dis-
coveries demonstrate that ‘effectively hyperuniform’ systems
(as quantified by the hyperuniformity index H) are of interest in
their own right both for applications and in theory even if they
are not perfectly hyperuniform [S(0)= 0] or if their perfect
hyperuniformity cannot be strictly established. Such systems
are essentially hyperuniform for all practical intents and phy-
sically relevant purposes. Examples include glass-forming
polymer melts19, self-assemblies of polymer-grafted nano-
particles20, hyperuniformity in image analysis for experimental
data21, novel states of amorphous silicon22,23, certain phase
transitions in amorphous ices24 and packings approaching the
ideal maximally random jammed state25, see Supplementary
Table 1 for H values.

Point patterns induce partitions of space into cells if to each
point a neighbourhood is assigned such that these neigh-
bourhoods, i.e., cells, do not overlap but tile the space. The
density fluctuations in the point process obviously affect the
size fluctuations of the cells. Cellular partitions appear ubi-
quitously in science, from physics to biology, and in tech-
nology, from telecommunications to urban planning26.
Identification of cellular partitions of space that extremize
certain geometrical properties is a basic problem of funda-
mental importance. Excellent examples include the Kelvin
minimal-cell-interface-area problem27 and Kepler sphere-
packing problem28,29.

Roughly speaking, in the ‘Quantizer problem’30, a parti-
tioning of space is sought with similarly-sized ‘sphere-like
Voronoi polyhedra’ whose centroids are as close as possible to
the Voronoi-cell generating points. More precisely, for a given
set of n points z1,…zn the ‘Voronoi Quantizer’ is the partition
of space into cells, where each Voronoi cell Ci consists of all
points in space that are closer to zi than to any other point
zj≠i. It assigns to a ‘test point’ at x, which is chosen randomly in
the system, the nearest point zi in the set of points; put dif-
ferently, if the input x is in Ci, the output is zi. The ‘Quantizer
energy’ E(Ci,zi) of a cell Ci and its generating point zi is then
defined as the mean squared error of the quantization for test

points that fall inside that cell:

EðCi; ziÞ :¼
Z
Ci

jjx � zijj2 dx; ð1Þ

that is, the cell energy is the second moment of the mass dis-
tribution (moment of inertia). In the context of soft materials,
this energy functional is reminiscent of the entropic chain
stretching free energy of copolymeric self-assemblies in the
strong segregation limit31. The Quantizer problem is the
minimisation of the ‘total energy’, defined as the sumP

i EðCi; ziÞ of all single-cell contributions30.
The energy functional favours tessellations with similarly-sized

cells and spherical cell shapes that are centred on the generating
points. However, the space-filling nature of the Voronoi partition
prevents the cells from adopting the optimal spherical shape. The
configuration of points located on the vertices of the body-
centred cubic lattice (BCC) is the best known global optimum of
this functional32,33.

The total energy defines an energy landscape within the space
of generating point coordinates. Local minima are necessarily
‘centroidal Voronoi tessellations’ (CVTs) where the centroids
(centres of mass) of each cell coincide with the corresponding
generating points34. CVTs are widely used, with applications
including telecommunication, biology, image processing, com-
puter science, and electrical engineering34–37. In an earlier study,
Gabrielli et al.38 showed that while assigning a fixed number of
points to idealised periodic and quasiperiodic tiles of the same
volume always results into a hyperuniform point pattern,
positioning the points in the centroids of the cells results in a
particularly strong suppression of large-scale density fluctuations.
Whether an amorphous CVT with cell volume fluctuations suf-
ficiently suppresses the density fluctuations to even become
approximately hyperuniform is highly non-trivial and addressed
in the present work.

Here we demonstrate the emergence of universal effectively
hyperuniform amorphous states associated with deep local energy
minima in the ‘Quantizer problem’. In particular, these states are
characterised by an anomalous suppression of long-wavelength
density fluctuations, and are universal with respect to a variety of
statistics such as two-point statistics and an associated order
metric τ, cell energy distributions and Minkowski structure
metrics. Note that a comprehensive study of the inherent struc-
tures, which are the local energy minima in the energy landscape,
in terms of the low-k limit of S(k) is lacking in the literature, even
for commonly used potentials such as the Lennard-Jones poten-
tial. Moreover, for generic potentials, the expectation is that the
properties of the metastable local energy minima depend on the
nature of the structure of the initial conditions. There is no a
priori reason why one would expect these inherent structures to
exhibit a suppression of density fluctuations on large length scales
consistent with perfect hyperuniformity.

