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� PURPOSE AND APPROPRIATE SAMPLE TYPES
This 40-color flow cytometry-based panel was developed for in-depth immuno-
phenotyping of the major cell subsets present in human peripheral blood. Sample
availability can often be limited, especially in cases of clinical trial material, when mul-
tiple types of testing are required from a single sample or timepoint. Maximizing the
amount of information that can be obtained from a single sample not only provides
more in-depth characterization of the immune system but also serves to address the
issue of limited sample availability. The panel presented here identifies CD4 T cells,
CD8 T cells, regulatory T cells, γδ T cells, NKT-like cells, B cells, NK cells, monocytes
and dendritic cells. For each specific cell type, the panel includes markers for further
characterization by including a selection of activation and differentiation markers, as
well as chemokine receptors. Moreover, the combination of multiple markers in one
tube might lead to the discovery of new immune phenotypes and their relevance in
certain diseases. Of note, this panel was designed to include only surface markers to
avoid the need for fixation and permeabilization steps. The panel can be used for stud-
ies aimed at characterizing the immune response in the context of infectious or auto-
immune diseases, monitoring cancer patients on immuno- or chemotherapy, and
discovery of unique and targetable biomarkers. Different from all previously published
OMIPs, this panel was developed using a full spectrum flow cytometer, a technology
that has allowed the effective use of 40 fluorescent markers in a single panel. The panel
was developed using cryopreserved human peripheral blood mononuclear cells
(PBMC) from healthy adults (Table 1). Although we have not tested the panel on fresh
PBMCs or whole blood, it is anticipated that the panel could be used in those sample
preparations without further optimization. @ 2020 Cytek Biosciences, Inc. Cytometry Part A

published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
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BACKGROUND

The need to understand the mechanisms and pathways of immune evasion seen
either post immunotherapy or during natural immune responses to cancer, autoim-
munity, and infectious diseases, requires methods and protocols which will enable a
deeper profiling of the immune system. Greater characterization of immune subpop-
ulations allows for more informed decisions regarding the identification of targetable
biomarkers and the development of new therapeutic approaches. (1-4)

Unraveling the complexity of the human immune response requires the ability to
perform high-throughput, in-depth analysis, at the single cell and population levels.
Flow cytometry has sought to address this need by allowing the characterization of
single-cell protein expression, through the binding of fluorochrome-labeled antibodies
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to specific markers of interest. Over the years, manufacturers
have increased the capabilities of flow cytometers through the
incorporation of additional lasers and detectors, allowing detec-
tion of greater numbers of markers per cell. Concurrently,
reagent manufacturers have worked to provide additional
fluorophores to meet the demands of this rapidly expanding
field. This has led to panel expansion over the last two decades,
with a 17-color assay reported in 2004 (5) and up to 28 colors
in more recent years (6-11). With the arrival of mass cytometry
in 2009 (12), the number of markers assessed was expanded to
32, using metal-conjugated antibodies (13), and most recently
a panel using 43 markers has been published (14).

In contrast to conventional flow cytometry, which primar-
ily measures the peak emission of each fluorochrome, full spec-
trum flow cytometry measures the entire emission spectra for
every fluorochrome, across all laser lines. As a result of collect-
ing substantially more information about each cell, full spec-
trum flow cytometry is well suited to the development of
highly multiparametric panels. Reports of applying the con-
cepts of measuring fluorescence spectra by flow cytometry can
be found as early as the 1970s (15), which was followed by a
number of subsequent publications in later years (16-20). In
order to expand the number of fluorochromes beyond the
28-color mark, a very high level of detail is needed to distin-
guish fluorochromes whose spectral signatures, particularly
their peak emissions, are similar. This level of detail requires
high-quality signals, low noise, and excitation specific full-
emission profiles. It also requires extremely careful panel
design and optimization. Here, we define full spectrum flow
cytometry as measuring the entire fluorochrome emission,
from ultraviolet to near-infrared, across multiple lasers using
many more detectors, when compared to a conventional flow
cytometer. This produces very specific spectral fingerprints that
are used to mathematically distinguish one fluorophore from
another, even when their maximum emissions are very similar.
Leveraging this full spectrum technology in a five-laser system,
the ability to combine 30–40 fluorescently labeled antibodies
becomes possible using a fluorescence-based flow cytometer.

As mentioned previously, mass cytometry is also capable
of assessing similarly high numbers of parameters. Currently,
this technology has the advantage of additional detection
channels to accommodate bar coding schemes for sample
pooling, and as a more mature technology, high complexity
panels using mass cytometry have been previously published
and are widely available, including the publication of multiple
OMIPs (21-24). However, limitations such as sample
throughput, cell transmission efficiency, and overall cost of
ownership have impacted the practicality, and broader adop-
tion, of this technology in some laboratory environments
(25-27). Spectral flow cytometers share a very common
workflow with conventional flow cytometers and are therefore
not hindered by these limitations. However, there are no pre-
viously published reports of panels beyond 28 fluorescent
parameters, a fact which further supports the need for a fluo-
rescent OMIP panel of this complexity.

The panel presented in this OMIP examines the frequency
of CD4 and CD8 T cells, regulatory T cells (Tregs), γδ T cells,

NKT-like cells, B cells, NK cells, monocytes, basophils, innate
lymphoid cells (ILCs), and dendritic cells. Additional markers
allow for the characterization of the main B and T cell subsets—
naïve, memory, and effector—as well as putative T helper sub-
sets. Dead cells were excluded using a viability dye (LIVE/Dead
Fixable Blue). The following markers were used to characterize
the indicated cell types: CD45 for all leukocytes; pan-γδ TCR
for γδ T cells; CD3, CD4, and CD8 for the main T cell
populations; CD19 and CD20 for B cells; CD16 and CD56 for
NK cells; CD123 and HLA-DR for basophils; lineage markers
and CD127 for total ILCs; and CD14 and CD16 for monocytes.

