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Abstract

The ample variety of labeling dyes and staining methods available in fluorescence microscopy has enabled biologists to
advance in the understanding of living organisms at cellular and molecular level. When two or more fluorescent dyes are
used in the same preparation, or one dye is used in the presence of autofluorescence, the separation of the fluorescent
emissions can become problematic. Various approaches have been recently proposed to solve this problem. Among them,
blind non-negative matrix factorization is gaining interest since it requires little assumptions about the spectra and
concentration of the fluorochromes. In this paper, we propose a novel algorithm for blind spectral separation that addresses
some of the shortcomings of existing solutions: namely, their dependency on the initialization and their slow convergence.
We apply this new algorithm to two relevant problems in fluorescence microscopy: autofluorescence elimination and
spectral unmixing of multi-labeled samples. Our results show that our new algorithm performs well when compared with
the state-of-the-art approaches for a much faster implementation.
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Introduction

The ability to fluorescently label specific cell structures has

improved our understanding of the mechanisms that govern living

organisms. In this paper, we address two related issues that

complicate the analysis of fluorescently labeled samples: the

detection of fluorescent objects in the presence of autofluorescent

material and the spectral unmixing of fluorescent channels in

samples labeled with multiple fluorochromes.

The first issue has to do with the elimination of strongly

autofluorescent material that can be easily mistaken for real

fluorescence staining. Autofluorescence comes from different

sources: some extracellular components (e.g., collagen fibers) and

cell types are highly autofluorescent (e.g., eritrocites or macro-

phages [1]). It can be biochemically reduced using autofluores-

cence quenching agents such as trypan blue or crystal violet [2], at

the expense of spurious emissions at longer wavelengths [3]. Other

techniques used in flow cytometry exploit the different lifetime

(i.e., fluorescence-lifetime imaging microscopy, FLIM) between

autofluorescence and fluorochrome staining [4,5]. However,

measuring FLIM differences requires specialized hardware [6,7].

Billington’s review [8] describes other chemical and biological

methods to reduce autofluorescence and image acquisition

hardware to help in the discrimination between the autofluores-

cence and the fluorescence of interest. We, following Ecker et al.

[9] and others, treat autofluorescence as an additional fluoro-

chrome in the samples, and removing it is dealt with as a spectral

unmixing problem.

The second issue deals with the non-ideal nature of fluorescence

spectra and optical filters. In a biological sample, the fluorescence

emission of each dye is usually recorded using an appropriate

combination of excitation and emission filters. In a fluorescence

microscope, a specific filter cube is required for each fluorescent

dye. Each filter cube has an excitation filter, a dichroic mirror and

an emission filter. The emission filter for a particular fluorescent

dye is designed to include the nominal emission wavelength for its

reference spectrum, and a bandwidth that implements a compro-

mise between fluorochrome specificity and intensity. The fluoro-

chrome emission spectrum gradually decays towards the longer

wavelengths and sharply towards the shorter ones [10,11]. This

gradual decay in the emission spectrum causes the signals from

fluorescent dyes to mix with the emissions of longer wavelength

fluorochromes. Spectral unmixing is normally used to separate

each original signal from the recorded mixtures.

Several methods for spectrally unmixing fluorescent emissions

have been proposed in the literature. Zimmermann [10] was

among the first to model the recorded fluorescence emission as a

linear combination of the reference spectra of all involved

fluorochromes, thus adopting the Linear Mixing Model (LMM)
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previously used in chemistry [12]. When the linear combination

coefficients –also called crosstalk coefficients- are known, the

simplest method to separate the spectral components of the

mixture is a weighted subtraction of the intensities of the longer

wavelength channels from the intensities of the shorter ones [10].

The underlying assumption is that a fluorophore emits only at its

nominal or longer emission wavelengths. Under this assumption,

the cross-talk coefficients can be estimated using linear regression

on the joint histogram [11]. Strictly speaking this assumption does

not hold true because there is always fluorescence emission below

the nominal emission wavelength. Furthermore, this method

requires having at least one channel where the detected intensities

come from a single fluorophore. On the bright side, the model is

simple, and provides acceptable results in many practical settings.

If the model is extended by allowing contributions from longer

wavelength emitting dyes, the problem cannot be solved by

subtraction, and a full system of equations must be solved. The

method was first proposed by Castleman [13] for the color

compensation of multicolor FISH images. The basic principle is as

follows: for a given pixel, the known terms of the equations are the

detected emissions in all detection channels and the relative

contributions of the pure fluorochromes to each detection channel.

The unknowns to be calculated are the specific contributions of

each fluorochrome to the intensity of each voxel. The relative

contribution of each pure fluorochrome to each detection channel

can be measured a priori in single-stained samples, or on areas of

multiple-stained samples that contain only one of the fluoro-

chromes. To solve the system of equations the standard method

uses quadratic error minimization [12,14]. To better fit the

solution, all fluorochrome contributions are constrained to be non-

negative, thus the solution can be calculated using a Non-Negative

Least Squares (NNLS) algorithm [15].

In general, it is difficult to correctly estimate the relative

contributions of a fluorophore to each detection channel, since

they depend not only on the spectra of the fluorophores, but also

on other factors, such as their concentrations, quantum efficiency,

photobleaching rates or illumination conditions. In other words,

the spectral characterization of the fluorophores is time consuming

and not fully reliable as the spectra are subject to experimental and

biological variability. Moreover, the task may also require

additional hardware and can be time consuming. Consequently,

methods that simultaneously estimate both the relative contribu-

tions of the fluorochrome to each channel and the actual

fluorochrome intensities per voxel –i.e., blind methods– have

been recently proposed. Among these methods, derived from

Statistics and Linear Algebra [11,16,17], Non-Negative Matrix

Factorization (NMF) has emerged as one particularly successful

technique. It will be introduced in the next section. Worth

mentioning is also the family of Parallel Factor Analysis

(PARAFAC) [18] or Non-negative Tensor Factorization (NTF)

[19,23]. These methods include the absorption spectrum of

fluorophores in the analysis, since the intensity of the light emitted

by a fluorophore does not only depend on the emission spectrum

but also on their absorption spectrum. Therefore, whenever we

excite a mixture of fluorophores with a sequence of excitations

wavelengths, the light detected by a fixed array of emission

channels will be different for each fluorophore. By acquiring all

channels for each excitation wavelength, we have additional

information, which can be used to recover the correct fluorophore

distribution. The downside of the method is the added complexity

of acquiring all possible combinations of excitation and emission

wavelengths. Another interesting approach was proposed by

Gavrilovic et al. [20]. In their method, the cross-talk is estimated

from the shift in the spectral angles computed from the pixel hues.