Results
Generation of centroidal Voronoi tessellations. An efficient way
to dynamically generate a CVT is via Lloyd iterations39 which
evolve a given initial set of points by iteratively replacing each
point with the centre of mass of its Voronoi cell40, see Fig. 1. This
corresponds to a gradient descent algorithm34, a standard energy
minimisation procedure that in general converges to a random
minimum in the potential energy surface when starting from
different initial conditions.

Here we analyse the evolution of random point patterns
under Lloyd iterations, see Fig. 2 and the Supplementary Movie 1,
which we carry out for a very broad spectrum of disordered
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geometries41 as initial configurations (see Methods section and
Supplementary Fig. 1). They include repulsive or clustering point
patterns, isotropic or anisotropic processes, and systems with
vanishing or arbitrarily large density fluctuations, from stealthy
hyperuniformity (where S(k)= 0 below a finite threshold k < k0)6

to the opposite, hyperfluctuating (or anti-hyperuniform) point

configurations (where S(k) →∞ for k → 0)42 that are derived from
a hyperplanes intersection process41,43.

Universal effectively hyperuniform amorphous states. Here, we
find a striking, unexpected universality for the complex interac-
tions of the Quantizer energy in a detailed structure analysis of its
local minima. Figure 3 shows the key result of this paper, the
existence of universal effectively hyperuniform and fully amor-
phous states that are the stable converged solutions of Lloyd’s
algorithm in 3D. Even though the initial structure factors differ
vastly for the initial structures (Fig. 3a), the final configurations
are characterised by a universal form of the structure factor S(k),
within statistical errors (Fig. 3b), and universal two-point statis-
tics (Supplementary Fig. 2). The universality is further confirmed
by the τ order metric6, an integral over S(k) that measures cor-
relations on all length scales (see Methods section). While for the
initial configurations τ varies from zero to infinity, it adopts the
same value 31 ± 1 for all final configurations (see Supplementary
Table 2). As long as there are no crystalline patches in the initial
configuration (see Methods section and Supplementary Note 4),
all systems studied here converge to the same state within sta-
tistical errors.

Even when the initial configuration is hyperfluctuating, where
the structure factor diverges for small wavenumbers, the system
quickly becomes under Lloyd iterations effectively hyperuniform
(almost stealthy) for all system sizes studied here. The structure
factor drops within the first few hundred iterations by up to four
orders of magnitude. In the final configurations, after 104

iterations, the structure factor effectively vanishes for small
wavenumbers (S(k) < 3 × 10−3 for k<3 at unit number density),
and the index H of effective hyperuniformity, see Eq. (10) in the
Methods Section, is among the lowest of all known effectively
hyperuniform systems, see Supplementary Table 1. Whether a
precise CVT is strictly hyperuniform remains an open question
for further research (for details see the Methods section and
Supplementary Note 8). Here we demonstrate the strong

Center of
mass
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Fig. 1 Schematic representation of a Lloyd iteration. Lloyd iterations convert
an initial point set to a point set with a centroidal Voronoi diagram. In each
iteration, the algorithm first computes the Voronoi cells for all points. Then
each point (black circle) is replaced by the centre of mass (yellow cross) of
its Voronoi cell
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Fig. 2 Convergence of Lloyd’s algorithm in 3D. Shown is a subset of a 3D system at step number N= 1 (initial tessellation), N= 5, and N= 12202 (final
tessellation); see also the Supplementary Movie 1. The initial configuration is a 3D hyperfluctuating point set. The distributions f(v) of cell volumes v
demonstrate the high degree of uniformity in cell volumes in the final states. The dimensionless total energy converges to a value 〈et〉≈ 1.008 × eBCC
slightly above the value eBCC= 0.07854 of the optimal BCC lattice
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suppression of density fluctuations on large but finite length
scales that is consistent with effective hyperuniformity.

It remains to ascertain that the converged configurations are
indeed amorphous across all length scales without any trace of
local crystalline structure. We provide three pieces of evidence for
the absence of crystallites: (a) the structure factor exhibits no
(Bragg) peaks, see Fig. 3b; (b) the absence of local crystalline
configurations is confirmed by the distributional properties of a
comprehensive set of Minkowski structure metrics44,45, see
Supplementary Fig. 3 and Supplementary Note 5; and (c) the
distribution of cell energies exhibit no over-expression of values
corresponding to crystalline motifs, see Fig. 3d.