NK cells were identified by expression of CD56 (neural
cell adhesion molecule [NCAM]) and CD16 (FcγRIII) (28),
while CD2 was used to identify NK cells most likely to be
involved in cytotoxicity (29). We included two natural cyto-
toxicity receptors (NCRs), NKG2D (natural killer group
2, member D [CD314]) and NKp30 (CD337); as well as the
inhibitory receptor NKG2A (CD159a), identified as a possible
target for immunotherapy (30), and the activation receptor
NKG2C (CD159c) known to be relevant for NK cells in infec-
tious diseases and vaccine effector response (31). CD57 was
included as a maturation marker for NK cells, identifying cells
with potent cytotoxic and reduced replicative potential (32).
CD56 was further used for the identification of NKT-like
cells, defined as CD56+CD3+, as cells with this phenotype
might play a role in infectious diseases (33).

γδ T cells are regarded as an important bridge between
the innate and adaptive immune systems because their
response precedes adaptive immunity, making γδ T cells a
unique component of the immune system (34-36). They are
also associated with major autoimmune rheumatic diseases,
such as rheumatoid arthritis, juvenile idiopathic arthritis,
ankylosing spondylitis, systemic lupus erythematosus, and
scleroderma (37). Although we included CD16 and CD56 to
define NK cell subsets, CD16 and CD56 are also associated
with an activated phenotype in γδ T cells (6,38). γδ T cells
have also been shown to have effector/memory subsets based
on expression of CD45RA, CD27, and CCR7 (39).

To characterize T cells, the memory and differentiation
markers CD45RA, CCR7, CD27, and CD28 were used. Using
CD45RA and CCR7, T cells can be classified into naïve
(CD45RA+CCR7+), central memory (CD45RA−CCR7+),
effector memory (CD45RA−CCR7−), and terminal effector
memory (CD45RA+CCR7−) subsets (40,41). The addition of
CD27 and CD28 allows further refinement of those subsets,
identifying early effector (CD45RA−CCR7−CD28+CD27+),
early-like effector (CD45RA−CCR7−CD28+CD27−), interme-
diate effector (CD45RA−CCR7−CD28−CD27+), terminal
effector (CD45RA−CCR7−CD28−CD27−), and RA-terminal
effector (CD45RA+CCR7−CD28−CD27−) (42,43).

Other surface markers, including CD127, CD95, PD-1,
CD57, CD38, and HLA-DR, were included to further charac-
terize T cell subsets (1,44,45). The IL-7 receptor (CD127) is
involved in homeostatic proliferation and survival of memory
T cell precursors (46), while CD57 is indicative of cell senes-
cence, failure to proliferate, and susceptibility to activation-
induced cell death (47,48). CD38 and HLA-DR were included
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as T cell activation markers (49). Viral infections such as
HIV-1, dengue virus, or influenza lead to increased frequen-
cies of CD38+HLA-DR+ activated T cells (50,51). PD-1 and
CD95 are both upregulated in activated T cells (52). The
inhibitory receptor PD-1 is crucial for the regulation of
immune responses and to avoid excessive immune activa-
tion (53).

In order to identify Tregs, we used CD25 (IL-2Rα) and
CD127 (IL-7Rα) markers without the inclusion of FoxP3,
which requires intracellular staining. Previous studies have
shown that CD25hiCD127lo/-CD4+ T cells are a good correlate
of Tregs (54,55), although this strategy may over- or underesti-
mate their frequency. It has been reported that Tregs can be
further subsetted based on CD39 expression (7,56,57) and
that CD39+ Tregs might play a role in certain autoimmune
diseases like multiple sclerosis (58).

CD27 and IgD were chosen for identification of naïve
(IgD+CD27−), marginal zone-like (IgD+CD27+), and memory
(IgD−CD27+) B cells as previously described (59). Marginal
zone-like B cells can be further divided into IgM+ marginal
zone and IgD only memory B cells (8). When used in combi-
nation, CD24 and CD38 distinguish memory (CD24+CD38lo/
neg), naïve (CD24intCD38int), and transitional (CD24hiCD38hi)
B cells, and have been used for regulatory B cell identification
(60,61). Plasmablasts can be identified based on expression of
CD19, CD20, CD27, and CD38 (62). Memory B cells express
different B cell receptor isotypes as a result of class switch
recombination. This panel includes IgG and IgM, which are
the most prevalent subsets of memory B cells found in blood.
IgA was not included as this subpopulation of memory B cells
is predominantly expressed in mucosa-associated lymphatic
tissues, such as the intestine and mesenteric lymph nodes. IgE
was excluded from this panel, since this subset of memory B
cells is hardly detectable in human blood (63).