This spectral phasor analysis is a promising technique recently

capturing attention in the literature [21,22].

The use of NMF for the spectral unmixing of fluorescent images

was first proposed by us [23] and Neher et al. [24]. Later, Woolfe

et al. [25] applied NMF to remove autofluorescence from images

using a two-step method (i.e., comparing images before and after

staining). Here, we build on our initial work [23] to develop a

novel algorithm that overcomes the limitations of previously

published methods, namely their slow and suboptimal conver-

gence, especially when the fluorochrome spectral emissions

strongly overlap. Furthermore, we propose a novel initialization

for the crosstalk coefficients that fits the typical spectral emission of

the fluorochromes more closely than the shifted Gaussian

approximation used by Neher et al. [24]. These methodological

improvements allow us to successfully apply the NMF algorithm to

two very relevant tasks: the detection of fluorescently labeled

nuclei from autofluorescent material and the spectral separation of

the emissions in multiple fluorescence in-situ hybridization samples

(M-FISH). Removing autofluorescent material is performed in one

step –one single acquisition- using the additional information given

by extra channels -as described by Roederer et al. [26] and

followed by us [27]- which results in a simpler approach than the

two step method of Woolfe et al. [25].

The paper is organized as follows: in the next section, we

introduce the basic theory and the existing solutions for NMF.

Then, we explain the limitations of the existing methods and how

we have addressed them in our implementation. In the Materials

and Methods section, we present the experiments and materials

used to test our algorithm. Finally, the results are presented and

discussed.

Materials and Methods

Ethical Statement
The samples used in this study were obtained, after the subject’s

consent, within the context of the project ‘‘Application of the

FICTION technique as a diagnostic tool in lung cancer

detection’’, granted by the Health Division of the Government

of Navarra. The protocol was approved by the Committee on the

Ethics of Research of the University Clinic of the Faculty of

Medicine of the University of Navarra. Written informed consent

was obtained from each subject.

Linear Mixing Model
The basic premise of linear mixture modeling is that a given

microscope field-of-view contains a known number of fluoro-

chromes with relatively constant spectral properties. As the

emitted light comes from the excitation of the whole field-of-view,

the emissions of the different fluorochromes contribute to the

intensities detected per channel in an additive way. Moreover, the

overall gain with which a probe contributes to this addition is

proportional to its contribution at each voxel.

Following the LMM theory [12], the intensity measured in the

emission channel i at a pixel j (yij) is a linear combination of the

contributions of each fluorochrome k (hkj) weighted by the crosstalk

of the fluorochromes into that channel (aik). These crosstalk

coefficients are non-negative values defined between 0 and 1. In

matrix form, we can express the resulting system of equations as

Y = AH, where Y is the L6N matrix of detected intensities, being L

the number of spectral channels and N the number of pixels,

arranged as columns; A is the L6M crosstalk coefficient matrix,

where M is the number of fluorochromes used. Finally, H is the

M6N fluorochrome emission matrix. The goal of a spectral

unmixing algorithm is to find the real contributions (H) of the

Blind Spectral Unmixing Using Multi-Layer NMF
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fluorochromes to the voxel intensities (Y) measured in each

channel.

Non-negative Matrix Factorization
Solving a NMF problem, previously referred to as Non-negative

Matrix Approximation [28] or Positive Matrix Factorization [29],

can be formulated as the following optimization problem:

arg min
A, H

D Y A,Hjð Þ subject to A, H §0,

where the function D measures the goodness-of-fit of the

estimation of Y, given A and H. A number of functions D have

been proposed [28,30], being the two most common the L2-norm

and the Kullback-Leibler divergence [31]. The first assumes the

presence of additive Gaussian noise in the measurements, while

the second assumes Poisson distribution [32]. Lee and Seung [32]

proposed a solution for both scenarios that uses a gradient descent

algorithm with multiplicative update rules. The algorithm starts

from an initial estimation of both A and H and then moves along

the direction of maximum descent of the objective function, by

alternatively updating A and H. The use of these multiplicative

updates guarantees maintaining the positivity of both matrices.

In general, a unique solution cannot be guaranteed [33,34,35]

since for any solution of the NMF algorithm, infinite alternative

solutions may be constructed. Namely, if B is an invertible matrix,

i.e. BB21 = I, the following matrices A9 = AB and H9 = B21H, are

also solutions of the optimization [33,34]. To constrain the

problem, a regularization term can be added to the objective

function. This term is designed to improve the convexity of the

distance function, which in turn reduces the number of local

minima. A fair number of regularization functions have been

proposed in the literature and the corresponding update rules have

been calculated for many of them (see [28,31,36,37] for a review).

Common regularization terms are the L2-norm, the L1-norm [38]

or the ratio between both presented by Hoyer et al. [39]. We adopt

the latter as it gives a preference to spatially sparse solutions with

maximal spectral overlap. We will refer to it as NMF with

Segregation Bias (NMF-SB).

Shortcomings of the Existing Methods and Solution
Proposed

Two common, unsolved problems of NMF are the existence of

local minima in the objective function and the slow convergence of

the multiplicative rules used by the gradient descent algorithm.

Due to the existence of local minima, the final solution strongly

depends on the initialization of the algorithm. Neher et al. [24]

chose to initialize A using Gaussian functions centered at the

nominal wavelengths of the reference spectra. Each Gaussian

spectrum occupied a column in A. This Gaussian approximation is

not well suited in most settings, because it does not take into

account the asymmetry of the typical fluorochrome spectra. To

compensate for this, they proposed to shift the Gaussian spectra

towards the longer wavelengths: by shifting the Gaussian

spectrum, its center of mass is shifted closer to the center of mass

of a real asymmetric spectrum (see supplementary material of

[24]). Instead, we propose to use an exponential initialization

matrix.