Despite the optimal structures being crystalline, Lloyd’s
algorithm does not converge to these ordered configurations,
nor does it converge to partially ordered configurations. Rather,
the evolution reaches the universal effectively hyperuniform states
described above as its stable converged solution, regardless of the
nature of the disordered initial configuration.

An indication why the amorphous universal states, rather than
the lower-energy BCC lattice, are the final stable states of Lloyd’s
algorithm, is afforded by two considerations: first high energy
barriers between basins of nearly degenerate crystalline states and
deep local minima (with total energies 〈et〉 ≈ 1.008 × eBCC close to
that of the ground state eBCC, see Methods section) and second
the ‘geometric frustration’ of local configurations with energies
lower than that of the global ground state, see Methods section.

Both the universality and these two aspects support our
conjecture that the final effectively hyperuniform amorphous
states represent an infinite set of nearly-degenerate stable local
optima for the Quantizer problem, characterised by the same
universal energy distributions and two-point statistics. In contrast

to a rapid freezing of initial fluctuations, the iterative local
optimisation of Lloyd’s algorithm results in large-scale global
rearrangements, that suppress density fluctuations on large
length-scales. Instead of getting trapped in a multitude of
metastable states with a broad distribution of energies, the same
intrinsically disordered states appear to emerge as a solution of
the optimised Quantizer energy for all of the widely different,
amorphous initial conditions.

Planar tessellations. The nature of the 3D problem is highlighted
by juxtaposition to the 2D system. What first meets the eye in 2D
is the formation of small ordered domains of nearly regular
hexagonal Voronoi cells (Fig. 4c). This dimensionality effect is
reflected also in the distribution of cell energy densities (Fig. 4b):
The most prevalent cell type in 2D is the optimal hexagonal cell,
in contrast to 3D where the optimal BCC cell is not preferred
relative to amorphous cell shapes. It is explained first by the fewer
degrees of freedom of point configurations in 2D (compared to
3D) and secondly by the behaviour of cells with energy densities
lower than the crystalline optimal cell. The fraction of these cells
(≈ 0.2%) is not only an order of magnitude smaller than in 3D,
but they are also exclusively larger than the average cell (again in
contrast to 3D); see Supplementary Fig. 5b.

A subtler, but more surprising observation is the degree to
which the 2D configurations remain amorphous compared to
typical polycrystals, such as those generated by the Lubachevsky-
Stillinger (LS) algorithm. The CVTs exhibit a far faster decay of
peak intensities in S(k), so that the τ order metric converges (see
Methods section and Supplementary Fig. 7). In contrast to the LS
system, the CVT does not enforce a strict minimal distance
requirement between adjacent generating points. This leads to
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lower degrees of order in the crystalline regions (in contrast to the
exact regular hexagons of the LS polycrystal) and prevents the
formation of point defects. Therefore the final configurations are
effectively hyperuniform, again in contrast to the LS system (see
Supplementary Figs. 4, 7 and Supplementary Note 8, and the
Methods section). Further, the final states are effectively universal
for a remarkable range of initial patterns, see Methods section.
Actually, in terms of effective hyperuniformity, global amor-
phousness and universality, the 2D system is remarkably similar
to the 3D system, with the distinction of the expected greater
predisposition to forming hexagonal order at the local scale.

Discussion
The close relationship between (effective) hyperuniformity and
the Quantizer problem and the dependence on dimension should
be seen in the broader context of related problems. The Kelvin
problem27,46 of the least-area partition of space into cells of equal
volume shows a similar behaviour for sheared monodisperse soap
froths: 2D foam is far more prone to forming hexagonal optimal
structures; in 3D, no ordering trend is observed, neither in
coarsening47 nor in sheared foams48. Of a similar nature is the
packing of spheres. While the 3D system shows Bernal’s cele-
brated random close packing limit49, 2D monodisperse systems
do not exhibit a maximal random packing fraction.

We have described how, surprisingly, the analogous concepts
for the Quantizer problem lead to the emergence of disordered
effectively hyperuniform and universal states. Do different
minimisation techniques converge to the same local minima? Are
these universal effectively hyperuniform amorphous states unique
to the Quantizer problem and its immediate relatives or do they
appear in more general repulsive many-particle systems?

Further extensive studies of the corresponding energy land-
scapes and structural characteristics are necessary to identify the
essential properties of the energy landscape that cause this uni-
versal phenomenon. Besides properties of the particle interaction,
a crucial requirement for the universal behaviour is the complete
amorphousness of the system. Local crystallites lead to strong
energy barriers, causing distinctive structural differences in the
final configurations.

