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A prospective study was undertaken in women undergoing neoadjuvant chemotherapy for locally advanced breast cancer in order to
determine the ability of quantitative magnetic resonance imaging (MRI) and proton spectroscopy (MRS) to predict ultimate tumour
response (percentage decrease in volume) or to detect early response. Magnetic resonance imaging and MRS were carried out
before treatment and after the second of six treatment cycles. Pharmacokinetic parameters were derived from T1-weighted dynamic
contrast-enhanced MRI, water apparent diffusion coefficient (ADC) was measured, and tissue water : fat peak area ratios and water T2

were measured using unsuppressed one-dimensional proton spectroscopic imaging (30 and 135 ms echo times). Pharmacokinetic
parameters and ADC did not detect early response; however, early changes in water : fat ratios and water T2 (after cycle two)
demonstrated substantial prognostic efficacy. Larger decreases in water T2 accurately predicted final volume response in 69% of cases
(11/16) while maintaining 100% specificity and positive predictive value. Small/absent decreases in water : fat ratios accurately
predicted final volume non-response in 50% of cases (3/6) while maintaining 100% sensitivity and negative predictive value. This level
of accuracy might permit clinical application where early, accurate prediction of non-response would permit an early change to
second-line treatment, thus sparing patients unnecessary toxicity, psychological morbidity and delay of initiation of effective treatment.
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Recent statistics confirm that breast cancer remains one of the
most prevalent and serious forms of neoplastic disease in the UK.
Breast cancer accounts for more than one in four female cancer
cases and currently demonstrates age-standardised incidence and
mortality rates of 117 and 31 per 100 000, respectively (Toms,
2003).

Some primary breast cancers are considered inoperable at
diagnosis owing to their problematical location and size, with
tumours greater than 3 cm in diameter being associated with an
increased risk of disseminated disease. In such cases, neoadjuvant
chemotherapy is routinely used before surgery to increase the
chances of a successful outcome. Assessing tumour response to
chemotherapy is crucial to patient management and is currently
achieved by monitoring changes in tumour size using clinical
examination backed up by longitudinal X-ray or ultrasound
mammography. A poor response to the primary treatment regime
usually prompts either change of chemotherapy regime or an early
resort to surgery. Poor response might also require a greater
degree of surgical intervention.

Repeated X-ray mammography (XRM) has several drawbacks:
discomfort, radiation exposure, geometric distortion owing to

compression and magnification render tumour volume measure-
ments less accurate than magnetic resonance imaging (MRI), and
tumour may be impossible to distinguish from dense glandular
tissue and fibrosis. Magnetic resonance imaging has been shown to
correspond better with pathological size measurement than XRM
(Esserman et al, 1999; Drew et al, 2001) and to be less obscured by
dense breast diseases. Ultrasound measurement is more accurate
than XRM, but fails when the tumour to be measured is larger than
the field of view or complex in shape. Magnetic resonance imaging
is also more accurate than ultrasound at detecting small volume
residual tumour.

However, even if tumour volume changes can be accurately
assessed by MRI, they may manifest themselves later than changes
in underlying tumour function such as vascular density or
permeability (Wasser et al, 2003). Therefore, vascular or metabolic
parameters might provide a more sensitive indicator of early
tumour response, thus permitting individual treatment regimes to
be adjusted more rapidly, and sparing patients unnecessary
morbidity, expense and delay in initiation of effective treatment.
Treatment-induced changes in metabolism can be investigated
using both positron emission tomography (Byrne et al, 2004;
Kumar and Alavi, 2004; Weber, 2005) and single photon emission
computed tomography (Buscombe et al, 1997), but the clinical
utility of such examinations is reduced by the need to limit
repeated radiation doses.