To address the slow convergence of the algorithm, we based our

proposal, called multi-layer NMF (NMF-ML) on the technique

developed by Cichocki et al. [40]. The main idea behind the

method is to apply NMF to the matrix components resulting from

a previous NMF decomposition. Therefore, once A(1) and H(1) are

obtained from a first NMF calculation, H(1) is further decomposed

into A(2) and H(2) by applying the NMF decomposition again. The

result is the decomposition of Y into A(1) A(2) H (2) and so on. In

essence, the basic matrix A is replaced by a set of cascade (factor)

matrices. Since the model is linear, all the matrices can be merged

into a single matrix A, if no special constraints are imposed upon

the individual matrices A(n). The global convergence criteria at the

nth decomposition can be related to the distance between A and

the identity matrix, D(A,I) since at convergence, H(n21) = A(n) H(n),

which in turn implies that A(n) = I or else, D(A,I) = 0. Although a

theoretical framework for the analysis of multi-layering is still an

open question, intuitively it accelerates convergence and alleviates

local minima by distributing the structure of the A matrix [41].

Next, we describe the initialization of the crosstalk coefficient

matrix A and the fluorochrome emission matrix H, present the

implementation of our novel NMF-ML algorithm, and test it in

our two target applications.

Matrix initialization. To initialize the crosstalk coefficient

matrix A0, we build on the following observations: i. all

fluorochrome emissions are more intense in their nominal

emission channel than in the other channels; ii. all fluorochrome

contributions are strictly positive; iii. the spectrum of any

fluorophore –the columns of the mixing matrix A- falls gradually

towards longer wavelengths and sharply towards the shorter ones.

In summary, assuming that the rows of Y and H are ordered by

increasing wavelength, the matrix form of A requires a diagonally

dominant non-negative matrix, where the lower triangular part of

the matrix contains higher values than the upper triangular part.

To fulfill these requirements, our proposal is to initialize A as an

exponential matrix. If L = M, each element of the lower triangular

part and the diagonal is initialized as ai,j = 22(i–j), while the upper

triangular part is initialized as ai,j = 22L To ensure that the sum of

the components for each pixel does not change after the unmixing

i.e., that the sum of each column of Y equals the sum of each

column of H, the sum of each column of A is normalized to one.

An example of a 363 matrix (before normalization) is:

1 1=8 1=8
1=2 1 1=8
1=4 1=2 1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

If the matrix we wish to generate is not square (L?M), we first

create a squared matrix of size equal to the largest dimension and

then, interpolate it to the desired size.

To initialize the fluorochrome contribution matrix H, we make

it equal to the detected intensity matrix Y, i.e. H = Y if L = M.

Otherwise we use random values.

Proposed NMF-ML algorithm. After initialization, H and

A are alternatively updated using the multiplicative update rules

described in [40]. The values of a1 and a2 enforce the sparseness

of the H and A matrices respectively and are typically in the range

of 0.001–0.5 [40]. In our experiments, they were fixed to 0.01 and

0.1 respectively. Negative values are clipped to a small value

e = 106 times the machine precision, as used in NMFLAB [39]. At

the 20th iteration the first layer of the NMF algorithm is created:

the cumulative matrix Ac is initialized to the current estimation of

A, and A is reset to an M6M exponential matrix. The

fluorochrome emission matrix H is calculated using the regular-

ized Moore-Penrose inverse, setting all negative components to e.

Both matrices A and H are then updated until the 39th iteration.

At the 40th iteration and every 20 iterations onwards, a new NMF

layer is created: Ac is updated by multiplying it by the current

estimation of A and then, the A matrix is reset. This way, at any

Blind Spectral Unmixing Using Multi-Layer NMF

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78504



given time Ac contains the cumulative product of all the A
matrices. The fluorochrome emission matrix H is calculated using

the regularized pseudo-inverse of Ac. Upon convergence, the A
matrix approaches the identity matrix I.

After convergence, the final H matrix is calculated using the Ac

matrix using the same regularized Moore-Penrose inverse used

every 20 iterations, setting all negative components to 0. Finally,

the Ac matrix is returned along with H. The following pseudo-

code describes the proposed NMF-ML algorithm:

Detection of Stained Nuclei in the Presence of
Autofluorescence

In this application, the NMF-ML algorithm is used to

distinguish autofluorescent cell nuclei from single-color stained

fluorescence nuclei in microscopy images. The underlying idea is

that autofluorescence can be treated as any other fluorochrome,

and distinguished from actual fluorochrome emissions by its

extended spectrum. Therefore, we feed the algorithm with pixel

data from three input channels –wide enough as to cover the

broad fluorescent emission of autofluorescence– and force the

output to belong to one of two classes: single-channel fluorescence

–corresponding to stained nuclei- or autofluorescence –corre-

sponding to autofluorescent objects-. We first test the performance

of the algorithm on artificially generated images, and then apply it

to real images.

Synthetic images. We created 100 synthetic 2566256, 3-

channel images containing four round objects simulating cell

nuclei. Two nuclei displayed mild autofluorescence, one strong

autofluorescence and one simulated a stained nucleus, with a

strong emission in the blue channel. Autofluorescent nuclei are

assigned similar intensities in all channels (see Figure 1).

To create each image, there are ten parameters that need to be

selected:

N emission intensity of the strong autofluorescent nucleus (1

parameter),

N emission intensity of the two mild autofluorescent nuclei (1),

N emission intensities of the three spectral channels of the stained

nucleus (3),

N transmittance of the emission filters corresponding to the three

acquisition channels (3),

N amount of additive noise (1),

N amount of multiplicative noise level (1).

Each parameter is assigned an admissible interval of values. If

we consider the parameter space as the cross product of all

admissible intervals for each parameter, the result is a 10-

dimensional space where each point represents a particular

combination of parameters. To choose the set of parameter

combinations –i.e., the points in the 10-dimensional space– with a

high degree of uniformity, we generated the first 100 points from a

10-dimensional version of a Halton point set [42,43], which is

specially designed to generate any number of points uniformly

distributed in any number of dimensions.

