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Oxidative stress, inflammation, and hypertension constitute a self-perpetuating vicious circle to exacerbate hypertension and
subsequent hypertensive cardiac hypertrophy. NADPH oxidase (Nox) 1/4 inhibitor GKT137831 alleviates hypertensive cardiac
hypertrophy in models of secondary hypertension; however, it remains unclear about its effect on hypertensive cardiac
hypertrophy in models of essential hypertension. This study is aimed at determining the beneficial role of GKT137831 in
hypertensive cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and its mechanisms of action. Treating with
GKT137831 prevented cardiac hypertrophy in SHRs. Likewise, decreasing production of reactive oxygen species (ROS) with
GKT137831 reduced epidermal growth factor receptor (EGFR) activity in the left ventricle of SHRs. Additionally, EGFR
inhibition also reduced ROS production in the left ventricle and blunted hypertensive cardiac hypertrophy in SHRs. Moreover,
inhibition of the ROS-EGFR pathway with Nox1/4 inhibitor GKT137831 or selective EGFR inhibitor AG1478 reduced protein
and mRNA levels of proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-
1β), as well as the activities of Akt and extracellular signal-regulated kinase (ERK) 1/2 in the left ventricle of SHRs. In summary,
GKT137831 prevents hypertensive cardiac hypertrophy in SHRs, Nox-deprived ROS regulated EGFR activation through positive
feedback in the hypertrophic myocardium, and inhibition of the ROS-EGFR pathway mediates the protective role of
GKT137831 in hypertensive cardiac hypertrophy via repressing cardiac inflammation and activation of Akt and ERK1/2. This
research will provide additional details for GKT137831 to prevent hypertensive cardiac hypertrophy.

1. Introduction

Hypertension is one of the most common cardiovascular dis-
eases and results in heavy burdens worldwide. Chronic pres-
sure overload causes hypertensive cardiac hypertrophy that
protects the heart in the early phase; nevertheless, prolonged
cardiac hypertrophy leads to cardiac dysfunction, eventually
promoting to the origin and development of heart failure.
Thus, inhibiting or reversing hypertensive cardiac hypertro-

phy will contribute to slow down or prevent the progression
from hypertension to heart failure.

Chronic pressure overload induces oxidative stress by
producing excessive reactive oxygen species (ROS). And sus-
tained oxidative stress has been considered a critical response
to sustained high blood pressure and plays an important role
in hypertensive cardiac hypertrophy [1]. However, a meta-
analysis of seven randomized vitamin E trials does not sup-
port the beneficial role of vitamin E therapy in the
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progression of cardiovascular disease or on clinical events in
patients at high risk or with established disease [2]. The fail-
ure of classic antioxidants has resulted in a search for new,
more effective compounds.

NADPH oxidase (Nox) 2 and Nox4 are major resource for
ROS in cardiac cells. Several studies have demonstrated the
role of Nox4 in hypertensive cardiac hypertrophy although
two contradictory viewpoints emerge from different studies
[3–6]. The disparity may be attributed to methodological dif-
ferences among previous studies, including methodologies
for Nox4 overexpression and gene deletion, as well as different
kinds and severity of hypertensive models. Nox1 is mainly dis-
tributed within the vascular wall and positively mediates
doxorubicin-induced cardiac fibrosis [7]. Therefore, inhibiting
ROS production by targeting Nox4 and Nox1 might provide
better antioxidant therapies to prevent the transition from
hypertension to chronic heart failure.

GKT137831 is a small molecule inhibitor of Nox4 and
Nox1 with good oral bioavailability and has been shown to
prevent hypertensive cardiac hypertrophy in angiotensin II-
infused mice with cardiac-specific human Nox4 transgenic
mice [5, 8, 9]. Moreover, our previous research also showed
that GKT137831 attenuates hypertensive cardiac hypertro-
phy in rats subjected to abdominal artery constriction
(AAC) [10]. These observations indicate that Nox1/4 inhibi-
tor GKT137831 can prevent hypertensive cardiac hypertro-
phy in models of secondary hypertension. However, it is
necessary to elucidate the effect of GKT137831 on cardiac
hypertrophy in essentially hypertensive models, such as
spontaneously hypertensive rats (SHRs), considering that
essential hypertension accounts for at least 90% of all
hypertension.

Oxidative stress, inflammation, and hypertension consti-
tute a self-perpetuating vicious circle to exacerbate hyperten-
sion and subsequent hypertensive cardiac hypertrophy,
thereby accelerating the transition from hypertension to
heart failure [11, 12]. Nevertheless, it remains unclear how
oxidative stress interacts with inflammation in the hypertro-
phic myocardium. Thus, the aims of this paper are to further
elucidate the effect of Nox1/4 inhibitor GKT137831 on
hypertensive cardiac hypertrophy in SHRs and how cardiac
inflammation mediates the beneficial role of GKT137831 in
hypertensive cardiac hypertrophy.