Treatment-induced changes in tumour neovasculature can be
assessed using dynamic contrast-enhanced MRI (DCE-MRI) and
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quantified using pharmacokinetic (PK) modelling (Padhani, 2002;
Knopp et al, 2003). Diffusion-weighted MRI can be used to detect
changes in the apparent diffusion coefficient (ADC) for tissue
water associated with changes in tissue and intracellular structure
(Zhao et al, 1996; Gallons et al, 1999; Ross et al, 2003; Moffat et al,
2005). Proton magnetic resonance spectroscopy (MRS) can be used
to characterise breast lesions through differences in the ratio of fat
and water signals (Chu et al, 1987; Sijens et al, 1988) or the
intensity of signal from choline-containing compounds (Bradamante
et al, 1988; Katz-Brull et al, 2002; Bolan et al, 2003; Jacobs et al,
2004; Jacobs et al, 2005). Both fat : water ratios (Jagannathan et al,
1998) and choline levels (Preul et al, 2000; Jagannathan et al, 2001;
Schwarz et al, 2002; Meisamy et al, 2004) have also been used to
monitor treatment-induced changes, and phosphorous MRS
has been used to predict response using differences in the levels
of phosphocholine or phosphomonoesters (Shukla-Dave et al,
2002a, b; Arias-Mendoza et al, 2004). Sodium MRI might also be
useful in monitoring treatment response (Kline et al, 2000;
Schepkin et al, 2005).

A prospective study was, therefore, undertaken whereby three of
these techniques (DCE-MRI, ADC measurement and MRS fat : -
water ratios) were carried out in the same patients to determine in
each technique the relative prognostic utility. The study hypothesis
was that a combination of the quantitative data from the three
techniques would lead to a synergistic increase in prognostic
accuracy and, therefore, provide an accurate, reliable and non-
invasive early indication of tumour response to chemotherapy,
which could potentially have a positive influence on patient
management.

MATERIALS AND METHODS

Chemotherapy regime and relative timing of MRI

All women who were scheduled to undergo neoadjuvant chemo-
therapy for primary inoperable locally advanced breast cancer
were approached to join the study, which had received Local
Research Ethics Committee approval (reference number 03/00/
038). Longitudinal MRI was carried out using a 1.5 T Signa
Advantage clinical MRI scanner (International General Electric,
Milwaukee, WI, USA) using a dedicated bilateral breast coil
(Machnet BV, Eelde, Netherlands). A standard dosage chemother-
apy regime was used involving intravenous administration of
epirubicin (bolus: 60 mg m�2 body surface area), cyclophospha-
mide (bolus: 600 mg m�2) and 5-fluorouracil (continuous infusion
by pump: 200 mg m�2 per day). Good clinical practice, including
checking patients’ cardiac status before therapy if necessary, was
adhered to throughout the study. Magnetic resonance imaging and
MRS were carried out at three time points: before the first course
of chemotherapy (TP0), after the second course but no more than
55 days after the first course (TP2) and after the final (generally
sixth) course (TPF). Therapeutic response was confirmed after
surgery by pathological examination.

MR imaging and spectroscopy

All the MRI data at each time point were acquired in a single
imaging session with an average length of 1 h. Dynamic contrast-
enhanced MRI was carried out first, during which gadopentetate
dimeglumine (formerly known as Gd-DTPA; Schering Health
Care, Burgess Hill, UK) was injected as a bolus at a dose of
0.1 mmol kg�1 body weight, using a two-dimensional, T1-weighted
multislice, fast RF spoiled gradient echo (FSPGR) sequence. In
order to attain adequate tissue coverage in all cases, imaging was
carried out in either the coronal (30 cm field-of-view, FOV) or
sagittal (20 cm FOV) planes (256� 128 matrix in all cases) with
five, seven or nine slices (4–9 mm thick, 2 mm gaps). Scan timing

parameters, therefore, ranged as follows: TR¼ 8.8–11.1 ms;
TE¼ 4.2 ms fractional; flip¼ 301; temporal resolution¼ 10.5–
14.5 s; 35 time points per slice; scan time¼ 6 min 8 s to 8 min
28 s. Dynamic contrast-enhanced MRI was preceded by proton
density-weighted FSPGR imaging (TR/TE/flip¼ 120 ms/4.2 ms
fractional/81) to enable correction for differences in native tissue
T1.