Real images: sample preparation and image acqui-

sition. Broncho-alveolar lavage samples (BAL) [44] from

Input:
Y, the observation matrix

A0, the initial estimation for A

H0, the initial estimation for H

Output:
A, the mixing matrix

H, the fluorochrome contribution matrix

A r A0 /* Initialization of A */

H r H0 /* Initialization of H */

Y0 r Y /* Initialization of Y */

do

every 20 iterations: /* start of new level */

20th iteration: /* first level */

Ac r A

A r A0

other: /* following levels */

Ac r Ac A /* so Ac = A1 … An at level n */

A r A0

Y r H
H r (Ac

T Ac+e)21 Ac
T Y0

clip negative values of H to e
H r H .* clip (AT Y - a1) ./ ((AT A) H+e )

A r A .* (clip (H YT - a2) ./ ((A (H HT))T+e ))T

normalize each column of A by the sum of its elements

loop until max |A - I|,tol

H r (Ac
T Ac+e)21 Ac

T Y0

clip negative values of H to 0

return Ac, H

Blind Spectral Unmixing Using Multi-Layer NMF

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e78504



asymptomatic subjects were mixed with cells from two established

lung cancer cell lines, A549 and H460. The samples were stained

with a nuclear immuno-marker antibody against the protein

hnRNPA1, conjugated to Alexa 350. This protein is preferentially

expressed in the nuclei of lung cancer cells. Therefore, the samples

should contain cancer cells with positive hnRNPA1 stained nuclei,

normal epithelial cells with low hnRNPA1 protein content, highly

autofluorescent macrophages, and –usually autofluorescent–

organic debris. All images were acquired using a Zeiss Axioplan2ie

microscope (Wetzlar, Germany) with a 2060.75 NA Plan-

Apochromat objective. At each field of view, we acquired three

images using the following filter cubes: BLUE (excitation filter

365 nm, dichroic 395 nm, emission filter center 445 nm, band-

width 50 nm), AQUA (ex. 436/20, dic. 455, em. 480/40) and

RED (ex. 546/12, dic. 560, em. 607/65). All images were acquired

using in-house developed software [45] that controls the micro-

scope, and a cooled CCD camera Photometrics CoolSNAP

(Roper Scientific, Tucson, Arizona, USA). All algorithms were

programmed in the MATLAB programming environment (Math-

works, Natick, MA, USA). Image processing was performed using

the DipImage toolbox (TUDelft, Delft, The Netherlands). The

statistical analysis was performed using the open-source software R

(The R Foundation for Statistical Computing, Vienna, Austria).

Preprocessing and segmentation. All images –both syn-

thetic and real– are first preprocessed. To remove unwanted

background, we subtract the mode of the intensity distribution and

zero-clip the resulting image to prevent pixels from having

negative values. Then, nuclei visible in the BLUE channel are

segmented applying a Laplacian-of-Gaussian filter of size 20 and

then thresholding the resulting values above 0.1. Edge objects are

removed from the resulting mask.

NMF based unmixing. All pixels belonging to a segmented

object are spectrally unmixed. To this end we first build the matrix

Y from the intensities calculated in the three detection channels,

arranged as a 36N matrix, where N is the total number of pixels in

the object. Then, the 362 matrix A is initialized and the system

Y<AH solved to calculate the 26N fluorochrome emission matrix

H, using the NMF-ML algorithm described in the previous

section. The initialization of matrix A is:

3=5 1=3
1=5 1=3
1=5 1=3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

The first column of this matrix has a dominating BLUE

component (3/5) that represents the spectrum of stained nuclei.

The second column has uniformly distributed values in the three

detection channels, approximating the spectrum of autofluorescent

nuclei or objects. Note that the sum of each column is one. The

unmixing process is graphically shown in Figure 2.

Classification. Each segmented object is classified as positive

(stained) or autofluorescent nucleus based on a global, per nucleus,

Figure 2. Unmixing approach used for the classification of stained and autofluorescent nuclei. The process begins with the
segmentation of the nuclei from the stained –BLUE- channel, creating a mask of all the objects. The pixels of the mask in the corresponding BLUE,
GREEN and RED channels are then arranged as the three rows of a single matrix Y. The matrix Y is then decomposed into A and H using NMF-ML. The
resulting H matrix rows are used to build two images: the first image will have higher pixel values wherever the original image has a tendency
towards blue; the second image will have high pixel values wherever values are similar, i.e. belong to autofluorescent objects. The graph shows a
possible initialization matrix for A, before normalization, as used in our experiments. The matrix A components are depicted using a rectangle
triangle. The lower part is in the color of the channel, the upper part in the color of the dye.
doi:10.1371/journal.pone.0078504.g002

Figure 1. Examples from the image datasets. The left column
shows autofluorescent objects. The right column shows stained objects.
The three rows represent the three types of samples used: the synthetic
object (top row), H460 cell line (middle row) and the A549 cell line
(bottom row).
doi:10.1371/journal.pone.0078504.g001

Blind Spectral Unmixing Using Multi-Layer NMF
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measurement performed after spectral unmixing. Namely, it is

expected that for a given, properly unmixed pixel, the first spectral

component –BLUE- have higher intensity than the other two if

that pixel belongs to a stained nucleus, or similar intensity to the

other two channels if the pixel belongs to an autofluorescent

nucleus. Consequently, to distinguish autofluorescent from stained

nuclei, we assign a score to each segmented nucleus according to

the number of its pixels where the value of the first (Stained)

component is higher than the second (Autofluorescence). We call

this score Staining Factor (SF). If the SF is above the threshold

calculated during the training phase (see next paragraph), the

nucleus is classified as positive (stained), otherwise the nucleus is

classified as autofluorescent.

To train the classifier, we calculate both a crosstalk matrix A
and a threshold for the S using a set of selected images. To

calculate A, the –three channel– intensities of all pixels of all nuclei

segmented from the training image set are arranged as a 36N

matrix Y. Then the NMF-ML algorithm is applied to Y. The

output of the algorithm is a 362 matrix A and a 26N matrix H.

For each nucleus we calculate the SF and then manually classify it

as either stained or autofluorescent. Since each sampling point in

space is represented as a column of H, the SF is calculated for each

object as the number of points where the value corresponding to

that point in the first row of H is larger than the value in the

second row. The reasoning behind this is that whenever the pixel

intensities have a tendency towards the blue side of the spectrum, a

higher proportion of points in the object will have a higher value in

the first row of H than in the second. This results in a high SF

value, which in turn indicates positive staining.