2. Materials and Methods

2.1. Ethical Approval. All animal protocols were performed
according to the guidelines and principles for the Care and
Use of Laboratory Animals issued by the United States
National Institutes of Health. Concurrently, these animal
protocols were approved by the Medical Ethics Committee
of the Guangdong Second Provincial General Hospital.

2.2. Materials. Both Nox1/4 inhibitor GKT137831 (DC8118)
and selective EGFR inhibitor AG1478 (DC1078) were pur-
chased fromD&CChemicals (Shanghai, China). All antibod-
ies used in the present study were described as follows: p-
EGFR antibody (ab5644, Abcam, USA), EGFR antibody
(ab52894, Abcam, USA), p-Akt antibody (4060s, Cell Signal-
ing Technology, USA), Akt antibody (2920s, Cell Signaling
Technology, USA), p-ERK1/2 antibody (#4695, Cell Signal-
ing Technology, USA), and ERK1/2 antibody (#4370, Cell
Signaling Technology, USA).

Table 1: Effect of Nox1/4 inhibitor GKT137831 on echocardiographic and hemodynamic parameters in spontaneously hypertensive rats.

Control SHR SHR+GKT137831

LVAWd (mm) 1:62 ± 0:18 2:34 ± 0:27# 1:87 ± 0:13∗

LVAWs (mm) 2:33 ± 0:22 2:76 ± 0:19# 2:43 ± 0:18∗

LVPWd (mm) 1:56 ± 0:13 2:27 ± 0:225# 1:98 ± 0:18∗

LVPWs (mm) 2:43 ± 0:27 2:96 ± 0:23# 2:58 ± 0:14∗

LVIDd (mm) 6:67 ± 0:53 6:97 ± 0:57 6:72 ± 0:50
LVIDs (mm) 4:35 ± 0:46 4:57 ± 0:59 4:47 ± 0:47
Fractional shortening (%) 36:42 ± 4:15 36:09 ± 4:57 33:02 ± 2:75
Ejection fraction (%) 64:35 ± 5:86 67:32 ± 5:36 62:05 ± 9:46
AoSP (mmHg) 124 ± 8:0 186 ± 9:7# 176 ± 9:8
AoDP (mmHg) 83 ± 6:1 108 ± 9:6# 102 ± 6:5
Heart rate (beats/min) 350:8 ± 21:7 333:4 ± 22:0 335:8 ± 43:7
dp/dt max (mmHg/s) 4:87 ± 0:19 3:53 ± 0:15# 4:75 ± 0:10∗

dp/dt min (mmHg/s) −4:71 ± 0:17 −3:39 ± 0:10# −4:63 ± 0:18∗

SHR represents spontaneously hypertensive rats. LVAWd: left ventricular anterior wall thickness during diastole; LVAWs: left ventricular anterior wall
thickness during systole; LVPWd: left ventricular posterior wall thickness during diastole; LVPWs: left ventricular posterior wall thickness during systole;
LVIDd: left ventricular internal diameter during diastole; LVIDs: left ventricular internal diameter during systole; AoSP: aortic systolic pressure; AoDP:
aortic diastolic pressure; dp/dt max: the maximal rate of left ventricular pressure increase; dp/dt min: the maximal rate of left ventricular pressure decrease.
Data are expressed as mean ± standard deviation, n = 10. One-way ANOVA followed by post hoc test was carried out for the statistical analyses. #P < 0:05
vs. the control group; ∗P < 0:05 vs. the SHR group.
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2.3. Animals.Male SHRs (weight 220-250 g) and weight- and
sex-matched Wistar Kyoto (WKY) rats were acquired at an
age of 12 weeks from Charles River (Beijing, China). After
being acclimated for 1 week, SHRs and WKY rats were ran-
domly divided into four groups and two control groups,
respectively. All groups in animal experiments with Nox1/4
inhibitor GKT137831 (30mg/kg day) or selective EGFR
inhibitor AG1478 (20mg/kg day) were the following: control,
SHR, and SHR+treatment, each group had 10 rats.
GKT137831 was dissolved in vehicle (1.2w% methylcellulose
and 0.1w% polysorbate 80 in water) and AG1478 in vehicle
(dimethyl sulfoxide). SHRs in the SHR+treatment group
were treated with AG1478 via intraperitoneal injection or
with GKT137831 through gastric gavage for 4 weeks, while
rats in the control group and SHR group were administered
the corresponding vehicle.

2.4. Measurement of Blood Pressure. Systolic blood pressure
(SBP) was measured before the treatment and at the fourth
week post the treatment using the tail-cuff method.