A single region-of-interest (ROI) that best delimited the lesion
present was drawn, by an experienced radiologist, for each DCE-
MRI study. In-house software (developed using the IDL language,
Research Systems Inc., Boulder, CO, USA) was then used to
measure the mean pixel signal intensity (SI) within the ROI for
the proton density image (SIPD) and each of the images in the T1-
weighted series (SIT1

). These data were then used to calculate an
enhancement factor (EF) time series proportional to the concen-
tration of gadopentetate dimeglumine, with differences/changes
in the native tissue T1 between patients/visits being corrected
for using the proton density SI and the mean pre-contrast T1 SI
as obtained from a user-defined number of baseline points
(SI0) (Hittmair et al, 1994). The equations for EF calculation
were EFðtÞ ¼ 1=ðKTRT1

Þ� ln½ðSImax � SI0Þ=ðSImax � SIT1
ðtÞÞ� and

SImax ¼ SIPD� sinðaT1
=aPDÞ, where aT1

and TRT1
are the flip angle

and TR for the dynamic T1-weighted series and aPD is the flip
angle for the proton density-weighted image. A value of 11.04 was
used for the constant K, this having been determined through
calibration experiments using gels of known T1 values and being
valid for aT1

¼ 30� only.
A two-compartment PK model (Buckley et al, 1994; Tofts, 1997)

was used to calculate the amplitude, or initial slope, of the EF time
series (this being proportional to the microvessel transfer constant
Ktrans (Tofts, 1997), itself proportional to the permeability surface
area product) and the rate constant (Kep). The model equation was

EFðtÞ ¼Ktrans=ðKep � KelÞ
½expð�Kelðt � t0ÞÞ � expð�Kepðt � t0ÞÞ�;

where Kel represents contrast clearance from the plasma and
t0 represents the variable arrival time of the contrast agent. The
extracellular –extravascular tissue volume fraction (Ve) was also
estimated using the Ktrans/Kep ratio (assuming equal influx and
efflux vascular permeability; Tofts, 1997). Curve fitting was carried
out (using mean ROI data, not pixel-by-pixel) using a nonlinear
least-squares algorithm implemented within the in-house, IDL
software, and the model-independent maximum enhancement
factor (MEF) was also recorded.

Tumour volume was measured using manually traced ROIs
drawn on high-resolution three-dimensional, post-contrast, fat-
suppressed FSPGR images. Again, sequence acquisition para-
meters were varied in order to obtain adequate tissue coverage in
all cases and these ranged as follows: TR/TE/flip¼ 14.6/4.2 ms
fractional/301; plane/FOV/matrix¼ sagittal/18– 24 cm/512� 256;
slice number/thickness¼ 25/2.5– 5 mm. Tumour volumes were
measured, rather than more typical linear measurements, as this
was considered to be the most rigorous and accurate, although
most time-consuming, way of quantifying lesion size. Tumour
volume has been shown to correlate more closely than tumour
diameter with disease-free survival in breast cancer patients and it
may also provide a more sensitive characterisation of tumour
response than one-dimensional measurements (Partridge et al,
2005).

It was assumed that neoplastic tissue would not demonstrate
substantial ADC anisotropy; therefore, in an attempt to keep scan
time to a minimum, ADC was measured in the frequency-encode
direction only (left-to-right), which was known to demonstrate the
best imaging homogeneity and stability. The Stejskal –Tanner
technique (Stejskal and Tanner, 1965) was implemented using a
single fat suppressed slice (axial, 22 cm FOV, 1282 matrix, 7 mm
thick) single-shot, spin-echo echo-planar imaging and with the
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following diffusion weightings: 0, 14, 55, 125, 222, 346, 499 and
680 s mm�2. The ADC values were calculated on a whole ROI basis
(Gibbs et al, 2001), which included a correction for the bias
inherent in magnitude image reconstruction at low signal-to-noise
ratios (especially true for higher b-values) (Miller and Joseph,
1993).