Chemokine receptors are important for the migration
and positioning of immune cells (64). This panel includes

CCR5, CCR6, CXCR3, and CXCR5. CCR5 is expressed by
activated and memory T cells (65), γδ T cells (66), and Tregs

(67). On human T cells, CCR6 is attributed to a Th17
(RORγt) phenotype (68). On B cells, CCR6 expression is
restricted to functionally mature cells capable of responding
to antigen challenge (69). CXCR3 has been reported to be
necessary for T cell clustering around antigen presenting
cells and T cell bystander activation (70) and also to be
expressed on subsets of γδ T cells (66). CXCR5 interacts
with CXCL13, which promotes T cell trafficking to B cell
follicles and germinal centers. These are crucial sites for the
generation of high-affinity antibody responses (71). More-
over, it has been shown that chronic inflammation leads to
modulation of chemokine receptor expression on peripheral
blood B cells. In patients with rheumatoid arthritis, B cells
show decreased expression of CXCR5 and CCR6 and
increased levels of CXCR3 (72).

Monocyte subsets were identified using CD14 (lipopoly-
saccharide binding protein) and CD16 (FcγRIII). These two
markers allow the identification of classical monocytes

Figure 1. A. Manual gating strategy. The gating strategy used to identify the main cellular subsets is presented. Arrows are used to

visualize the relationships across plots, and numbers are used to call attention to populations described here. After doublets and dead

cells were excluded, basophils (1) were delineated as CD45+CD123+HLA-DR-. Lymphocytes and monocytes (2) were gated based on FSC-

A/SSC-A properties. Monocytes (3) were then classified by CD14 and CD16 expression as non-classical (CD14−CD16+), intermediate

(CD14+CD16+/low), and classical (CD14+CD16-). From the lymphocyte gate (2), the following populations were identified: CD3−TCRγδ−,
CD3+TCRγδ+, and CD3+TCRγδ− (4). The CD3+TCRγδ+ population (5) was characterized based on CD45RA and CCR7 expression. The

CD3+TCRγδ− population was divided in CD3+CD56+ (NKT-like) and CD3+CD56− subsets (6). The inclusion of CD2 and CD8 enables further

classification of the NKT-like cells (7). CD4+, CD8+, CD4+CD8+ and CD4−CD8− T cells were identified from the CD3+CD56− gate (8). Tregs

were identified from the CD4+ population using CD127 and CD25 expression (CD127lo/-CD25hi) and CD39 and CD45RA were used to

further classify these cells (9). CCR7, CD45RA, CD27, and CD28 allowed for further classification of memory/effector CD4 and CD8 T cell

subsets (10, 11). CD19+ and/or CD20+ cells (B cells) were gated out of the CD3−TCRγδ− population (12). CD19+CD20+/− cells were further

gated as IgD+CD27−, IgD+CD27+, or IgD−CD27+/−; the IgD−CD27+/− subset was divided into plasmablasts or IgD− memory B cells based on

CD20 expression and IgG and IgM expression were assessed within the IgD- memory B cells (13). NK cells were defined as

CD3−TCRγδ−HLA-DR− and classified as early NK (CD56+CD16−), mature NK (CD56+CD16+), and terminal NK (CD56−CD16+) cells (14).

Dendritic cells (DCs, 15) were identified first by gating on CD3−CD19−CD56−CD14−HLA-DR+ and from there CD123+ (pDCs) and CD11c+

DCs were identified. CD11c+ DCs were further divided into CD16− and CD16+. CD1c and CD141 were then used to further classify the

CD11c+CD16− and CD11c+CD16+ DCs. Finally, innate lymphoid cells (ILCs, 16) were identified as CD3−CD19−CD20−CD14−CD123−CD127+

and subsetted based on CD2 and CD4 expression. All data presented is derived from frozen PBMCs of one healthy donor (donor ID 4559).

B. High-dimensional data analysis on PBMCs from four donors displaying FlowSOM clusters projected on to two UMAP dimensions to

show concordance between manual and automated analysis techniques. the overlay plot shows concatenated events from all four

samples, while the density plots show differences in population distribution between the individual samples. As expected with a

combination of high-resolution and high-dimensional data, several clusters contain events that evade a canonical definition. These

populations are displayed in gray.

Table 1. Summary table for application of OMIP-069

PURPOSE

DEEP SUBSET PROFILING OF IMMUNE CELLS

TO INCLUDE SUBSETS OF T, B, NK, NKT,

MONOCYTE, AND DENDRITIC CELLS

Species Human
Cell type PBMCs
Cross references OMIP-003, OMIP-004, OMIP-006,

OMIP-013, OMIP-015, OMIP-017,
OMIP-021, OMIP-023, OMIP-024,
OMIP-029, OMIP-030, OMIP-033,
OMIP-034, OMIP-039, OMIP-042,
OMIP-044, OMIP-050, OMIP-051,
OMIP-058, OMIP-060, OMIP-063
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(CD14++CD16−), non-classical monocytes (CD14+CD16++),
and an intermediate monocyte population (CD14+CD16+)
(73). Intermediate monocytes expand in the presence of cyto-
kines and inflammation. Non-classical monocytes have also

been shown to expand in inflammatory diseases. It has been
demonstrated that, over the course of infection, there is first
an increase in intermediate monocytes followed by an
increase in non-classical monocytes (74).