To select an appropriate SF threshold tSF, we calculate the True

Positive Rate (TPR) and the False Positive Rate (FPR) for all

possible values of tSF. The TPR or Sensitivity measures the

number of correctly identified stained nuclei (true positive) relative

to the total number of stained nuclei (true positive plus false

negative), while the FPR is defined as the number of autofluor-

escent nuclei marked as positive (false positive) relative to the total

number of autofluorescent nuclei (true negative plus false positive).

Among the values of tSF that result in a TPR higher than 95%, we

choose the one having the lowest possible FPR. The reason for this

is that in our study, we were more concerned with the possibility of

missing a cancer cell than with detecting autofluorescent objects

that could be later discarded. Therefore, we fix a minimum TPR

( = recall) of 95%, thus loosing on average only one every 20

cancer cells.

In summary, to classify a nucleus as stained or autofluorescent

using the A and tSF found during the training phase, we first build

the matrix Y for that object and use A to calculate H; then, we

count the number of columns of H where the first row has a higher

value than the second row (the SF) and classify the object as

stained nucleus if the SF value is above tSF and autofluorescent

nucleus otherwise.

Spectral Unmixing of Multi-labeled Samples
Here our goal is to correctly classify Multi-color Fluorescent In-

Situ Hybridization (M-FISH) signals in multiply labeled cells in

both synthetic and real images.

Synthetic images. Twenty five 3D 3-channel images were

generated with two nuclei each one containing two pairs of FISH

signals. The nuclei and FISH signals are labeled using fluoro-

chromes emitting in different channels. Each FISH signal was

created with a different –random- intensity. The nuclei and the

FISH signals were approximated using Gaussian ellipsoids of

varying size and eccentricity.

Real images: sample preparation and image acqui-

sition. We used two samples: a lung cancer cell line (H460 or

H1299) and normal human mononuclear cells obtained from

peripheral blood from healthy controls. Nuclei were counter-

stained with DAPI and labeled with four DNA probes using FISH.

Three of the four FISH probes were DNA sequences commonly

altered in lung cancer, while the forth was a centromeric probe

that is seldom involved in cancer related genetic alterations.

Namely, the probes targeted the loci 5p15.2 (labeled with

SpectrumGreen), 8q24 (labeled with SpectrumGold) and 7p12

(labeled with SpectrumRed) and the centromere of chromosome 6

(labeled with SpectrumAqua). Seventy three randomly selected

nuclei were acquired as image stacks of between 20 and 30 slices

thick, with 200 nm inter-slice distance. The objective used was a

6361.4NA Plan-apochromat oil immersion objective by Zeiss. To

acquire the images we used the same microscope and filter cubes

described in the previous application with the additional emission

filters GREEN (ex. 470/40, dic. 495, em. 525/50) and GOLD (ex.

546/11, dic. 495, em. 575/30). A summary of the excitation and

emission bands can be found in Table 1. These filters were chosen

to fit the spectra of the five fluorochromes used in our application

(see Table 2).

Both synthetic and real data can be downloaded from the

following ftp site: ftp.codesolorzano.com. Access credentials will be

provided upon request by the authors.

Preprocessing and segmentation. All images are first

corrected for residual chromatic shift using a rigid transformation

and deconvolved using the Huygens Scripting deconvolution

software (Scientific Volume Imaging, Amsterdam, The Nether-

lands). Next, FISH signals are segmented using a simple threshold

and the resulting mask filtered to eliminate isolated pixels using a

morphological erosion [46] with a circle shaped structuring

element of radius r = 2. We then combine all four binary masks

Table 1. Filter cubes used in the experiments.

Filter set name Ex. band Dichroic Em. Band

BLUE Zeiss Filter set 49 HE 365/50 395 445/50

AQUA Chroma 31044v2 436/20 455 480/40

GREEN Zeiss Filter set 09 450–490 510 .515

GOLD Chroma 41041 546/11 555 575/30

RED Chroma 41035 546/11 555 605/75

These five sets of filters cover the five different excitation/emission bands
needed for the four FISH probes and the DNA counterstain.
doi:10.1371/journal.pone.0078504.t001

Table 2. Fluorochromes used and their corresponding filter
cubes (see Table 1).

Fluorochrome Peak ex. (nm) Peak em. (nm) Filter cube

Alexa 350 343 442 BLUE

SpectrumAqua 433 480 AQUA

SpectrumGreen 497 524 GREEN

SpectrumGold 530 555 GOLD

SpectrumRed 592 612 RED

The peak excitation and peak emission wavelengths are given for the six
fluorochromes used.
doi:10.1371/journal.pone.0078504.t002
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using the OR operator to create a unified binary representation of

each nucleus including all its FISH probes.

NMF-ML unmixing and measurement of crosstalk. We

use the unified binary mask to read out the pixels from each of the

four channels and arrange them in four rows, thus creating the

46N intensity detection matrix Y. A is then initialized using a 464

exponential matrix and the fluorochrome emission matrix H
(46N) with the detected intensity data (Y). The Y matrix is then

unmixed using our NMF-ML algorithm to recover A and H.

Thus, the four channel input data gets decomposed into four

components, each one corresponding to one of the expected

fluorescent channels. The resulting H matrix is then used to

rebuild the four unmixed images, by assigning the intensities in the

four channels to a new image at each position of the binary mask

(see Figure 3 for a visual representation of the unmixing process).

To quantify the presence of interfering fluorescence into a given

fluorescent channel we used a measurement of crosstalk (XT)

before and after unmixing. Assuming that we have two filter

channels C1 and C2 designed to detect fluorochromes c1 and c2

respectively, the XT of fluorochrome c1 into channel C2 is the

mean intensity of the pixels of fluorochrome c1 (those with

stronger intensity in C1 than in C2) in channel C2, divided by the

average intensity of channel C2 for all fluorochromes. This value is

0 if either there are no pixels from fluorochrome c1 in C2 or their

intensity is 0.

Our images are three-dimensional, so even after selecting a

subset of points with the binary mask, they still contain a

considerable amount of data. To speed-up the algorithm, we use

the fact that the last step recalculates H based solely on A and Y,

discarding any previous estimation of H: H r (Ac
T Ac+e)21 Ac

T

Y0 and setting the negative elements of the matrix to 0. Note that

this step is only applicable in images with dark background, such

as fluorescent or darkfield images. However it can easily be

adapted to brightfield images by working on the inverted image.