The relative proportions of spectroscopic signal arising from
tissue water and lipids were measured at echo times of 30 and
135 ms using a one-dimensional stimulated echo (STEAM)
spectroscopic imaging sequence (without chemical shift selective
suppression of any moieties) and a repetition time of 3 s. Thirty-
two phase-encode steps were used over a 16 cm superior –inferior
FOV with STEAM excitation limited to seven adjacent voxels
(1.0� 0.5 cm in the anterior –posterior and left– right directions,
respectively, giving a nominal voxel volume of 0.25 ml). Figure 1
shows the seven spectroscopic voxels in a representative tumour
before chemotherapy. To ensure that the same region of tissue was
examined in follow-up studies, MRS voxels were relocated, by an
experienced radiologist, after careful comparison of the breast
architecture surrounding the lesion with the architecture demon-
strated on hard copies of previous voxel locations. Changes in
tumour choline were not measured, as the predictive utility of the
technique had not been established in the literature at the time of
study design.

Spectral analysis was carried out using the SAGE IDL package
(International General Electric, Milwaukee, WI, USA). In order to
decrease the degree of inter-voxel signal contamination, mild
spatial apodisation was applied (Fermi filter: diameter/
width¼ 90%/5%), which resulted in an effective voxel volume of
0.33 ml (Jackson et al, 1994). To minimise partial volume
contamination from adipose tissues outside the tumours, only
signals from those voxels contained wholly within the tumour were
averaged; then, water and fat signal intensities were measured by
frequency-domain fitting of the water peak (4.7 p.p.m.) and the
dominant lipid peaks at 1.3 and 0.9 p.p.m. (representing the

methylene –(CH2)n – and terminal methyl – CH3 lipid moieties,
respectively). Spectroscopic water content (%WMRS) was then
quantified using the ratio of the water signal to that of the sum of
water and the two dominant fat signals. Water T2 was also
estimated using a crude two-point method: T2B(TE135�TE30)/
ln(area30/area135).

Biopsy data

Patients’ notes were reviewed to collate data obtained from
histopathological analysis of specimens acquired via pre-che-
motherapy core biopsy and final surgery. Parameters of interest
were histological tumour subtype, tumour grade (pre-chemother-
apy), the presence or absence of ductal carcinoma in situ (DCIS)
and pre-chemotherapy oestrogen and progesterone receptor status
(ERS and PRS) scores. Oestrogen and progesterone receptor status
scores were recorded in the notes on either a six- or eight-point
scale and converted to continuous data by calculating the ratio of
the score to maximum possible score. The maximum diameter of
the resected tumour, as calculated by the pathologist, was also
collated and compared to the maximum diameter recorded in the
final clinical MRI report using the Limits of Agreement method
proposed by Bland and Altman (1986).

Quantifying and correlating parameter changes and
tumour response

Changes in parameter values between TP0 and TP2 were calculated
either as absolute differences, D02ðXÞ ¼ XTP2

� XTP0
, or percentage

change, PC02ðXÞ ¼ XTP2
=XTP0

� 1, as deemed most appropriate. A
change in tumour volume at the end of treatment, PC0F(V),
exceeding �65% was taken as the cutoff between partial response
(PR) and stable disease (SD), this being equivalent to a decrease
in cross-sectional area of 50%, itself broadly equivalent to the
RECIST criterion of a 50% decrease in the product of maximum
orthogonal diameters (Therasse et al, 2000). No attempt was made
to predict final tumour size in this study, as this is not likely to
alter patient management before surgery.

All statistical analyses were carried out using the SPSS package
(SPSS Inc., Chicago, IL, USA). Correlation between D02(X), PC02(X)
or continuous/ranked pathology data and PC0F(V) was assessed
using the Spearman non-parametric test (two-tailed). Correlation
between dichotomous pathology data (presence/absence of DCIS)
and categorical pathology data (cancer type) was assessed using
the Mann–Whitney and Kruskal– Wallis non-parametric tests
(two-tailed), respectively. Prognostic efficacy was assessed using
receiver–operator characteristic (ROC) curves (Altman and Bland,
1994), with PR as the positive result, and the areas contained
underneath them (AUC) calculated.