Under which conditions can a successive purely local optimi-
sation converge to amorphous inherent structures that are
hyperuniform? Are such configurations in general only effectively
hyperuniform? In the broader concept of materials science, our
work on the Quantizer energy warrants the search for disordered
(effectively) hyperuniform phases in all systems where BCC
symmetry phases occur, from amphiphilic micellar phases in
copolymers50 and lipids51 and self-assembling diblock-copoly-
mers52,53 to arthropod nanostructures54, or in systems that
otherwise prefer similarly-sized ‘sphere-like’ cells. Furthermore,
while defined through structural organisation at large length
scales, hyperuniformity is frequently observed in systems with
short-range order, as noted in the context of photonic materi-
als14–16. Our work points to the possibility that centroidal Vor-
onoi diagrams, which tend to homogenise local point-point
distances, may be a link between short- and long-wavelength
properties of these remarkable phases of matter. It raises the
question whether there is an intrinsic connection between the
Quantizer problem and hyperuniformity. The existence of this
link could be further substantiated by exploring the similarities
between the local dynamics of Lloyd iterations and the dynamics
in other systems represented by Voronoi tessellations. Natural
candidates for this behaviour are solidified cellular structures in
arthropods55 and epithelia56, growing and dividing cell arrays57,
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soft colloidal particles under compression58, or related glass-
forming systems59,60. In particular, it would be interesting to
explore in future work whether there is a link between CVTs and
vertex models for biological tissues61–63, even though they involve
different energy functionals that minimise fluctuations in the
volumes and isoperimetric ratios of the cells and that generally
have different ground states. Near hyperuniformity has recently
been reported for vertex models63,64. While these models differ
distinctly from CVTs for small values of the isoperimetric ratio, it
might be more promising to compare them in the limit of large
isoperimetric ratios, in particular to investigate the universality of
a conjectured minimal surface area structure for cellular struc-
tures controlling a rigidity transition62. It is hence an exciting
possibility that the universal effectively hyperuniform amorphous
states, as identified in this work, may be found in the thermo-
dynamic phase behaviour across a broad spectrum of systems,
including soft materials, active matter and biological tissues.

Methods
Lloyd iterations and initial configurations. Lloyd’s procedure is an iterative
algorithm for the evolution of sets of points. In each iteration, the Voronoi cells for
the point set are constructed, and each generating point is replaced by the centre of
mass ci of its Voronoi cell, which is defined as ci :¼ 1

VðCiÞ
R
Ci
xdx; V(Ci) is the volume

of the Voronoi cell Ci. In 3D the Voronoi cells were constructed by voro++65; for the
details of the simulation procedure, see Supplementary Note 7.

The data in Figs. 3 and 4, as well as in Supplementary Figs. 2–9 and the
Supplementary Table 2 is obtained by at least 104 iterations of Lloyd’s algorithm in
3D and 6.5 × 104 iterations in 2D (the replacement of all generating points by their
corresponding Voronoi centres of mass) applied to point sets in simulation boxes
with periodic boundary conditions. The number n of points per sample varies by
almost three orders of magnitude, each sample contains between 5 × 102 and
1.28 × 105 points in 3D and between 5 × 102 and 1 × 104 points in 2D. The process
appears to be remarkably independent of the system size. For details on the
random number generator see Supplementary Note 1. The initial configurations
were generated by the following different stochastic processes (see Supplementary
Notes 2 and 3 for further details, parameter values, and references).

Stealthy hyperuniform point process (Stealthy PP): a disordered, statistically
isotropic, hyperuniform point configuration, for which the structure factor
vanishes not only at infinite wavelength (that is, at k= 0) but is zero for all
wavelengths above a finite threshold. It is an amorphous state with strong long-
range correlations. These point processes can be seen as highly degenerate ground
states of special many-particle systems6.

Lubachevsky-Stillinger algorithm for jammed static sphere packings
(Lubachevsky-Stillinger SphP): Centres of spheres of a static, jammed
(mechanically stable) sphere packing at a packing fraction ϕ= 0.641 of spheres,
below Bernal’s Random Closed Packing limit, obtained by the Lubachevsky-
Stillinger algorithm66. The hard-core property imposes strong constraints on the
sphere configuration. For ϕ < 0.648 it is amorphous without any crystallites44.

Maximally random jammed state (MRJ SphP): the most disordered among the
set of all isotropic, statistically homogeneous, and jammed (mechanically stable)
monodisperse hard-sphere packings42. It has been previously identified as a
prototypical example of disordered hyperuniformity.