We can exploit this fact by calculating As on a representative

subset of the data Ys and then performing the last step above on

the complete data Y. We implemented this optimization by

selecting the subset of points using the Maximum Intensity

Projection of both the input images and the unified binary mask.

We build Ys using the reduced –masked– images, and then apply

the NMF-ML algorithm to calculate the As and Hs matrices.

Figure 3. Unmixing approach used to classify Multiple-labeled FISH signals. Four images are acquired in four different channels. Each
channel is segmented and the four segmentations combined in a unique mask. The intensities of the pixels are arranged into four rows of a matrix, Y.
After A and H are initialized, the unmixing algorithm begins. After convergence, the initial matrix Y is decomposed into two matrices A and H. The
columns of the mixing matrix A contains the spectra of the four fluorophores as detected in the four channels. The matrix A components are
depicted using a rectangle triangle. The lower part is in the color of the channel, the upper part in the color of the dye. The H matrix contains the
intensity of the four fluorophore emissions at each pixel position and can be used to build four images representing the distribution of the four
fluorophores.
doi:10.1371/journal.pone.0078504.g003

Figure 4. Training and validation of the unmixing algorithm.
ROC training curves and validation results for the synthetic dataset (a),
the H460 cell line (b) and the A549 cell line (c). SF indicates the data for
our algorithm, TR indicates results for the color ratio and DT indicates
the results of thresholding the DAPI channel. In the three cases the
target true positive ratio at point-of-work was set to 0.95 and can be
seen in the graph as a dotted horizontal line. The markers (+,*,x)
indicate the performance on the validation data, which is also shown in
the table. As an additional performance measure, the table also shows
the AUR, the area under the ROC curve, a standard measure to compare
classifiers. The results show the benefit of using our algorithm in all
three cases.
doi:10.1371/journal.pone.0078504.g004
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Next, we recover the H matrix and build the Y for the 3D image -

using the original images and binary mask- and apply the last step

of the NMF-ML algorithm. The new H can now be used to

rebuild the unmixed images, as explained above and shown in

Figure 3.

Results

Detection of Stained Nuclei in the Presence of
Autofluorescence

Performance evaluation. To evaluate the performance of

our NMF-ML based classification algorithm, we compared it

against two other simple approaches: thresholding the stained

BLUE channel (as proposed in [8]) or thresholding the color

intensity ratio between the first (BLUE) channel and the sum of

intensities in all three (BLUE, AQUA, RED) channels. All

threshold values have been chosen calculating the TPR and

FPR on the training group and selecting -among all threshold

values that produce a TPR higher than 95%- the one having the

lowest FPR. We used three sets of images: one set was made of

synthetic images and two sets of real images. Each set was further

divided into a training and a validation group: in the synthetic set,

48 objects were used for training and 336 for validation; in the real

image sets, 200 objects were used for training and 461 for

validation. For each set, the classifier was trained to obtain the A
matrix and tSF values that were used in the validation group. The

performance of the classifier is evaluated by calculating the TPR

and FPR.

Experimental results. To compare the ability of the

algorithms to distinguish stained from autofluorescent nuclei, we

used the Receiver Operating Characteristic (ROC) curve, which

graphically represents the performance of a classifier by showing

the TPR and FPR for a range of values of a parameter. In a

perfect classifier, all points should be concentrated at the upper left

corner (TPR = 1, FPR = 0). A random classifier, on the other

hand, tends to stay on the (0,0)-(1,1) diagonal. The Area Under the

ROC curve (AUR) is a common way to quantify the performance

of a classifier and compare ROC curves.

Figure 4 shows the three ROC curves corresponding to

synthetic data (Figure 4a), and to the A549 (Figure 4b) and the

H460 (Figure 4c) cell lines along with a table of performance

measures. In all three cases, the curve corresponding to our

algorithm stays above the other two, suggesting better overall

performance. The worst performing classifier is the threshold on

the BLUE channel, which supports the observation that a

threshold in a single channel is not good enough to distinguish

positive from autofluorescent nuclei.

In all the three sample types, AUR is consistently the when

using our algorithm. TPR is within a half interval of 0.035 from

the target TPR of 0.95, which reflects good consistency between

the training and the validation group, given that the threshold

chosen using a target TPR on the training set gives a similar TPR

in the validation set. The FPR of the three methods varies

considerably: our proposed NMF-ML algorithm consistently

maintains a low FPR across the sample types (average of 0.08),

but the other two show FPR values up to 0.77. Such a high FPR

for the target TPR of 0.95 implies that in order to achieve the

desired level of sensitivity (TPR) one would have to allow a large

number of autofluorescent objects to be misclassified as stained.

Classification of FISH Signals
Algorithm comparison. We used the XT values after

unmixing to compare the performance of our NMF-ML algorithm

against the NNLS [15] and the NMF-SB [24] algorithms. The

convergence criteria have been set to the same value for both

NMF algorithms (1025) and both initialized H using the detected

intensity matrix Y. We can use Y for initialization because the

matrices have the same size and this initialization shows better

performance in our results than random components. All the

algorithms initialize A using the same exponential matrix.

Experimental results. The results of the comparison

between the three algorithms (our NMF-ML, NNLS and NMF-

SB) are presented next from three different points of view.

First, the performance of the unmixing algorithms can be

compared visually in Figure 5. The first column shows the original

(synthetic or real images) images. The second to fourth columns

illustrate results of the unmixing algorithms. The last column

shows the recovered spectra for the NMF-SB and NMF-ML

algorithms, compared with the actual spectrum (synthetic images)

or the initial guess (real images). The synthetic data (top row)

exhibits high levels of crosstalk of channel (R) into channel (G),

appearing as yellow signals. This is clearly resolved after unmixing

with NMF-ML while some residual cross-talk is visible both in the

images and the recovered spectrum after unmixing using NNLS

and NMF-SB. In the real data, the two emissions with the highest

spectral overlap are: SpectrumAqua in the GREEN channel and

SpectrumGold in the RED channel. In Figure 5 the control

sample is shown in the second row, the H460 cell line in the third

row and the H1299 cell line in the bottom row. Each sample

contains the RGB composition of the R (AQUA channel), G

(GREEN channel) and B (GOLD channel) in the top row and the

RGB composition of the R (GREEN channel), G (GOLD channel)

and B (RED channel) immediately under. The crosstalk caused by

the emission of the SpectrumAqua detected in the GREEN

channel is hardly visible in the images. On the other hand, it is

clear from the spectra that both NMF methods are able to

eliminate the cross-talk existing in the original images and recover

both SpectrumAqua and SpectrumGreen emission peaks. The

crosstalk caused by the emission of the SpectrumGold fluoro-

chrome detected in the RED channel is seen as Aquamarine color.