Variables were combined, in the hope of attaining a synergistic
increase in prognostic efficacy, using logistic regression analysis
(LRA) modelling, a statistical technique that maximises binary
classification accuracy using a linear combination of weighted
input variables plus a constant term (Hosmer and Lemeshow,
1989). Backwards conditional elimination of input variables
(P40.10) was used in order to prevent over-parameterisation of
models, and ordinal variables were treated as categorical with the
most benign category used as the indicator reference. Some
statistical confidence intervals (CIs) were obtained using tabulated
values (Anonymous, 1982).

RESULTS

Patient recruitment, withdrawal and other excluding
factors

A total of 46 women were recruited into the study over a period of
approximately 2 years; however, six (13%) of these subsequently

Figure 1 An example of the seven-voxel spectroscopic imaging
localisation technique in a pre-chemotherapy tumour. (The bottom two
voxels can be seen to contain wholly tumour, and spectral analysis would
have been limited to these voxels.) The image on which the voxels are
overlaid is the single slice, T1-weighted, sagittal localiser scan acquired with
fat suppression post-contrast and immediately before spectroscopy.
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withdrew. One case of atypical, inflammatory lobular cancer was
excluded from data analysis on the grounds that it is impossible to
measure tumour volume accurately in such tumours. One case in
which histology only revealed DCIS was also excluded on the
grounds that DCIS is too dissimilar to the other tumour types
present, and chemotherapy is not the treatment of choice for it
(2/40¼ 5%).

In three of the remaining 38 cases, the second MRI examination
was severely delayed owing to clinical complications and was
carried out after the chosen cutoff of 55 days, thus necessitating the
exclusion of the TP2 (but not the TP0) data. In addition, it was not
possible to acquire ADC and MRS data on every occasion because
of a number of problems including hardware failure and an
inability to acquire sufficient signal to permit sequence optimisa-
tion. Such failures occurred during the TP0 scan, necessitating
complete exclusion of the patient from data analysis, in four cases,
and at TP2, necessitating removal of TP2 data only, in nine cases. A
total of 13 failures in the 73 examinations (38 at TP0 and 35 at TP2)
represent a failure rate of 18%. Results will, therefore, be presented
for 22 cases for which both TP0 and TP2 data were available and an
additional 12 cases for which data were available at TP0 only (see
Figure 2).

Neither tumour volume measurements nor PK analysis were
affected at any time point, as these were based on three-
dimensional and DCE-MRI images acquired before ADC and
MRS were attempted. Therefore, tumour volume response,
PC0F(V), could be quantified in all cases. Pharmacokinetic data
and tumour volume data calculated in cases where ADC and MRS
data were not acquired were voluntarily excluded, so as not to bias
statistical power in favour of PK/volume parameters. In the 22
cases for which valid TP2 data were available, 18 (82%) of the
women had received two courses of chemotherapy at the time of
MRI and four had received three courses. In three cases, it was
decided to cease chemotherapy before a full six cycles were
completed, as poor clinical response was being demonstrated. In
these cases, MRI was, however, carried out after the final course of
treatment, thus permitting a final measurement of tumour volume
to be made and, thus, quantifying the relatively poor response
adequately.

All five pathology variables (i.e. cancer type, grade, presence/
absence of DCIS, and ERS and PRS scores) were available in 35 of
the 38 eligible cases. These included 32 of the 34 valid TP0 MRI
cases, all 22 of the valid TP2 MRI cases and three cases in which
MRI data were unusable (see Figure 2). The age at TP0 for the 37
women whose data are used in this study ranged from 26 years, 6
months to 75 years, 7 months, with a median of 48 years, 6 months.