Determinantal point process (Determinantal PP), a model for fermions in
quantum mechanics and transmitters in wireless networks: All n-point correlation
functions of the point process are determinants (based on a suitable kernel). It is a
repulsive process. Here we have chosen a non-hyperuniform Determinantal PP
model, a so-called power exponential spectral model67.

Binomial point process (Binomial PP), the ideal gas in the canonical ensemble:
A fixed number of points are uniformly and randomly distributed without any
correlations between points41.

Permanental point process (Permanental PP), the clustering ‘bosonic’
counterpart of the repulsive Determinantal PP: Permutations of a kernel matrix
determine the correlation functions. Here, we simulate a strongly anisotropic
process with ‘layers’ of clustering points. The local appearance is similar to a
Binomial PP.

Hyperplane Intersection Process (Hyperfluctuating PP): the set of all intersection
points (of three hyperplanes) of a set of randomly and independently placed and
oriented (infinite) hyperplanes, see reference41 (p. 313) and references therein. The
hyperplanes form a so-called Poisson hyperplane tessellation. The number of planes
intersecting the unit ball follows a Poisson distribution. The orientation distribution
of the hyperplanes is isotropic. Their distance to the origin forms a 1D Poisson
point process on the positive line. The point process formed by the intersections of
the random hyperplanes is strongly clustering. The pair correlation function
diverges for r → 0, see reference43. Moreover, the point process is the opposite of
hyperuniform. Its ‘hyperfluctuating’ or ‘anti-hyperuniform’ point pattern exhibits
structural features on all length scales42. The density fluctuations of the intersections

quickly grow for large scales; the number variance grows faster than the volume of
the observation window43; the structure factor diverges for k→ 0.

Random sequential addition (RSA SphP), a random packing of hard spheres:
spheres (or disks in 2D) arrive subsequently, independently and at completely
random coordinates41. If such a sphere intersects a sphere that was inserted earlier,
the new sphere is rejected. Thus, impenetrable spheres (or disks) are subsequently
and randomly placed into the system until no sphere can be inserted any more
(saturation limit).

Thomas point process (Thomas PP), a clustering of offsprings: Starting with
points (sometimes called ‘parent points’) that are generated by a Poisson point
process (that is, a completely random snapshot of an ideal gas in the grand-
canonical ensemble), each parent point is replaced by a cluster of ‘offsprings’,
whose number follows a Poisson distribution and whose coordinates are
independent of each other and follow a normal distribution.

Within the first hundred iterations, Lloyd iterations converge quickly for all
considered initial configurations. In particular, we find the convergence rate of the
energy, measured in the number of Lloyd iterations, to be approximately
independent of the number of particles in the system. It is particularly noteworthy
that at the beginning Lloyd iterations converge fast even for the hyperfluctuating
process. This emphasises its ability to level hierarchical structures, which appear
across length-scales. All error bars in this work represent the standard error of the
mean. The latter is estimated by the corrected sample standard deviation (using
Bessel’s correction).

Energy density and rescaled dimensionless Quantizer energy. The ‘absolute
single cell energy’ E(Ci, zi) of cell Ci according to Eq. (1) can be expressed as the
trace of a so-called second-rank Minkowski tensor44,68 from integral geometry. The
second-rank Minkowski tensor W2;0

0 of a body K describes the second moment of
the mass distribution in a homogeneous body, W2;0

0 ðKÞ ¼ R
Kx � xdx, where x is a

position vector with respect to the origin and x⊗ x is a second rank tensor with
components (x⊗ x)ij= xixj. If the generating point of the cell is considered as the
origin, the energy is the trace of the Minkowski tensor: EðCi; 0Þ ¼ tr W2;0

0 ðCiÞ
� �

(‘moment of inertia’).
The ‘dimensionless (rescaled) total energy’ of a system with n particles in a

simulation box Ω⊂Rd, with d= 2 for the planar and d= 3 for the spatial system, is
given by

et :¼
n2=d

djΩj1þ2=d

Xn
i¼1

EðCi; ziÞ: ð2Þ

It agrees with the definition of the ‘scaled dimensionless Quantizer energy (or
error)’30, as well as with the mean value of the dimensionless energy of the single
cells, see Supplementary Fig. 5:

~E :¼ ρ1þ2=d

d
hEðCi; ziÞi; ð3Þ

where ρ is the intensity, and 〈…〉 denotes the ensemble average. Note that the
dimensionless energy of a single cell depends on the size of the cell.