2.5. Echocardiographic and Hemodynamic Measurements. At
the end of the fourth week post the treatment, rats were
anaesthetized in ultrasonic atomization with 2% isoflurane.
Next, a Vevo 2100 high-resolution in vivo microimaging sys-
tem (VisualSonics, Canada) was employed to obtain high-
quality images used for measuring left ventricular internal
diameter during diastole (LVIDd), left ventricular internal
diameter during systole (LVIDs), left ventricular anterior
wall thickness during diastole (LVAWd), left ventricular
anterior wall thickness during systole (LVAWs), left ventric-
ular posterior wall thickness during diastole (LVPWd), left
ventricular posterior wall thickness during systole (LVPWs),
fractional shortening, and ejection fraction as described pre-
viously [10].

After rats were anaesthetized with sodium pentobarbital
(i.p., 45mg/kg), a 24-gauge polyethylene catheter filled with
heparin was introduced into the right carotid artery of rats,
where aortic systolic pressure (AoSP) and aortic diastolic
pressure (AoDP) were measured using a BL-420S system
(Chengdu Tai-meng Technology Co., Ltd., Sichuan, China).
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Figure 1: Nox1/4 inhibitor GKT137831 alleviated hypertensive cardiac hypertrophy in spontaneously hypertensive rats. (a) HW/BW (n = 6 per
group). (b) LVW/BW (n = 6 per group). (c) Myocyte cross-sectional area (n = 4 per group). (d) mRNA levels of ANP and BNP in the left
ventricle (n = 4 per group). SHR represents spontaneously hypertensive rats, HW/BW represents the ratio between heart weight and body
weight, and LVW/BW represents the ratio between left ventricular weight and body weight. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the
SHR group.
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Subsequently, the maximal rate of the left ventricular pres-
sure increase (dp/dt max) and decrease (dp/dt min) and
heart rate were determined after the catheter was further
introduced into the left ventricle.

2.6. Histological Analysis. Arrested in diastole using potas-
sium chloride (30mmol/L), the heart was fixed with 10% for-
malin overnight and embedded in paraffin. Subsequently,
transverse and transmural slices of the left ventricle (about

Control SHR SHR+GKT137831

(a)

0

1

2

3

4

5 #

Co
nt

ro
l

SH
R

SH
R+

G
KT

13
78

31

Fi
br

ot
ic

 ar
ea

(%
 o

f c
ro

ss
-s

ec
tio

na
l a

re
a)

⁎

(b)

0.0

0.5

1.0

1.5

2.0

2.5 #

Co
nt

ro
l

SH
R

SH
R+

G
KT

13
78

31

Co
l I

 p
os

iti
ve

 ar
ea

 (%
)

⁎

(c)

Control SHR SHR+GKT137831

Col I

Col III

100 𝜇m 100 𝜇m 100 𝜇m

100 𝜇m 100 𝜇m 100 𝜇m

(d)

0.0

0.5

1.0

1.5

2.0

2.5
 #

Co
nt

ro
l

SH
R

SH
R+

G
KT

13
78

31

Co
l I

II
 p

os
iti

ve
 ar

ea
 (%

)

⁎

(e)

0

2

4

6
#

#

Co
nt

ro
l

SH
R

SH
R+

G
KT

13
78

31

Re
la

tiv
e m

RN
A

 le
ve

ls
(fo

ld
 o

f c
on

tr
ol

)

⁎ ⁎

Col I
Col III

(f)

Figure 2: Nox1/4 inhibitor GKT137831 inhibited cardiac fibrosis in spontaneously hypertensive rats. (a) Representative microphotographs of
Masson staining of the heart. (b) Fibrosis area (n = 4 per group). (c) Col I-positive area (n = 4 per group). (d) Representative
microphotographs of immunochemistry for Col I and Col III. (e) Col III-positive area (n = 4 per group). (f) mRNA levels of Col I and Col
III in the left ventricle (n = 4 per group). SHR represents spontaneously hypertensive rats, Col I represents collagen I, and Col III
represents collagen III. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the SHR group.
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5μm thickness) were prepared and stained with hematoxylin
and eosin. Finally, myocyte cross-sectional area was mea-
sured in 10 randomly chosen nonrepeating fields in cross-
sections stained with hematoxylin and eosin using ImagePro
Plus 6.0 according to the method previously described [10,
13]. Furthermore, interstitial fibrosis was quantified as the
percentage of fibrotic area over the total myocardial area in
5 randomly chosen nonrepeating visual fields of sections
stained with Masson’s trichrome reagent using ImagePro
Plus 6.0.

2.7. Immunohistochemistry. The protein levels of collagen I
(Col I) and collagen III (Col III) in the left ventricle were
detected using immunohistochemistry as described previ-
ously [10].