The pathological cancer subtypes of these 37 cases were 19 ductal/
not specified (12 with DCIS), 15 (nine) ductal and three (one)
lobular. The number of women with cancers of grade one, two and
three were nine, 18 and eight, respectively (cancer grade was not
reported by the pathologist in two cases). Two women did not
undergo surgery because of the presence of metastatic disease and
one woman did not undergo surgery as post-chemotherapy core
biopsy confirmed the absence of residual cancer. In the remaining
cases, 17 women underwent mastectomy and 17 underwent wide
local excision. The length of time between the final MRI scan and
surgery ranged from 14 to 117 days, with a median of 28 days.
Maximum tumour diameter was recorded in the patient’s notes by
both the pathologist and the MRI radiologist in 21 cases.

Agreement between MRI and pathology measurements

Calculation of the limits of agreement between the maximum
tumour diameters as measured by the pathologists and the MRI
radiologist demonstrated a mean difference (MRI– pathology) of
�2.1 mm with a 95% CI (1.96� standard deviation) of 718.6 mm.
The limits of agreement were, therefore, �20.7 to 16.5 mm. A
paired t-test of the two sets of measurements showed that the mean
difference was not statistically significant (P¼ 0.32), thus indicat-
ing that MRI is an unbiased estimator of true tumour size
and, therefore, suitable for quantifying tumour response. The
maximum diameter as measured by the MRI radiologist was also
compared to the cube root of the final tumour volume, and these
two variables demonstrated excellent linear correlation
(P¼ 0.0001; R2¼ 0.56).

Predicting response using individual variables

The ranges of all predictive MRI variables are presented in Table 1,
and the results of correlating the predictive MRI and pathology
variables with PC0F(V) are given in Table 2. Six MRI variables
demonstrated P-values less than 0.07 and the data for these,
divided into SD and PR subsets, are presented in Figure 3. These
six variables along with four histopathology variables for which the
P-values were also less than 0.07 underwent ROC curve analysis,
and the results of this are also given in Table 2. The slight
differences in the patterns of statistical significance between the
correlation and ROC analyses can be attributed to the different
variables quantifying response in the two types of tests (specifically
that PC0F(V) is continuous whereas PR/SD is dichotomous). Four
variables demonstrated an ROC AUC significantly larger than 0.5:
water T2 at TP0 and changes in %WMRS measured at 135 ms, water
T2 and tumour volume between TP0 and TP2. The ROC plots for
these are shown in Figure 4.

All pathology data

9

(5)
10

22
(14)

2(1)

3(2)

All MRI data 
at TP0

All MRI data 
at TP2

Figure 2 A Venn diagram showing the availability of valid data for the 46
women recruited into this study (with nine cases having to be excluded
completely). Numbers in parentheses indicate the number of cases where
DCIS was present.

Table 1 The range of values for all predictive MRI variables used in this
study, as grouped by clinical time point (TP0 being before treatment and
TP2 being after the second course of chemotherapy)

Parameter (units) TP0 (n¼ 34) TP2 (n¼ 22)

Volume (ml) 3.7–240.0 1.3–95.0
Ktrans (per unit time) 1.4–18.0 0.6–8.3
Kep (per unit time) 0.4–12.4 0.4–3.9
Ve (arbitrary) 0.6–3.5 1.2–3.1
MEF (arbitrary) 0.8–3.5 1.3–3.6
ADC (mm2/s) 0.3–5.9 0.9–4.3
%WMRS at 135 ms 68–100% 30–100%
%WMRS at 30 ms 73–100% 49–100%
Water T2 (ms) 47–130 24–104

ADC¼ apparent diffusion coefficient; MEF¼maximum enhancement factor;
MRI¼magnetic resonance imaging.
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Table 2 Statistical significance of non-parametric correlation analyses between the variables indicated and final tumour volume response PC0F(V)

No. of cases Correlation
ROC curve

PR+SD P (sense) P AUC 95% CI

MRI data at TP0

%WMRS at 135 ms 24+10 S: 0.034 (�) 0.14 0.66
Water T2

[1] 24+10 S: 0.055 (�) 0.03 0.73 0.56 to 0.91
Tumour volume 24+10 S: 0.059 (�) 0.20 0.64
Ve 24+10 S: 0.425
Ktrans 24+10 S: 0.439
%WMRS at 30 ms 24+10 S: 0.579
Kep 24+10 S: 0.686
MEF 24+10 S: 0.720
Water ADC 24+10 S: 0.808