Table 2. Reagents used for OMIP-069

SPECIFICITY FLUOROCHROME CLONE PURPOSE

Viability Live Dead UV Blue — Viability
CD45 PerCP HI30 Leukocytes
CD3 BV510 SK7 Pan T cell, NKT-Like cells
CD4 cFluor YG584 SK3 CD4 T and NKT-Like cells
CD8 BUV805 SK1 CD8 T, NK, and NKT-Like cells
CD25 PE-Alexa Fluor700 CD25-3G10 Regulatory T cells
TCRγδ PerCP-eFluor 710 B1.1 Pan γδ T cell
CD14 Spark Blue 550 63D3 Monocyte differentiation
CD16 BUV496 3G8 Monocyte, NK cell, and dendritic cell

differentiation
CD11c eFluor 450 3.9 Dendritic Cell differentiation
CD19 Spark NIR 685 HIB19 B cells
CD20 Pacific Orange HI47 B cells
CD24 PE-Alexa Fluor 610 SN3 B cell differentiation
CD39 BUV661 TU66 B cell, Tregs, and monocyte differentiation
IgD BV480 IA6-2 B cell differentiation
IgG BV605 G18-145 B cell differentiation
IgM BV570 MHM-88 B cell differentiation
CD141 BB515 1A4 Dendritic cell differentiation
CD1c Alexa Fluor 647 L161 Dendritic cells, NKT-Like cells
CD123 Super Bright 436 6H6 Plasmacytoid dendritic cells
CD2 PerCP-Cy5.5 TS1/8 NK cell differentiation
CD56 BUV737 NCAM16.2 Pan NK cell, γδ T cell activation
CCR7 BV421 G043H7 T cell differentiation
CD27 APC-H7 M-T271 T and B cell differentiation
CD28 BV650 CD28.2 T cell and NK cell differentiation
CD45RA BUV395 5H9 T cell and dendritic cell differentiation
CD95 PE-Cy5 DX2 T cell and B cell differentiation
CD127 APC-R700 HIL-7R-M21 Cytokine receptor; T cell differentiation
CD337 PE-Dazzle594 P30-15 NK cell differentiation
CCR6 BV711 G034E3 Chemokine receptor; T cell and B cell

differentiation
CCR5 BUV563 2D7/CCR5 Chemokine receptor; Monocyte, dendritic cell, T

cell, and B cell differentiation
CXCR5 BV750 RF8B2 Chemokine receptor; T cell differentiation
CXCR3 PE-Cy7 G025H7 Chemokine receptor; Dendritic cell, T cell, and B

cell differentiation
HLA-DR PE-Fire810 L243 T cell and monocyte activation, NK cell lineage

discrimination, dendritic cell lineage marker
CD38 APC-Fire810 HIT2 Monocyte, dendritic cell, T cell, and B cell

activation/differentiation
CD57 FITC HNK-1 NK and CD8+ T cell immune senescence
PD-1 BV785 EH12.2H7 T cell inhibitory receptor
CD159a APC REA110 NK, NKT-Like, and γδ T cell activation/

differentiation
CD159c PE REA205 NK cell differentiation
CD314 BUV615 1D11 NK cell differentiation
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With the markers present in this panel, basophils were
identified as CD45dimCD123+HLA-DR− (75). The phenotype
of these cells can then be further characterized by evaluating
expression of CD38, CD95, and CD25.

Total ILCs were identified using a similar strategy as
presented in OMIP-055 (76). This subset was identified as
CD45+CD127+Lin-. For lineage markers, we used CD14,
CD19, CD20, and CD3. However, to fully identify these cells
other markers should be excluded like CD1a, CD34, CD303,
and FCεR1a. Despite lacking these markers, the cells identi-
fied as ILCs could be further classified based on expression of
CD2, CD4, CCR6, CXCR3, CD27, CD28, CXCR5, and CCR7
as previously reported (77).

Finally, to identify the main dendritic cell subsets,
CD11c, HLA-DR, CD141 (BDCA-3), CD1c (BDCA-1),
and CD123 were used as previously described (9). pDCs
were identified as lineage negative (CD3−CD19−

CD56−CD14−) HLA-DR+CD123+ cells; conventional DCs
were identified as CD123−CD11c+HLA-DR+, and they
were further subset based on CD141 (78) and CD1c
expression (79).

The manual gating strategy used to identify the main cell
subsets, based on the descriptions provided above, is shown in
Figure 1A. As it is more likely that a complex data set such as
this would be analyzed using a pipeline containing both dimen-
sionality reduction and clustering algorithms, we present in
Figure 1B the computationally derived analogs of manually
gated canonical subsets using such an unsupervised approach.
When preparing for any kind of automated analysis, it is imper-
ative that the data be of the highest quality, as any undesirable
events or processing artifacts will negatively affect the down-
stream results. In this case, the scaling of the data was first
checked to ensure the arcsinh transformation was unimodal
around 0 and then the data were cleaned by manual gating to
remove doublets, debris, and dead cells. The data were then run
through flowCut (80) to check for aberrant signal patterns or
events, and with none found. UMAP (81) was run to group
phenotypically similar events into “islands” to illustrate differ-
ences both between and inside each population. FlowSOM (82)
was subsequently used to cluster the events based on UMAP
parameters and selected surface markers in order to emphasize
differences between hard to resolve populations and then the
resulting clusters were overlaid on the initial UMAP parameters.
A traditional clustered heatmap analysis then followed to aid in
the identification and labeling of the FlowSOM clusters (See
Supporting Information Fig. S11A).

This 40-color panel (Table 2) presents a powerful tool
for in-depth characterization of lymphocytes, monocytes,
and dendritic cells present in human peripheral blood. It
covers almost the entire cellular composition of the human
peripheral immune system and will be particularly useful
for studies in which sample availability is limited or
unique biomarker signatures are sought. Taking advantage
of full spectrum cytometry, we present a panel that high-
lights the first published OMIP to go beyond 28-color
fluorescence flow cytometry with excellent population
resolution.