2.8. Real-Time Quantitative PCR. RNA extraction and real-
time quantitative PCR were performed as described previ-
ously [14]. Real-time PCR used primers for atrial natriuretic
peptide (ANP), brain natriuretic peptide (BNP), tumor
necrosis factor α (TNF-α), interleukin 1β (IL-1β), interleukin
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Figure 3: Nox1/4 inhibitor GKT137831 reduced reactive oxygen species (ROS) production and epidermal growth factor receptor (EGFR)
activation in the left ventricle of spontaneously hypertensive rats. (a) H2O2 level (n = 4 per group). (b) MDA level (n = 4 per group). (c)
EGFR activity (n = 3 per group). SHR represents spontaneously hypertensive rats; H2O2 represents hydrogen peroxide; MDA represents
malondialdehyde. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the SHR group.
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Figure 4: Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 decreased reactive oxygen species (ROS) production in the
left ventricle of spontaneously hypertensive rats. (a) H2O2 level (n = 4 per group). (b) MDA level (n = 4 per group). (c) EGFR activity
(n = 3 per group). SHR represents spontaneously hypertensive rats; H2O2 represents hydrogen peroxide; MDA represents
malondialdehyde. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the SHR group.
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6 (IL-6), collagen I (Col I), and collagen III (Col III), and the
gene-specific GADPHwas employed as an inner control. The
primers were described as follows: ANP: 5′-GGAAGTCAACC
CGTCTCA-3′ (forward primer) and 5′-AGCCCTCAG TTTG
CTTTT-3′ (reverse primer); BNP: 5′-ATGCAGAAGCTGCT
GGAGC TGATA-3′ (forward primer) and 5′-TTGTAGGGC
CTTGGTCCTTTGAGA-3′ (reverse primer); TNF-α: 5′
-TGGCGTGTTCATCCGT TCTC-3′ (forward primer) and
5′-CCCAGAGCCACA ATTCCCTT-3′ (reverse primer); IL-
1β: 5′-TCCTCTGTGACTCGTGGGAT-3′ (forward primer)
and 5′-TCAGACAGCACGAGGCATTT-3′ (reverse primer);
IL-6: 5′-TCCTACCCCAACTTCC AATGCTC-3′ (forward
primer) and 5′-TTG GATGGTCTTGGTCCTTAGCC-3′
(reverse primer); Col I: 5′-GCCTCAAGGTATTGCTGGAC-
3′ (forward primer) and 5′-ACCTTGTTTGCCAGGT
TCAC-3′ (reverse primer); Col III: 5′-CTGGACCCCAGGGT
CTTC-3′ (forward primer) and 5′-CATCTGATCCAGGGTT
TCCA-3′ (reverse primer); GADPH: 5′-ATCAAGAAGGT
GGTGAAG CA-3′ (forward primer) and 5′-AAGGTGGAA
GAATGGGAGTTG-3′ (reverse primer).

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). The pro-
tein levels of proinflammatory factors (such as TNF-α, IL-1β,
and IL-6) in the left ventricle were measured through ELISA
as described previously [14].

2.10. Detection of Hydrogen Peroxide (H2O2) and
Malondialdehyde (MDA). H2O2 and MDA levels were sepa-
rately detected using the hydrogen peroxide assay kit
(S0038) and lipid peroxidation MDA assay kit (S0131) that
were purchased from Beyotime Biotechnology (Shanghai,
China). Procedures were the following: firstly, a standard
curve was constructed using different H2O2 or MDA solu-
tions and corresponding values of optical density; secondly,
samples obtained from the left ventricle were prepared using
cell lysis buffer and then used to detect corresponding values
of optical density under 520nm; and thirdly, H2O2 andMDA
levels were calculated using the standard curve and values of
optical density.

2.11. Western Blotting. Western blotting was performed
according to standard procedures previously described [15].
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Figure 5: Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 inhibited hypertensive cardiac hypertrophy in spontaneously
hypertensive rats. (a) HW/BW (n = 6 per group). (b) LVW/BW (n = 6 per group). (c) Myocyte cross-sectional area (n = 4 per group). (d)
mRNA levels of ANP and BNP in the left ventricle (n = 4 per group). SHR represents spontaneously hypertensive rats; HW/BW represents the
ratio between heart weight and body weight; LVW/BW represents the ratio between left ventricular weight and body weight. #P < 0:05 vs. the
control group; ∗P < 0:05 vs. the SHR group.
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2.12. Statistical Analysis. Data are expressed as mean ±
standard deviation. Statistical analyses were carried out using
the unpaired t-test between two groups and one- or two-way
ANOVA followed by Bonferroni’s post hoc test among at
least three groups, and P < 0:05was considered to have statis-
tical significance.