Some leftover aquamarine can be appreciated in the NNLS results

that are practically non-existent in the NMF outputs.

Second, the XT was measured before and after the application

of the three algorithms and has been charted for synthetic and real

images (Table 3). For the synthetic images, the median (med) XT

of the original images is 0.70. The med XT is null for the NMF

unmixed images and clearly reduced (med XT = 0.12) for NNLS.

For the real images, the med XT of the original images is 0.65.

NNLS only achieves a slight reduction (med XT = 0.56), while the

improvement using NMF is much larger (NMF SB med

XT = 0.12, NMF-ML med XT = 0.04).

Finally, the results of the statistical test for crosstalk difference

are shown in Table 4. NNLS and both NMF algorithms show

significant improvement with respect to the unmixed images and

both NMF algorithms show a significant improvement over

NNLS. When comparing the two NMF algorithms, our NMF-ML

shows significantly better results.

As an additional consideration, NMF-ML shows a drastic

improvement in computation time when applied to 3D images as

shown in Table 3. The average time required to perform the

unmixing in biological samples is of around 22 seconds compared

to 9 minutes of NMF-SB algorithm and 5 minutes of NNLS.

We also compared the performance (XT) to using the Gauss-

based initialization matrix and the results are shown as supple-

mentary material in Figure S1. We observe that the performance

of NNLS decreases very significantly (p-value ,0.001), when the

crosstalk matrix is initialized to a Gaussian instead of an

exponential.
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Discussion

The possibility of combining several fluorescent labels is one of

the strengths of fluorescence microscopy. However, spectral

overlap between fluorochrome emissions limits the number of

fluorochromes that can be combined in one sample. A common

approach to reduce the spectral overlap or crosstalk combines a

full characterization of the fluorochromes -by the acquisition of

spectral scans- and the use of analysis algorithms (i.e., LS, NNLS).

Spectral scans can be obtained through the use of specialized

hardware component to the microscope such as an interferometer,

a computer programmed liquid crystal filter (LCTF), an acousto-

optic tunable filter (AOTF) or a lambda grating [47]. The use of

spectral scanners results in additional costs and therefore, is not

always appropriate. A cheaper and simpler alternative is to

manually measure the crosstalk coefficients. These measurements

need to be repeated for each experiment – or even between

acquisitions- and like any manual procedure is prone to error.

Blind linear unmixing methods are very helpful by simplifying the

Figure 5. Example of the spectral unmixing of M-FISH samples. The same image is shown across rows. RGB composition of (Top) AQUA
channel (R), GREEN channel (G) and GOLD channel (B). (Bottom) GREEN channel (R), GOLD channel (G) and RED channel (B). The last column shows
the recovered spectra for the NMF-SB and NMF-ML algorithms, compared with the actual spectrum (synthetic images) or the initial guess (real
images).
doi:10.1371/journal.pone.0078504.g005

Table 3. Performance comparison between the three
unmixing algorithms (NNLS, NMF-SB and our NMF-ML) for the
separation of FISH signals.

XT Time

Synthetic Real Synthetic Real

Raw 0.70 0.65 N/A N/A

NNLS 0.12 0.56 0.840 49540

NMF-SB 0.00 0.12 1.590 9930

NMF-ML 0.00 0.04 0.320 22.190

The median crosstalk coefficients (XT) are shown for each algorithm in synthetic
and real images, together with the average calculation time for synthetic and
real images. The best performer is highlighted in bold. As shown, the
calculation time for the NMF-ML algorithm is drastically lower, especially in real
images. This difference is mainly thanks to the ability to work on a 2D
projection of the 3D stack.
doi:10.1371/journal.pone.0078504.t003

Table 4. Cross talk reduction of the three compared
unmixing methods for both the synthetic and real images.

NMF-ML NMF-SB NNLS Original

NMF-ML – ..999 ..999 ..999

NMF-SB ,0.001 – ..999 ..999

NNLS ,0.001 ,0.001 – ..999

Original ,0.001 ,0.001 ,0.001 –

The table shows the p-values obtained when evaluating the average decrease
in crosstalk between each pair of unmixing algorithms using a paired one-tailed
non-parametric Wilcoxon ranked-sign test. The null-hypothesis in each case is
that the change is not significant while the alternative hypothesis is that the
algorithm in a given row is significantly worse than the corresponding column
algorithm.
doi:10.1371/journal.pone.0078504.t004
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experimental setup and avoiding the need for cumbersome

spectral characterizations of the fluorochromes. Among others,

we have chosen to apply the NMF algorithm because, as opposed

to other blind methods, it naturally preserves the positivity of the

results. Moreover, NMF can be interpreted as a parts-based

representation of the data since only additive combinations are

allowed. This correctly reflects the real fluorescent staining of

cellular structures.

NMF algorithms are not generally guaranteed to converge.

However, it has been shown for Hoyer’s algorithm [39], unpon

which NMF-SB is built and which assumes known ratios between

the L1-norm and the L2-norm, that convergence is guaranteed

under broad conditions. Using a multi-layer NMF approach

(NMF-ML) also considerably improves the uniqueness of the

result. Moreover, the implemented multiplicative update rules are

enforcing sparseness through the minimization of L1-norm [38].

The remaining main problems of the existing NMF algorithms are

their sensitivity to the initialization and their slow convergence.

We deal with the former using a crosstalk initialization matrix that

takes into account the asymmetric nature of the emission

fluorochrome spectra, thus adding robustness to the unmixing

process by ensuring proper convergence of the optimization

algorithm. Then, we accelerate its convergence by using multi-

layer NMF and a regularized pseudo-inverse combined with

multiplicative rules.