SIMILARITY TO PUBLISHED OMIPS

This panel is similar to OMIPs -015, -023, -024, -030, -033,
-034, -042, -50, -058, -063, which are all aimed at identifying
the main leukocyte subsets in human blood. It partially over-
laps with OMIPs -013, -017, -021, -030, and -060 for charac-
terization of T cells; OMIPs -004, -006, and -015 for Treg

immunophenotyping; OMIP -044 for dendritic cells; OMIPs
-003, -033, and -051 for B cells; and OMIPs −029, and -039
for NK cells (6-11,22,29,44,45,55,83-96).

STATEMENT OF ETHICAL USE OF HUMAN SAMPLES

All human PBMCs used in this study were obtained from
AllCells Alameda. Ethical review and regulatory compliance
were conducted by Alpha Independent Review Board under
Protocol number: 7000-SOP-045 (effective through April
26, 2021).

ACKNOWLEDGMENTS

The authors would like to thank BioLegend® for kindly pro-
viding the custom HLA-DR PE-Fire810 and CD38 APC-
Fire810 (now commercially available). In addition, the
authors would like to thank Janelle Shook and James Wei for
their assistance with the manuscript and figure preparation,
Geoff Kraker for doing the unsupervised analysis of the data,
Patrick Duncker for critical reading of the manuscript, and
Huimin Gu for her extensive work at testing different fluoro-
chrome combinations in preparation for this panel
development.

AUTHOR CONTRIBUTIONS

Lily M. Park: Conceptualization; data curation; formal analy-
sis; methodology; validation; visualization. Joanne Lannigan:
Data curation; formal analysis; project administration;
resources; visualization; writing - original draft; writing -
review and editing. Maria C. Jaimes: Conceptualization; data
curation; formal analysis; methodology; project administra-
tion; resources; software; supervision; validation; visualization;
writing - original draft; writing - review and editing.

CONFLICT OF INTEREST
Lily Park and Maria C. Jaimes are employees of Cytek Biosci-
ences, Inc., the manufacturer of the Aurora full spectrum flow
cytometer used in these studies. Joanne Lannigan is a paid
consultant for Cytek Biosciences, Inc.

LITERATURE CITED

1. Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the
human immunology project. Nat Rev Immunol 2012;12:191–200.

2. Aghaeepour N, Chattopadhyay PK, Ganesan A, O’Neill K, Zare H, Jalali A,
Hoos HH, Roederer M, Brinkman RR. Early immunologic correlates of HIV protec-
tion can be identified from computational analysis of complex multivariate T-cell
flow cytometry assays. Bioinformatics 2012;28:1009–1016.

3. Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, Scriba TJ, Mahomed H,
Hanekom W, Bart PA, et al. COMPASS identifies T-cell subsets correlated with
clinical outcomes. Nat Biotechnol 2015;33:610–616.

4. Chattopadhyay PK, Roederer M. A mine is a terrible thing to waste: High content,
single cell technologies for comprehensive immune analysis. Am J Transplant 2015;
15:1155–1161.

Cytometry Part A � 97A: 1044–1051, 2020 1049

OMIP



5. Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry:
Unravelling the immune system. Nat Rev Immunol 2004;4:648–655.

6. Liechti T, Roederer M. OMIP-058: 30-parameter flow cytometry panel to character-
ize iNKT, NK, unconventional and conventional T cells. Cytom Part A 2019;95A:
946–951.

7. Liechti T, Roederer M. OMIP-060: 30-parameter flow cytometry panel to assess T
cell effector functions and regulatory T cells. Cytom Part A 2019;95A:1129–1134.

8. Liechti T, Roederer M. OMIP-051 - 28-color flow cytometry panel to characterize B
cells and myeloid cells. Cytom Part A 2019;95A:150–155.

9. Mair F, Prlic M. OMIP-044: 28-color immunophenotyping of the human dendritic
cell compartment. Cytometry Part A 2018;93A:402–405.

10. Nettey L, Giles AJ, Chattopadhyay PK. OMIP-050: A 28-color/30-parameter fluores-
cence flow cytometry panel to enumerate and characterize cells expressing a wide
Array of immune checkpoint molecules. Cytom Part A 2018;93A:1094–1096.

11. Payne K, Li W, Salomon R, Ma CS. OMIP-063: 28-color flow cytometry panel for
broad human Immunophenotyping. Cytom Part A 2020;97A:777–781.

12. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S,
Vorobiev S, Dick JE, Tanner SD. Mass cytometry: Technique for real time single cell
multitarget immunoassay based on inductively coupled plasma time-of-flight mass
spectrometry. Anal Chem 2009;81:6813–6822.

13. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV,
Melamed R, Trejo A, Ornatsky OI, et al. Single-cell mass cytometry of differential
immune and drug responses across a human hematopoietic continuum. Science
2011;332:687–696.

14. Tsai AG, Glass DR, Juntilla M, Hartmann FJ, Oak JS, Fernandez-Pol S, Ohgami RS,
Bendall SC. Multiplexed single-cell morphometry for hematopathology diagnostics.
Nat Med 2020;26:408–417.

15. Wade CG, Rhyne RH Jr, Woodruff WH, Bloch DP, Bartholomew JC. Spectra of
cells in flow cytometry using a vidicon detector. J Histochem Cytochem 1979;27:
1049–1052.

16. Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, Kabashima K,
Watanabe T, Furuki M, Tomura M. Novel full-spectral flow cytometry with multiple
spectrally-adjacent fluorescent proteins and fluorochromes and visualization of
in vivo cellular movement. Cytom Part A 2015;87A:830–842.