3. Results

3.1. Nox1/4 Inhibitor GKT137831 Inhibited Hypertensive
Cardiac Hypertrophy in SHRs. Compared with the control
group, SBP, AoSP, and AoDP were significantly increased
in the SHR group; nevertheless, treatment with GKT137831
failed to reduce SBP, AoSP, and AoDP in SHRs (Table S1
and Table 1). The heart in SHRs exhibited marked
hypertensive cardiac hypertrophy, indicated by increases in
LVAWs, LVAWd, LVPWs, LVPWd, ratio between heart
weight and body weight (HW/BW), ratio between left
ventricular weight and body weight (LVW/BW), myocyte
cross-sectional area, and mRNA levels of hypertrophic
genes (ANP and BNP). By contrast, treating with
GKT137831 prevented elevations of LVAWs, LVAWd,
LVPWs, LVPWd, HW/BW, LVW/BW, myocyte cross-
sectional area, and mRNA levels of hypertrophic genes
(ANP and BNP) in SHRs (Figure 1 and Table 1). Moreover,
GKT137831 significantly attenuated cardiac fibrosis
indicated by the reduction in fibrotic area and the protein
and mRNA levels of Col I and Col III (Figure 2). These
findings indicated that GKT137831 attenuated hypertensive
cardiac hypertrophy independent of blood pressure.

3.2. Reducing ROS Production with GKT137831 Inhibited
EGFR Activation through Positive Feedback in the Left

Ventricle of SHRs. Among ROS generated in cells within
the cardiovascular system, O2− and H2O2 appear to be very
important. Considering that O2− is short-lived because of
its rapid transformation to H2O2 by superoxide dismutase
in biological systems [16], H2O2 content is used to assess
ROS production. Moreover, MDA is usually used for evaluat-
ing oxidative stress because it is a natural product of lipid
peroxidation that occurs when cells are subjected to oxidative
stress. Figures 3(a) and 3(b) present the inhibitory effect of
Nox1/4 inhibitor GKT137831 on ROS production and
MDA level in the left ventricle of SHRs. Subsequently, we
observed the effect of GKT137831 on EGFR activation.
Figure 3(c) indicates that GKT137831 diminished EGFR
activity in the left ventricle of SHRs. Furthermore, selective
EGFR inhibitor AG1478 remarkably decreased EGFR activ-
ity, as well as the contents of H2O2 and MDA in the left ven-
tricle of SHRs (Figure 4). Overall, blocking ROS production
with GKT137831 restrained pressure overload-induced
EGFR activation via positive feedback in the left ventricle.

3.3. EGFR Inhibition Prevented Hypertensive Cardiac
Hypertrophy in SHRs. Even though treatment with selective
EGFR inhibitor AG1478 caused no reduction in SBP, AoSP,
and AoDP in SHRs (Table S2), it alleviated hypertensive
cardiac hypertrophy, indicated by notable decreases in
LVAWs, LVAWd, LVPWs, LVPWd, HW/BW, LVW/BW,
myocyte cross-sectional area, and mRNA levels of
hypertrophic genes (ANP and BNP) in SHRs (Figure 5 and
Table 2). These findings agree with our previous results that
AG1478 reduced myocyte cellular area and mRNA levels of
hypertrophic genes (ANP and BNP) in primary
cardiomyocytes treated with 100 nmol/L angiotensin II for

Table 2: Effect of selective epidermal growth factor receptor (EGFR) inhibitor AG1478 on echocardiographic and hemodynamic parameters
in spontaneously hypertensive rats.

Control SHR SHR+AG1478

LVAWd (mm) 1:59 ± 0:14 2:30 ± 0:22# 1:83 ± 0:23∗

LVAWs (mm) 2:30 ± 0:23 2:75 ± 0:27# 2:37 ± 0:16∗

LVPWd (mm) 1:62 ± 0:15 2:33 ± 0:22# 1:93 ± 0:25∗

LVPWs (mm) 2:42 ± 0:23 2:99 ± 0:27# 2:65 ± 0:16∗

LVIDd (mm) 6:70 ± 0:58 6:93 ± 0:61 6.54± 0.79
LVIDs (mm) 4:31 ± 0:56 4:45 ± 0:57 4.33± 0.65
Fractional shortening (%) 36:22 ± 4:55 35:79 ± 4:03 34.68± 6.78
Ejection fraction (%) 64:53 ± 5:47 67:73 ± 5:79 62.75± 8.97
AoSP (mmHg) 122 ± 7:0 182 ± 8:7# 177± 8.9
AoDP (mmHg) 78 ± 6:4 105 ± 7:6# 103± 5.6
Heart rate (beats/min) 350:7 ± 21:6 334:2 ± 21:2 379.7± 30.7
dp/dt max (mmHg/s) 4:93 ± 0:18 3:50 ± 0:17# 4:52 ± 0:16∗