To compare the shape of the cells irrespective of their volumes, we define the
energy density e of a single cell as the absolute energy E of the cell rescaled by the
volume V of the cell:

e :¼ 1

dV1þ2=d
E: ð4Þ

In general, the average of e differs from the global scaled dimensionless
Quantizer energy (except for monodisperse tessellations).

The ground state (i.e., minimal energy state) of the ‘Quantizer energy’ in 3D is
believed to be the crystalline body-centred cubic (BCC) lattice and in 2D it is the
hexagonal lattice30,33. Interestingly, the currently known most hyperuniform
configurations are the BCC and triangular lattice in 3D and 2D1.

The dimensionless total energy in 2D is for the hexagonal lattice et ≈ 0.080187
and for the square lattice et= 1/12. In 3D, the energy of the BCC lattice is et ≈
0.078543, for the face-centred cubic (FCC) lattice et ≈ 0.078745, for the simple
cubic (SC) lattice et= 1/12, and for the hexagonal Bravais lattice it is et ≈ 0.081236.

Starting from the disordered initial conditions such as the Binomial or
Hyperfluctuating PP with energies ≈ 0.1159 and ≈ 0.3523, Lloyd’s algorithm
converged in 3D to a local minimum40,69 with total energies ≈ 0.07922 that vary
from 0.07920 to 0.07922 (that is by about 0.01%) between samples and different
initial conditions. In 2D, the average final energy of the converged configurations is
≈0.08080(6). The relative decrease of the energies for new iterations was less than
10−8 for the final configurations in 3D and less than 10−14 in 2D.

The essence of the cell energy analysis in the main text and in Figs. 3c,d and 4a,
b is reflected in the energy density e from Eq. (4). The inset of Fig. 3d shows that a
significant fraction of cells (3%) has lower energy densities than the globally
optimal BCC structure–despite comparable volume, as shown in Supplementary
Fig. 5, which discriminates between cell energies and cell volume.
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In 2D, the fraction (0.2%) of cells with energy densities lower than the
hexagonal optimal cell is an order of magnitude smaller than in 3D. Moreover,
these cells are exclusively larger than the average cell, in contrast to 3D, see
Supplementary Fig. 5. Note that Fig. 3d also illustrates the near-degeneracy of
several crystalline configurations, with BCC, HCP, FCC all very close to one
another relative to the width of the distribution.

Stable crystallites. It is has been rigorously proven that at a constant number of
points and simulation box size (i.e., constant average Voronoi cell volume), the
configuration where the points form a hexagonal lattice in 2D or a BCC lattice in
3D has the lowest overall energy value among all the lattices in 2D or 3D,
respectively30,33. It is even proven that the hexagonal lattice is the ground state with
respect to all possible disordered or quasicrystalline states. The same is conjectured
for the BCC lattice among all ordered and disordered spatial systems.

There has been substantial work addressing the sensitivity of Lloyd’s algorithm
to structural noise in the vicinity of the locally-optimal crystalline configurations,
for more details see Supplementary Note 4, where we have also applied Lloyd
iterations to slightly perturbed lattices in 2D and 3D.

If local crystallites of the stable lattices, like FCC or BCC crystals are inserted
into an amorphous system, these Voronoi cells do not remain unchanged due to
the random environment, but their deformation costs energy in the system.
Therefore, local crystallites set up energy barriers that bar the way to the
“universal” minimum. However, they do not cause a global crystallisation of the
system. An amorphous system with isolated crystallites (e.g., the Lubachevsky-
Stillinger system at a packing fraction ϕ= 0.659581) still converges to an effectively
hyperuniform, disordered CVT with similar but slightly more pronounced features,
compared to the universal CVT that is obtained for purely stochastic initial
conditions. The strong energy barriers indicate the thermodynamic stability of
these states. The BCC and FCC lattices correspond to deep minima in the energy
landscape, but they have only a very limited range of attraction in the energy
landscape of Voronoi tessellations.

Within the variety of initial configurations that we have analysed, we found
statistically significant deviations from the universal effectively hyperuniform and
amorphous states only if the initial conditions were partially crystalline. A
formalisation of the finding of “universality” for amorphous initial conditions
requires a rigorous quantification of the “sufficient degree of randomness”, for
which the system converges to the universal effectively hyperuniform and
amorphous states. It should exclude partially crystalline hard-sphere packings, but
include stealthy hyperuniform systems (perhaps even perturbed lattices if the
perturbations are strong enough).