17. Gauci MR, Vesey G, Narai J, Veal D, Williams KL, Piper JA. Observation of single-
cell fluorescence spectra in laser flow cytometry. Cytometry 1996;25:388–393.

18. Nolan JP, Condello D. Spectral flow cytometry. Curr Protoc Cytom 2013;63(1):
1.27.1–1.27.13.

19. Sanders CK, Mourant JR. Advantages of full spectrum flow cytometry. J Biomed
Opt 2013;18:037004.

20. Gregori G, Patsekin V, Rajwa B, Jones J, Ragheb K, Holdman C, Robinson JP.
Hyperspectral cytometry at the single-cell level using a 32-channel photodetector.
Cytom Part A 2012;81A:35–44.

21. Brodie TM, Tosevski V, Medova M. OMIP-045: Characterizing human head and
neck tumors and cancer cell lines with mass cytometry. Cytom Part A 2018;93A:
406–410.

22. Baumgart S, Peddinghaus A, Schulte-Wrede U, Mei HE, Grutzkau A. OMIP-034:
Comprehensive immune phenotyping of human peripheral leukocytes by mass
cytometry for monitoring immunomodulatory therapies. Cytom Part A 2017;91A:
34–38.

23. Dusoswa SA, Verhoeff J, Garcia-Vallejo JJ. OMIP-054: Broad immune phenotyping
of innate and adaptive leukocytes in the brain, spleen, and bone marrow of an
Orthotopic murine glioblastoma model by mass cytometry. Cytom Part A 2019;
95A:422–426.

24. Jaracz-Ros A, Hemon P, Krzysiek R, Bachelerie F, Schlecht-Louf G, Gary-Gouy H.
OMIP-048 MC: Quantification of calcium sensors and channels expression in lym-
phocyte subsets by mass cytometry. Cytom Part A 2018;93A:681–684.

25. Maecker HT, Harari A. Immune monitoring technology primer: Flow and mass
cytometry. J Immunother Cancer 2015;3:44.

26. Nassar AF, Wisnewski AV, Raddassi K. Automation of sample preparation for mass
cytometry barcoding in support of clinical research: Protocol optimization. Anal
Bioanal Chem 2017;409:2363–2372.

27. Olsen LR, Leipold MD, Pedersen CB, Maecker HT. The anatomy of single cell mass
cytometry data. Cytom Part A 2019;95A:156–172.

28. Montaldo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A,
Moretta L. Human NK cell receptors/markers: A tool to analyze NK cell develop-
ment, subsets and function. Cytom Part A 2013;83A:702–713.

29. Mahnke YD, Beddall MH, Roederer M. OMIP-029: Human NK-cell
phenotypization. Cytom Part A 2015;87A:986–988.

30. Creelan BC, Antonia SJ. The NKG2A immune checkpoint - a new direction in can-
cer immunotherapy. Nat Rev Clin Oncol 2019;16:277–278.

31. Ma M, Wang Z, Chen X, Tao A, He L, Fu S, Zhang Z, Fu Y, Guo C, Liu J, et al.
NKG2C(+)NKG2A(−) natural killer cells are associated with a lower viral set point
and may predict disease progression in individuals with primary HIV infection.
Front Immunol 2017;8:1176.

32. Nielsen CM, White MJ, Goodier MR, Riley EM. Functional significance of
CD57 expression on human NK cells and relevance to disease. Front Immunol
2013;4:422.

33. Jiang Y, Cui X, Cui C, Zhang J, Zhou F, Zhang Z, Fu Y, Xu J, Chu Z, Liu J, et al.
The function of CD3+CD56+ NKT-like cells in HIV-infected individuals. Biomed
Res Int 2014;2014:863625.

34. Wan F, Hu CB, Ma JX, Gao K, Xiang LX, Shao JZ. Characterization of γδ T cells
from zebrafish provides insights into their important role in adaptive humoral
immunity. Front Immunol 2016;7:675.

35. Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA, McLaren JE, Hunter S,
Salim M, Mohammed F, Price DA, et al. Clonal selection in the human Vδ1 T cell
repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat Commun
2017;8:14760.

36. Holtmeier W, Kabelitz D. Gammadelta T cells link innate and adaptive immune
responses. Chem Immunol Allergy 2005;86:151–183.

37. Bank I. The role of Gamma Delta T cells in autoimmune rheumatic diseases. Cell
2020;9(2):462.

38. Ryan PL, Sumaria N, Holland CJ, Bradford CM, Izotova N, Grandjean CL,
Jawad AS, Bergmeier LA, Pennington DJ. Heterogeneous yet stable Vdelta2(+) T-
cell profiles define distinct cytotoxic effector potentials in healthy human individ-
uals. Proc Natl Acad Sci U S A 2016;113:14378–14383.

39. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C, Salerno A. Differentia-
tion of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or
inflammatory sites. J Exp Med 2003;198:391–397.

40. Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T-cell
differentiation: Human memory T-cell subsets. Eur J Immunol 2013;43:2797–2809.

41. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T
lymphocytes with distinct homing potentials and effector functions. Nature 1999;
401:708–712.

42. Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T
lymphocyte subsets: Consensus and issues. Cytom Part A 2008;73A:975–983.

43. Oja AE, Piet B, van der Zwan D, Blaauwgeers H, Mensink M, de Kivit S, Borst J,
Nolte MA, van Lier RAW, Stark R, et al. Functional heterogeneity of CD4(+)
tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front
Immunol 2018;9:2654.