dp/dt min (mmHg/s) −4:75 ± 0:13 −3:42 ± 0:17# −4:38 ± 0:25∗

SHR represents spontaneously hypertensive rats. LVAWd: left ventricular anterior wall thickness during diastole; LVAWs: left ventricular anterior wall thickness
during systole; LVPWd: left ventricular posterior wall thickness during diastole; LVPWs: left ventricular posterior wall thickness during systole; LVIDd: LV internal
diameter during diastole; LVIDs: LV internal diameter during systole; AoSP: aortic systolic pressure; AoDP: aortic diastolic pressure; dp/dtmax: themaximal rate of
left ventricular pressure increase; dp/dt min: the maximal rate of left ventricular pressure decrease. Data are expressed asmean ± standard deviation, n = 10. The
analytical tests were implemented using one-way ANOVA followed by the post hoc test. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the SHR group.
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24 hours [13]. Furthermore, treating with AG1478 caused
marked reduction in fibrotic area and the protein and
mRNA levels of Col I and Col III (Figure 6). Thus, EGFR
inhibition prevented hypertensive cardiac hypertrophy in
SHRs independent of blood pressure.

3.4. Inhibition of the ROS-EGFR Pathway Reduced Expression
of Proinflammatory Cytokines in the Left Ventricle of SHRs.
The expression of proinflammatory cytokines IL-1β, IL-6,

and TNF-α is usually adopted to evaluate inflammation.
As shown in Figures 5 and 6, protein and mRNA levels
of TNF-α, IL-6, and IL-1β were upregulated in the left
ventricle of SHRs compared with the control group,
whereas treating either with Nox1/4 inhibitor
GKT137831or with selective EGFR inhibitor AG1478
resulted in significant reductions in the protein and
mRNA levels of TNF-α, IL-6, and IL-1β in the left ventri-
cle of SHRs (Figures 7 and 8). These findings indicate that
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Figure 6: Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 attenuated cardiac fibrosis in spontaneously hypertensive
rats. (a) Representative microphotographs of Masson staining of the heart. (b) Fibrosis area (n = 4 per group). (c) Col I-positive area
(n = 4 per group). (d) Representative microphotographs of immunochemistry for Col I and Col III. (e) Col III-positive area (n = 4 per
group). (f) mRNA levels of Col I and Col III in the left ventricle (n = 4 per group). SHR represents spontaneously hypertensive rats, Col I
represents collagen I, and Col III represents collagen III. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the SHR group.
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inhibition of the ROS-EGFR pathway lessened pressure
overload-induced cardiac inflammation in SHRs.

3.5. The ROS-EGFR Pathway Promoted Akt and ERK1/2
Activation in the Left Ventricle of SHRs. Figure 7 represents
that the activities of Akt and ERK1/2 were remarkably
increased in the left ventricle of SHRs compared with the
control group, whereas both diminishing ROS production
with GKT137831 and inhibiting EGFR with AG1478 caused
a significant reduction in the activities of Akt and ERK1/2 in
the left ventricle of SHRs (Figure 9). Therefore, the ROS-
EGFR pathway promoted pressure overload-induced Akt
and ERK1/2 activation in the left ventricle.

4. Discussion

In this research, there were three interrelated discoveries: (1)
Nox1/4 inhibitor GKT137831 attenuated hypertensive car-
diac hypertrophy in SHRs, (2) reducing ROS production with
Nox1/4 inhibitor GKT137831 suppressed pressure overload-
induced EGFR activation in the left ventricle via positive
feedback, and (3) inhibition of the ROS-EGFR pathway

mediated pressure overload-induced cardiac inflammation
and activation of Akt and ERK1/2 in the left ventricle of
SHRs.

A considerable amount of studies in secondary models of
hypertension indicate that reducing ROS production with
Nox1/4 inhibitor GKT137831 attenuates hypertensive car-
diac hypertrophy in rats subjected to abdominal artery con-
striction and angiotensin II-infused mice with cardiac-
specific human Nox4 transgenic mice [5, 10]. In the current
study, we further demonstrated the beneficial role of
Nox1/4 inhibitor GKT137831 in hypertensive cardiac hyper-
trophy in a classical model of essential hypertension. These
findings suggest that Nox1/4 inhibitor GKT137831 protects
against hypertensive cardiac hypertrophy.