Minkowski structure metrics. The Minkowski structure metrics68 can sensitively
characterise the shape of any convex body; for more details, see Supplementary Note 5.
Because a Voronoi cell C is convex, it is uniquely identified by the so-called surface
Minkowski tensors W0;s

1 , which describe the ‘density function’ ρms ðCÞ of the outer
normal vectors of C. The latter can be decomposed into spherical harmonics Ym

s :

ρms ðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2sþ 1

r P
k
AkY

m
s ðnkÞP

k
Ak

; ð5Þ

where Ak are the surface areas of the cell faces k= 1,2,… and nk the outer normal
vectors. This irreducible representation of the Minkowski tensors W0;s

1 provides
rotational invariants, the ‘Minkowski structure metrics’:

qsðCÞ :¼
Xs

m¼�s

jρms ðCÞj2; ð6Þ

wsðCÞ :¼
Xs

m1¼�s

Xs

m2¼�s

Xs

m3¼�s

s s s

m1 m2 m3

� �
ρm1
s ðCÞρm2

s ðCÞρm3
s ðCÞ; ð7Þ

where the parenthesised array is Wigner’s 3j symbol.
The Minkowski structure metrics qs and ws characterise a convex polyhedron

ignoring its scale, position and orientation. Because they are continuous functionals
of the convex cell, they robustly identify local crystalline motifs, e.g., small clusters
of BCC or FCC Voronoi cells44. If there were even small clusters of BCC or FCC
Voronoi cells in the 3D CVTs, they would be sensitively detected by peaks in the
probability density distributions of qs and ws, see Supplementary Fig. 3. For
software of Minkowski tensors in 2D and 3D and an interactive online tool for
‘Irreducible Minkowski Tensors’ in 2D, see the website https://www.morphometry.
org.

Effective universality. In 3D, the structure factor of the final configurations
collapsed for all fully stochastic initial conditions that we studied to the same
curves within statistical error bars. The same applies to the energy (density) dis-
tributions (see Fig. 3 and Supplementary Fig. 6) and the Minkowski structure
metrics (see Supplementary Fig. 3).

In 2D, the final configurations are also essentially independent of the initial
conditions. However, subtle changes in the sizes of local crystallites and borders
between them can appear for extreme initial conditions, like ones with strong-
clustering behaviours. For example, the distribution of the energy density is a
compound of a “peak” corresponding to the slightly distorted regular hexagons and
a “shoulder” determined by the cells in borders between local crystallites; see Fig. 4
and Supplementary Fig. 6. We expect that the latter can slightly vary, e.g., for initial
conditions with strong-clustering behaviours. Thus the domain size statistics can,
to some degree, be tuned by the initial process, and slight large-scale density
fluctuations could remain in the system or only vanish very slowly using Lloyd
iterations.

Structure factor and τ order metric. The structure factor S(k) is defined via the
Fourier transformation F of the pair-correlation function g2,
SðkÞ :¼ 1þ ρF½g2 � 1�ðkÞ, where ρ is the intensity of the point process and g2(r) is
the ratio of the probability density to find a particle at position r (given another
point at the origin) and the intensity ρ; see Supplementary Note 1. The absolute
value of the wave vector k is given by k= 2π/λ, where λ is the wavelength of the
plane wave. Here, the structure factor is estimated from a sample of N points at
positions xj by the ‘scattering intensity’ SðkÞ :¼ 1

N

PN
j¼1 e

�ik�xj
��� ���2, which converges

for k > 0 in the thermodynamic limit to the structure factor42.
If particles are arranged on a lattice, S(k) exhibits sharp peaks, called Bragg

peaks. Figure 3b shows that S(k) of the CVTs found in this study cannot be
associated with a crystal with periodic order, for neither the initial nor the final
point configurations. In particular, the configurations are clearly distinct to the
body-centred cubic (BCC) point pattern. So S(k) also cannot be interpreted as a
result of peak-broadening due to fluctuations of the point positions around the
vertices of a BCC lattice.

The order metric6 τ is defined for an isotropic system as:

τ :¼ ωd

ð2πÞd
Z 1

0
kd�1 SðkÞ � 1½ �2 dk; ð8Þ

where the unit of length is chosen such that the intensity is unity, d is the
dimension, and ωd is the surface area of the d-dimensional unit ball (with ω2= 2π
and ω3= 4π). This scalar quantity measures the ‘degree of short- and long-range
correlations’ in a system6. It vanishes for the uncorrelated Poisson or Binomial
point process. It diverges for a crystal or the large-scale clustering produced by the
intersections of random hyperplanes (Hyperfluctuating PP), as well as for point
processes with deterministic (that is, fixed) nearest-neighbour distances, like strictly
jammed hard-sphere packings.