MRI data at TP2

PC02(tumour volume)[2] 16+6 S: 0.001 (+) 0.03 0.80 0.58 to 1.00
D02(water T2)

[3] 16+6 S: 0.006 (+) 0.04 0.79 0.60 to 0.98
PC02(%WMRS at 135 ms)[4] 16+6 S: 0.025 (+) 0.02 0.83 0.60 to 1.00
D02(K

trans) 16+6 S: 0.299
D02(Ve) 16+6 S: 0.352
D02(Kep) 16+6 S: 0.405
D02(MEF) 16+6 S: 0.587
D02(water ADC) 16+6 S: 0.736
PC02(%WMRS at 30 ms) 16+6 S: 0.788

Other data
Age at TP0 26+11 S: 0.958
Cancer grade[5] 24+11 S: 0.003 (�) 0.08 0.69 0.49 to 0.88
Presence of DCIS 24+11 M: 0.006 (+) 0.14 0.66
PRS score[6] 24+11 S: 0.008 (+) 0.09 0.68 0.49 to 0.88
ERS score 24+11 S: 0.061 (+) 0.17 0.65
Cancer type 24+11 K: 0.740

LRA models (variables included)
MRI only[1,2,4] 16+6 0.0032 0.92 0.79 to 1.00
MRI and histopathology[1 to 6] 16+6 0.0004 1.00 1.00 to 1.00

The sense of the correlations is also shown. Results of ROC curve analyses (with PR/SD as positive/negative results) are also shown for selected variables. Numbers in square
brackets indicate those variables chosen as inputs to LRA modelling. S¼ Spearman rank correlation; M¼Mann–Whitney test; K¼ Kruskal –Wallis test; (+) a positive correlation
with lower, or more negative values being associated with more negative values of PC0F(V), that is, PR; (�) a negative correlation with higher, or more positive values being
associated with more negative values of PC0F(V), that is, PR. AUC¼ area under the curve; ADC¼ apparent diffusion coefficient; DCIS¼ ductal carcinoma in situ;
ERS¼ oestrogen receptor status; LRA¼ logistic regression analysis; MEF¼maximum enhancement factor; MRI¼magnetic resonance imaging; PR¼ partial response;
PRS¼ progesterone receptor status; ROC¼ receiver –operator characteristic; SD¼ stable disease.
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less than 0.07. The medians for both SD and PR subsets are also shown.
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When specificity is set at 100% in Figure 4, the sensitivity for the
change in water T2 at TP2 is 69% (11/16; 95% CI¼ 41–89%), which
suggests that this fraction of PR cases can be accurately predicted,
that is, at 100% positive predictive value (PPV). Similarly, when
sensitivity is set to 100%, the specificity displayed by the change in
%WMRS at TP2 is 50% (3/6; 95% CI¼ 12–88%), which suggests that
this fraction of SD cases can be accurately predicted, that is, at
100% negative predictive value (NPV) by this variable. The results
of Table 2 also suggest that the dominant factor in driving the
observed changes in %WMRS at 135 ms (P¼ 0.025) is the change in
water T2 (P¼ 0.006) as opposed to changes in the relative water
and lipid concentrations, which would be reflected by changes in
%WMRS at 30 ms (P¼ 0.788) for which the effects of T2 would be
much less.