EGFR activation is considered to act as a central trans-
ducer of heterologous signaling systems, such as those acti-
vated by angiotensin II, endothelin, and oxidative stress, all
of which can lead to hypertensive cardiac hypertrophy. In
vitro experiments indicate that EGFR activation promotes
α1-adrenergic receptor- and angiotensin II-induced cardiac
hypertrophy [13, 17]. Results of in vivo experiments also
indicated that EGFR activation advances hypertensive
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Figure 7: Nox1/4 inhibitor GKT137831 reduced the expression of proinflammatory cytokines in the left ventricle of spontaneously
hypertensive rats. (a) IL-1β protein level (n = 5 per group). (b) IL-6 protein level (n = 5 per group). (c) TNF-α protein level (n = 5 per
group). (d) mRNA levels of IL-1β, IL-6, and TNF-α (n = 4 per group). SHR represents spontaneously hypertensive rats, IL-1β represents
interleukin 1β, IL-6 represents interleukin 6, and TNF-α represents tumor necrosis factor α. #P < 0:05 vs. the control group; ∗P < 0:05 vs.
the SHR group.
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cardiac hypertrophy in angiotensin II-induced hypertensive
rats and SHRs [18, 19], in agreement with our present find-
ings that EGFR inhibition inhibited hypertensive cardiac
hypertrophy in SHRs. Accordingly, EGFR activation is
required in hypertensive cardiac hypertrophy.

Our previous findings showed that Nox4-deprived ROS
induces EGFR activation in primary cardiomyocytes [13].
In the present research, decreasing ROS production with
Nox1/4 inhibitor GKT137831 caused a significant reduction
in EGFR activity in the left ventricle of SHRs. Moreover,
EGFR activation also promotes ROS production in the left
ventricle of SHRs, in agreement with the results reported by
Liang et al. [20] that EGFR inhibition diminishes ROS pro-
duction in hypertrophic cardiomyocytes of streptozotocin-
induced diabetic mice. Collectively, Nox-deprived ROS pro-
motes pressure overload-induced EGFR activation through
positive feedback in the hypertrophic myocardium and inhi-
bition of the ROS-EGFR pathway mediates the protective
effect of Nox1/4 inhibitor GKT137831 on hypertensive car-
diac hypertrophy.

Cardiac inflammation plays an important role in hyper-
tensive cardiac hypertrophy. IL-6 gene deletion inhibits
angiotensin II- or transverse aortic constriction- (TAC-)
induced hypertensive cardiac hypertrophy, while IL-6 infu-

sion causes left ventricular hypertrophy independent of
blood pressure [21–23]. However, Lai et al. [24] reported
contradictory findings: IL-6 deletion fails to influence TAC-
induced hypertensive cardiac hypertrophy. This discrepancy
may be attributed to the methods of disrupting IL-6 gene.
TNF-α promotes aortic constriction or angiotensin II-
induced hypertensive cardiac hypertrophy [25, 26].
Cardiac-specific overexpression of human interleukin 1α
(IL-1α) results in cardiac hypertrophy, and systemic admin-
istration of IL-1β antibodies or IL-1β deletion prevents aortic
banding-induced hypertensive cardiac hypertrophy [27–29].
Our present findings indicated that inhibiting the ROS-
EGFR pathway with Nox1/4 inhibitor GKT137831 or selec-
tive EGFR inhibitor AG1478 markedly reduced the expres-
sion of IL-1β, IL-6, and TNF-α in the left ventricle of
spontaneously hypertensive rats. Thus, the ROS-EGFR
pathway mediates the effect of Nox1/4 inhibitor
GKT137831 on hypertensive cardiac hypertrophy via car-
diac inflammation.

Akt activation promotes hypertensive cardiac hypertro-
phy. Short-term Akt activation improves contractile function
in the failing hearts independent of hypertrophy; however,
chronic Akt activation induces cardiac hypertrophy by
activating mammalian target of rapamycin (mTOR) in
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Figure 8: Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 decreased the expression of proinflammatory cytokines in the
left ventricle of spontaneously hypertensive rats. (a) IL-1β protein level (n = 5 per group). (b) IL-6 protein level (n = 5 per group). (c) TNF-α
protein level (n = 5 per group). (d) mRNA levels of IL-1β, IL-6, and TNF-α (n = 4 per group). SHR represents spontaneously hypertensive
rats, IL-1β represents interleukin 1β, IL-6 represents interleukin 6, and TNF-α represents tumor necrosis factor α. #P < 0:05 vs. the control
group; ∗P < 0:05 vs. the SHR group.
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transgenic mice with constitutively active Akt [30–32].
Moreover, inhibiting Akt-mTOR signaling with rapamycin
ameliorates hypertensive cardiac hypertrophy in spontane-
ously hypertensive rats and mice with ascending aortic con-
striction [33, 34]. In the present research, blocking the
ROS-EGFR pathway with Nox1/4 inhibitor GKT137831 or
selective EGFR inhibitor AG1478 decreased Akt activity in
the hypertrophic myocardium of SHRs. Accordingly, inhibi-
tion of the ROS-EGFR pathway might mediate the protective
action of Nox1/4 inhibitor GKT137831 against hypertensive
cardiac hypertrophy by decreasing Akt activity.