We have applied the algorithm to the separation of fluorescently

stained nuclei from autofluorescent nuclei, and to the spectral

separation of Multiple-FISH signals. We tested its performance on

both synthetic and real images from biological samples to show

that our algorithm provides a good compromise between

unmixing performance and speed. In the first application, our

method can distinguish stained nuclei from autofluorescence with

a much lower FPR -for a similar TPR- than other methods -color

ratio and threshold of the stained channel-. The color ratio

method assumes that autofluorescent objects emit with the same

intensity in all the spectral channels, which is not always a good

approximation. The use of a crosstalk matrix adds to the generality

of the solution by allowing non-uniform contributions of the

various channels. The improved performance of our algorithm

suggests that the underlying, more flexible model fits the data

better. Additionally, training is used to calculate a threshold for SF

designed to exhibit a low FPR and a high TPR. This can be

crucial in applications dealing with minimal samples, where the

expected percentage of positive objects is very low.

The second application takes advantage of the fact that our

method provides both the crosstalk and the fluorochrome emission

matrix simultaneously. This eliminates the need for measuring the

relative contributions and estimating the mixing matrix before-

hand, while still providing excellent unmixing. Moreover, we

achieved reliable results even in the presence of strongly

overlapping fluorochrome emissions without having to acquire

the data with multiple excitation setups.

In summary, the work presented in this paper suggests that

NMF-ML is a valuable and practical tool for the blind spectral

unmixing of multiply fluorescently stained cellular samples.

Supporting Information

Figure S1 The charts compare the effects of using a different

initialization matrix on the performance of three spectral

unmixing algorithms, when applied to the problem of the

separation of the signals from four FISH probes (see main article

for details). The charted values represent the median of a measure

of cross-talk (XT, described in the main article) among all images

of the test set: left, the results are shown for 25 synthetic images

and right for 73 images from real samples. Both image sets have

been tested with two different initialization matrices: the

exponential matrix (dark gray, described in the main article) and

the Gaussian-based matrix (light gray, proposed by Neher et al.).

The strongest difference in behavior is shown for NNLS in real

images and NMF-SB in synthetic images. The good behavior in

the NNLS for real images can be interpreted as a good

approximation of the actual crosstalk matrix: the better the

approximation, in fact, the lower will the cross-talk be after

unmixing. All pairs of datasets corresponding to a different

initialization matrix (pairs of light and dark columns) were tested

for statistical significance with a paired Wilcoxon rank-test. The

significance of the difference is marked with asterisks above each

column pair, whenever the difference was in fact significant. The

same statistical test was performed for the entire dataset and shows

a significant (***) preference for the exponential matrix.

(TIF)
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23. Muñoz-Barrutia A, Garcia-Munoz J, Ucar B, Fernandez-Garcia I, and Ortiz-de-
Solorzano C (2007) Blind Spectral Unmixing of M-FISH Images by Non-

negative Matrix Factorization, in Proceedings of IEEE Conference of the
Engineering in Medicine and Biology Society, 6247–6250.

24. Neher RA, Mitkovski M, Kirchhoff F, Neher E, Theis FJ et al. (2009) Blind
source separation techniques for the decomposition of multiply labeled

fluorescence images, Biophys J 96: 3791–3800.

25. Woolfe F, Gerdes M, Bello M, Tao X and Can A (2011) Autofluorescence
removal by Non-Negative Matrix Factorization, IEEE Trans Imag Proc 20(4):

1085–1093.
26. Roederer M and Murphy RF (1986) Cell-by-cell autofluorescence correction for

low Signal-to-Noise systems: Application to epidermal growth factor endocytosis

by 3T3fibroblast, Cytometry 7: 558–565.
27. Pengo T (2010) Automation of early lung cancer detection, PhD thesis,

University of Navarra.
28. Dhillon IS and Sra S (2005) Generalized nonnegative matrix approximations

with Bregman divergences in Papers from Neural Information Processing
Systems, pp. 283–290.

29. Juvela M, Lehtinen K, and Paatero P (1996) The use of positive matrix

factorization in the analysis of molecular line spectra, Mon Not R Astron Soc
280: 616–626.

30. Cichocki A, Lee H, Kim Y and Choi S (2008) Non-negative matrix factorization
with a-divergence, Pattern Recog Lett 29: 1433–1440.

31. Pascual-Montano A, Carazo JM, Kochi K, Lehmann D, and Pascual-Marqui

RD (2006) Nonsmooth nonnegative matrix factorization (nsNMF), IEEE Trans
Pattern Anal Mach Intell 28: 403–15.

32. Lee DD and Seung HS (1999) Learning the parts of objects by non-negative
matrix factorization, Nature 401: 788–91.

33. Donoho DL and Stodden V (2003) When Does Non-Negative Matrix
Factorization Give Correct Decomposition into Parts? in Adv Neural Info Proc

Syst, 16(19): 1141–1148.

34. Theis FJ, Stadlhammer K and Tanaka T (2005) First results on uniqueness of

sparse non-negative matrix factorization, Proceedings of the 13th Eur Sig Im

Proc Conf (EUSIPCO’05).

35. Klingenberg B, Curry J and Dougherty A (2009) Non-negative matrix

factorization: Ill-posedness and a geometric algorithm, Pattern Recognition

42: 918–928.

36. Berry MW, Browne M, Langville AN, Pauca VP and Plemmons RJ (2007)

Algorithms and applications for approximate nonnegative matrix factorization,

Comput Stat Data Anal 52: 155–173.

37. Yang Z, Zhou G, Xie S, Ding S, Yang JM et al. (2011) Blind spectral unmixing

based on sparse nonnegative matrix factorization, IEEE Trans Imag Proc 20(4):

1112–1125.

38. Feng T, Li SZ, Shum H and Zhang H (2002) Local non-negative matrix

factorization as a visual representation in Proceedings of the 2nd IEEE

International Conference on Development and Learning, pp. 178–183.

39. Hoyer PO (2004) Non-negative Matrix Factorization with Sparseness Con-

straints, J Mach Learn Res 5: 1457–1469.

40. Cichocki A, Zdunek R and Amari S (2006) New Algorithms for Non-Negative

Matrix Factorization in Applications to Blind Source Separation Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICCASSP’06), V, pp. 621–624.

41. Cichocki A, Zdunek R, Phan AH and Amari SI (2009) Nonnegative matrix and

tensor factorizations: Applications to exploratory multi-way data analysis and

blind source separation, Wiley.

42. Halton JH (1960) On the efficiency of certain quasi-random sequences of points

in evaluating multi-dimensional integrals, Num. Mathematik 2: 84–90.
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