44. Staser KW, Eades W, Choi J, Karpova D, DiPersio JF. OMIP-042: 21-color flow
cytometry to comprehensively immunophenotype major lymphocyte and myeloid
subsets in human peripheral blood. Cytom Part A 2018;93A:186–189.

45. Wingender G, Kronenberg M. OMIP-030: Characterization of human T cell subsets
via surface markers. Cytom Part A 2015;87A:1067–1069.

46. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expres-
sion of the interleukin 7 receptor identifies effector CD8 T cells that give rise to
long-lived memory cells. Nat Immunol 2003;4:1191–1198.

47. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE,
Casazza JP, Kuruppu J, Migueles SA, Connors M, et al. Expression of CD57 defines
replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood
2003;101:2711–2720.

48. Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional
immune deficiency. J Leukoc Biol 2010;87:107–116.

49. Meditz AL, Haas MK, Folkvord JM, Melander K, Young R, McCarter M,
Mawhinney S, Campbell TB, Lie Y, Coakley E, et al. HLA-DR+ CD38+ CD4+ T
lymphocytes have elevated CCR5 expression and produce the majority of R5-tropic
HIV-1 RNA in vivo. J Virol 2011;85:10189–10200.

50. Ndhlovu ZM, Kamya P, Mewalal N, Kloverpris HN, Nkosi T, Pretorius K, Laher F,
Ogunshola F, Chopera D, Shekhar K, et al. Magnitude and kinetics of CD8+ T cell
activation during Hyperacute HIV infection impact viral set point. Immunity 2015;
43:591–604.

51. Wang Z, Zhu L, Nguyen THO, Wan Y, Sant S, Quinones-Parra SM, Crawford JC,
Eltahla AA, Rizzetto S, Bull RA, et al. Clonally diverse CD38(+)HLA-DR(+)CD8(+)
T cells persist during fatal H7N9 disease. Nat Commun 2018;9:824.

52. Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K, Doho GH, Tata P,
Gupta S, Zilliox MJ, Nakaya HI, et al. Phenotype, function, and gene expression
profiles of programmed death-1(hi) CD8 T cells in healthy human adults.
J Immunol 2011;186:4200–4212.

53. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 check-
point. Immunity 2018;48:434–452.

54. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P,
Gingeras TR, Fazekas de St Groth B, et al. CD127 expression inversely correlates
with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006;
203:1701–1711.

55. Mahnke YD, Beddall MH, Roederer M. OMIP-015: Human regulatory and activated
T-cells without intracellular staining. Cytom Part A 2013;83A:179–181.

56. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K,
Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73
expressed on regulatory T cells mediates immune suppression. J Exp Med 2007;204:
1257–1265.

57. Dwyer KM, Hanidziar D, Putheti P, Hill PA, Pommey S, McRae JL, Winterhalter A,
Doherty G, Deaglio S, Koulmanda M, et al. Expression of CD39 by human periph-
eral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype.
Am J Transplant 2010;10:2410–2420.

58. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R,
Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, et al. Expression of ecto-
nucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and
immune suppression. Blood 2007;110:1225–1232.

59. Klein U, Rajewsky K, Kuppers R. Human immunoglobulin (Ig)M+IgD+ peripheral
blood B cells expressing the CD27 cell surface antigen carry somatically mutated
variable region genes: CD27 as a general marker for somatically mutated (memory)
B cells. J Exp Med 1998;188:1679–1689.

60. von Borstel A, Lintermans LL, Heeringa P, Rutgers A, Stegeman CA, Sanders JS,
Abdulahad WH. Circulating CD24hiCD38hi regulatory B cells correlate inversely
with the ThEM17 cell frequency in granulomatosis with polyangiitis patients. Rheu-
matology (Oxford) 2019;58(8):1361–1366.

61. Rosser EC, Mauri C. Regulatory B cells: Origin, phenotype, and function. Immunity
2015;42:607–612.

1050 OMIP-069: 40 Color Deep Immune Profiling

OMIP



62. Avery DT, Ellyard JI, Mackay F, Corcoran LM, Hodgkin PD, Tangye SG. Increased
expression of CD27 on activated human memory B cells correlates with their com-
mitment to the plasma cell lineage. J Immunol 2005;174:4034–4042.

63. Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol 2008;20:149–157.

64. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: Position-
ing cells for host defense and immunity. Annu Rev Immunol 2014;32:659–702.

65. Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H,
Sodroski J, Newman W, Koup RA, et al. CCR5 levels and expression pattern corre-
late with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med 1997;185:
1681–1691.

66. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D. Patterns of che-
mokine receptor expression on peripheral blood gamma delta T lymphocytes:
Strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma
delta T cells. J Immunol 2002;168:4920–4929.

67. Lim HW, Broxmeyer HE, Kim CH. Regulation of trafficking receptor expression in
human forkhead box P3+ regulatory T cells. J Immunol 2006;177:840–851.

68. Geginat J, Paroni M, Facciotti F, Gruarin P, Kastirr I, Caprioli F, Pagani M,
Abrignani S. The CD4-centered universe of human T cell subsets. Semin Immunol
2013;25:252–262.

69. Elgueta R, Marks E, Nowak E, Menezes S, Benson M, Raman VS, Ortiz C,
O’Connell S, Hess H, Lord GM, et al. CCR6-dependent positioning of memory B
cells is essential for their ability to mount a recall response to antigen. J Immunol
2015;194:505–513.

70. Maurice NJ, McElrath MJ, Andersen-Nissen E, Frahm N, Prlic M. CXCR3 enables
recruitment and site-specific bystander activation of memory CD8(+) T cells. Nat
Commun 2019;10:4987.

71. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, Sallusto F, Tangye SG,
Mackay CR. CXCR5 expressing human central memory CD4 T cells and their rele-
vance for humoral immune responses. J Immunol 2011;186:5556–5568.

72. Henneken M, Dorner T, Burmester GR, Berek C. Differential expression of che-
mokine receptors on peripheral blood B cells from patients with rheumatoid
arthritis and systemic lupus erythematosus. Arthritis Res Ther 2005;7:
R1001–R1013.

73. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ,
Liu YJ, MacPherson G, Randolph GJ, et al. Nomenclature of monocytes and den-
dritic cells in blood. Blood 2010;116:e74–e80.

74. Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their dif-
ferentiation patterns during infection. J Leukoc Biol 2007;82:244–252.

75. Han X, Jorgensen JL, Brahmandam A, Schlette E, Huh YO, Shi Y, Awagu S,
Chen W. Immunophenotypic study of basophils by multiparameter flow cytometry.
Arch Pathol Lab Med 2008;132:813–819.

76. Bianca Bennstein S, Riccarda Manser A, Weinhold S, Scherenschlich N, Uhrberg M.
OMIP-055: Characterization of human innate lymphoid cells from neonatal and
peripheral blood. Cytom Part A 2019;95A:427–430.

77. Roan F, Stoklasek TA, Whalen E, Molitor JA, Bluestone JA, Buckner JH, Ziegler SF.
CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset
that is increased in systemic sclerosis. J Immunol 2016;196:2051–2062.

78. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ,
Dunbar PR, Wadley RB, Jeet V, et al. Human CD141+ (BDCA-3)+ dendritic cells

(DCs) represent a unique myeloid DC subset that cross-presents necrotic cell anti-
gens. J Exp Med 2010;207:1247–1260.

79. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology
2013;140:22–30.

80. Meskas J, Wang S, Brinkman R. flowCut — An R package for precise and accurate
automated removal of outlier events and flagging of files based on time versus fluo-
rescence analysis. bioRxiv 2020.

81. McInnes L, Healy J, Melville J. UMAP: Uniform manifold approximation and pro-
jection for dimension rReduction. ArXiv e-prints 2018;1802.03426.

82. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P,
Dhaene T, Saeys Y. FlowSOM: Using self-organizing maps for visualization and
interpretation of cytometry data. Cytom Part A 2015;87A:636–645.

83. Wei C, Jung J, Sanz I. OMIP-003: Phenotypic analysis of human memory B cells.
Cytom Part A 2011;79A:894–896.

84. Biancotto A, Dagur PK, Fuchs JC, Langweiler M, McCoy JP Jr. OMIP-004: In-depth
characterization of human T regulatory cells. Cytom Part A 2012;81A:15–16.

85. Murdoch DM, Staats JS, Weinhold KJ. OMIP-006: Phenotypic subset analysis of
human T regulatory cells via polychromatic flow cytometry. Cytom Part A 2012;
81A:281–283.

86. Mahnke YD, Beddall MH, Roederer M. OMIP-013: Differentiation of human T-
cells. Cytom Part A 2012;81A:935–936.

87. Mahnke YD, Beddall MH, Roederer M. OMIP-017: Human CD4(+) helper T-cell
subsets including follicular helper cells. Cytom Part A 2013;83A:439–440.

88. Brodie T, Brenna E, Sallusto F. OMIP-018: Chemokine receptor expression on
human T helper cells. Cytom Part A 2013;83A:530–532.

89. Mahnke YD, Beddall MH, Roederer M. OMIP-019: Quantification of human
gammadeltaT-cells, iNKT-cells, and hematopoietic precursors. Cytom Part A 2013;
83A:676–678.

90. Wistuba-Hamprecht K, Pawelec G, Derhovanessian E. OMIP-020: Phenotypic char-
acterization of human gammadelta T-cells by multicolor flow cytometry. Cytom
Part A 2014;85A:522–524.

91. Gherardin NA, Ritchie DS, Godfrey DI, Neeson PJ. OMIP-021: Simultaneous quan-
tification of human conventional and innate-like T-cell subsets. Cytom Part A 2014;
85A:573–575.

92. Brodie T, Rothaeusler K, Sospedra M. OMIP-033: A comprehensive single step
staining protocol for human T- and B-cell subsets. Cytom Part A 2016;89A:
629–632.

93. Hammer Q, Romagnani C. OMIP-039: Detection and analysis of human adaptive
NKG2C(+) natural killer cells. Cytom Part A 2017;91A:997–1000.

94. Nowatzky J, Stagnar C, Manches O. OMIP-053: Identification, classification, and
isolation of major FoxP3 expressing human CD4(+) Treg subsets. Cytom Part A
2019;95A:264–267.

95. Bocsi J, Melzer S, Dahnert I, Tarnok A. OMIP-023: 10-color, 13 antibody panel for
in-depth phenotyping of human peripheral blood leukocytes. Cytom Part A 2014;
85A:781–784.

96. Moncunill G, Han H, Dobano C, McElrath MJ, De Rosa SC. OMIP-024: Pan-
leukocyte immunophenotypic characterization of PBMC subsets in human samples.
Cytom Part A 2014;85A:995–998.

Cytometry Part A � 97A: 1044–1051, 2020 1051

OMIP


	 OMIP-069: Forty-Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human Periphe...
	Background
	Similarity to published OMIPs
	Statement of ethical use of human samples
	Acknowledgments
	Author contributions
	Conflict of Interest
	Literature Cited