ERK1/2 plays a key role in hypertensive cardiac hypertro-
phy. ERK1/2 inhibition prevented endothelin-1-induced car-
diac hypertrophy in cardiomyocytes from spontaneously
hypertensive rats and WKY rats [35]. Experiments using
transgenic mutation mice at the Thr188 phosphorylation site
of ERK2 indicate that ERK1/2 has a causal relationship with

cardiac hypertrophy [36]. ERK1/2 deletion in cardiomyo-
cytes blunts hypertensive cardiac hypertrophy in mice with
transverse aortic constriction (TAC) [37]. Additionally,
MEK1-ERK1/2 promotes cardiac hypertrophy without signs
of cardiomyopathy or lethality up to 12 months of age in
MEK1 transgenic mice [38]. However, it has been reported
that deleting ERK1/2 in the heart did not significantly atten-
uate angiotensin II-induced hypertensive cardiac hypertro-
phy [39]. The discrepancy might be caused by compensated
effects induced by activation of p38 MAPK and JNK1/2 in
ERK1/2 deletion mice treating with angiotensin II for 14
days. In our present study, treatment with Nox1/4 inhibitor
GKT137831 or selective EGFR inhibitor AG1478 resulted
in marked reduction in ERK1/2 activity in the left ventricle
of SHRs. Hence, Nox1/4 inhibitor GKT137831 inhibits
hypertensive cardiac hypertrophy via suppressing the ROS-
EGFR pathway and subsequent ERK1/2 activation.
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Figure 9: Reactive oxygen species- (ROS-) epidermal growth factor receptor (EGFR) pathway promoted Akt activation in the left ventricle of
spontaneously hypertensive rats. (a, b) Effect of Nox1/4 inhibitor GKT137831 (a) or selective EGFR inhibitor AG1478 (b) on Akt
activity. (c, d) Effect of GKT137831 (c) or AG1478 (d) on ERK1/2 activity. SHR represents spontaneously hypertensive rats, n = 3
per group. #P < 0:05 vs. the control group; ∗P < 0:05 vs. the SHR group.
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Cardiac inflammation is closely related to activation of
Akt and ERK1/2. IL-6 increases Akt activity through for-
matting a heterohexameric complex consisting of two
molecules each of IL-6, IL-6 receptor, and IL-6 receptor
subunit β (gp130) [40]. Moreover, Akt activation pro-
motes TNF-α-induced elevation in mRNA levels of IL-6,
IL-1α, and IL-1β in cardiac fibroblasts and cardiac hyper-
trophy in primary cardiomyocytes [41, 42]. Our previous
findings indicated that the Akt-mTOR signaling induces
isoproterenol- and TNF-α-induced upregulation of expres-
sion of proinflammatory cytokines IL-1β, IL-6, and TNF-
α in the hypertrophic myocardium through NF-κB
activation [14]. ERK1/2 activation mediates gp130-
induced cardiac hypertrophy and PE-induced TNF-α pro-
duction [43, 44].

One main feature of hypertrophic cardiomyocytes is pre-
dominance of the immediate-early genes and fetal gene
(often referred to as hypertrophic genes, such as ANP and
BNP) program again. Akt activates phosphorylation of
GATA4 through glycogen synthase kinase-3β (GSK-3β), a
major effector of Akt/PKB, and subsequent nuclear exit of
GATA4, thereby inhibiting agonist-induced protein synthe-
sis and expression of hypertrophic genes (ANP and BNP)
in cardiomyocytes [45–47].

Knockdown of ERK2 decrease BNP expression in cardio-
myocytes stimulated with phenylephrine through regulating
BNP promoter activity [37]. Our present findings showed
that treatment with Nox1/4 inhibitor GKT137831 or selec-
tive EGFR inhibitor AG1478 reduced activities of Akt and
ERK1/2, as well as mRNA levels of ANP and BNP. Collec-
tively, inhibiting activation of Akt and ERK1/2 mediates the
beneficial role of Nox1/4 inhibitor GKT137831 in hyperten-
sive cardiac hypertrophy via blocking predominance of
hypertrophic genes.

5. Conclusions

In conclusion, this study reveals the protective action of
Nox1/4 inhibitor GKT137831 against hypertensive cardiac
hypertrophy in SHRs, and Nox-deprived ROS regulated
EGFR activation through positive feedback in the hypertro-
phic myocardium, and inhibition of the ROS-EGFR pathway
mediates the beneficial effect of GKT137831 on hypertensive
cardiac hypertrophy by preventing cardiac inflammation and
activation of Akt and ERK1/2. These findings will provide
additional details for Nox1/4 inhibitor GKT137831 to pre-
vent hypertensive cardiac hypertrophy.
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