For finite simulation boxes, the order metric can be studied as a function of the
upper limit of integration:

τðKÞ :¼ ωd

ð2πÞd
Z K

0
kd�1 SðkÞ � 1½ �2 dk: ð9Þ

The Supplementary Table 2 lists the values of the τ order metric for the initial
and final configurations in both 3D and 2D. While the initial values vary from zero
to infinity, the structure factor of the final configurations agrees as a function of the
wavenumber. Therefore, also the values of the order metric τ=31(1) in 3D and
τ=40(1) in 2D agree within statistical errors, which further confirms and quantifies
the universality of the structure factor.

Hyperuniformity analysis of finite samples. Within a few hundred iterations,
even a hyperfluctuating system quickly converges under Lloyd iterations to an
effectively hyperuniform system, for all system sizes studied here. The final con-
figurations are almost stealthy hyperuniform with S(k) < 3 × 10−3 for k<3 at unit
number density, see Fig. 3. Here we provide a short overview of the hyper-
uniformity analysis of our finite samples, for more details, see Supplementary
Note 8.

Recall that for all practical intents these final configurations essentially appear
to be hyperuniform, but are clearly not strictly hyperuniform. The question,
whether ideal amorphous Voronoi tessellations where the centroids coincide
exactly with the Voronoi centre might be strictly hyperuniform, cannot be
rigorously answered by our numerical study.

There are four main limitations: (1) a finite number of iterations of Lloyd’s
algorithm, which cannot alter the asymptotic behaviour of the number variance; it
is worsened by the observation that local configurations can seem to ‘freeze’; (2)
finite system sizes effects of Lloyd iterations via the boundary conditions70, which
cannot be avoided because Lloyd iterations propagate through the entire system,
(3) finite system size effects of the structure factor analysis (hyperuniformity is
defined in an infinite system), and (4) strong, non-Gaussian statistical fluctuations
of the structure factor at small wavenumbers.

Because of the third limitation, we only consider wavenumbers larger than
4.5 × kmin, where kmin is for each simulation box the minimal value of the
wavenumber. The only exceptions are the samples of the Stealthy and
Determinantal PP, where we have to consider wavenumbers k > 1.5×kmin because
of the small system sizes.
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How close an experimental or simulated sample is to perfect hyperuniformity,
can be quantified by the hyperuniformity index H, which is defined as the ratio of
Ŝð0Þ, a linear extrapolation of the structure factor to k= 0 using a least-square fit,
and S(kpeak), the largest peak of the structure factor42:

H :¼ Ŝð0Þ
SðkpeakÞ

: ð10Þ

A finite sample is typically ‘deemed to be nearly hyperuniform’ if H ≤ 10−3, see
reference42 and Supplementary Table 1. Note that for the reasons explained
above and in Supplementary Note 8, the linear extrapolation is chosen for
simplicity and not based on a model selection, and we use only wavenumbers
larger than 4.5 × kmin (or k > 1.5×kmin for the samples that originated from the
Stealthy or Determinantal PP).

For the 3D CVTs, our estimates Ĥ are within statistical errors consistent with
H= 0, that is, with perfect hyperuniformity, with mean values of Ĥ smaller than
10−4. For the 2D CVTs, there is a slight (but statistically significant) non-
monotonic behaviour of the structure factor for small wavenumbers. Whether
freezing effects of the almost hexagonal cells prevent the system from becoming
hyperuniform remains an open question. If wavenumbers k < 1.5, which are
strongly influenced by this effect, are omitted, and the structure factor is
extrapolated by a least-square fit of a line to the approximately linear regime k∈
[1.50, 4.50], then the estimates of H are smaller than 10−4 at unit density.

In mathematics, there is recent interest in ‘rigidity phenomena’, where the
number of points within a finite observation window or even their positions are
determined by the points outside of the observation window5. The strong
constraint of a CVT, where each Voronoi centre coincides exactly with the centre
of mass, motivates the question whether CVTs are in the mathematical sense
strongly rigid.

Code availability. All code used during the current study are available from the
corresponding authors on reasonable request.

Data availability
All data generated or analysed during this study and the source data underlying
Figs. 1–4 are included in this published article (and its supplementary information
files), see Supplementary Data 1.
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