Predicting response using a combination of variables

All variables demonstrating an ROC P-value less than 0.10
(Table 2) were presented as inputs to LRA modelling. Two
separate analyses were conducted: one with MRI variables only
(water T2 at TP0, PC20(tumour volume), D20(water T2) and
PC20(%WMRS at 135 ms)) and one with both MRI and pathology
data (PRS score and grade). The number of cases that could be
included in LRA modelling was limited to those 22 for which all of
the above variables were available (16 PR and six SD). The logits
for the two final models were as follows:

Logit 1 ¼114:9�½T2 at TP0� � 10:1�PC20ðtumour volumeÞ
� 10:9�PC20ð%W at 135msÞ � 11:1

Logit 2 ¼19 709:5�½T2 at TP0�
� 1890:1�PC20ðtumour volumeÞ
� 1877:9�PC20ð%W at 135msÞ
þ 6330:0�D20ðwater T2Þ
� 785:6�½PRS score� � 310:4½IF grade 1�
� 111:0½IF grade 3� � 1245:6

The ROC AUC values for the above logits are shown in Table 2.
Both models provide an increase in prognostic accuracy over all of
the individual variables, and the second model is able to classify all
22 cases accurately. Both PPV and NPV are 100% for this data set
and the 95% CI lower bounds are 79% (16/16) and 54% (6/6),
respectively.

DISCUSSION

To the authors’ knowledge, this paper represents the first study
whereby PK parameter mapping, ADC mapping and unsuppressed
proton spectroscopy (water : fat ratios) have all been investigated
in the same patient examinations, thus permitting their relative
abilities to predict chemotherapy response to be ascertained
rigorously. The use of spectroscopic imaging at both short and
long echo times represents a significant extension to the
methodology of Jagannathan et al (1998): firstly through permit-
ting greater post-examination control over intra-voxel partial
volume effects and secondly by permitting the effects of T2

relaxation to be revealed. It was also hoped that the 30 ms TE
spectra would permit investigation of the relative proportions of
the 1.3 and 0.9 p.p.m. lipid peaks, along with the contributions of
other, minor lipid moieties, which are more conspicuous at short
TE. This analysis is not possible with quantitative chemical shift
imaging (Daniel et al, 1998), as this technique, while having much
higher spatial resolution, only provides images for water and total
fat signal. It did not prove possible to resolve the separate lipid
components adequately in a sufficient number of cases to permit
this; therefore, chemical shift imaging may be a suitable alternative

to spectroscopic imaging, permitting increased spatial resolution
in future studies.

This study shows that MRS parameters provide substantial
prognostic information, and slightly more than that provided by
volume measurements alone, thus supporting the conclusions of
Jagannathan et al (1998). This study also suggests that water T2

plays a dominant part in driving the observed treatment changes
in water : fat ratios (at TP2) and it is, therefore, possible that image-
based T2 mapping techniques (Liney et al, 1996) might provide the
same prognostic information as %WMRS but with the combined
benefits of greatly increased spatial resolution, wider availability in
clinical MRI centres and a reduced likelihood of technical failure in
a given examination. Quantitative T2 mapping has been applied to
monitoring chemotherapy in one animal tumour study, but the
increases in T2 observed 3 days post-therapy were not statistically
significant (Duvvuri et al, 2001). Significant differences were
observed for T1r, however – a parameter not measured in this
study because of time and technical constraints. Whether
chemotherapy induces cell death via necrosis, apoptosis or a
combination of the two, profound changes will certainly occur in
the molecular environment of tissue water, leading to changes in
its measured T2. This molecular environment is known to be
complex and multicompartmental, which precludes a simple
rationale for the results of this study.

Although water : fat ratios have been shown to contain
substantial prognostic power, in both this and another study
(Jagannathan et al, 1998), it is noted that a number of groups are
now focusing on measurements of choline-containing compounds
using water-suppressed MRS, as the choline moiety is potentially
a more sensitive, and probably a more biochemically relevant
marker, of cancer cell viability. Such studies have recently been
carried out in breast cancer (Jagannathan et al, 2001; Meisamy
et al, 2004), lymphoma and germ cell tumours (Schwarz et al,
2002), and glioma (Preul et al, 2000), where positive treatment
response has been associated with reduction in the levels of total
choline. Similar studies using phosphorous spectroscopy to detect
changes in phosphocholine or phosphomonoesters have also been
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carried out in lymphoma (Arias-Mendoza et al, 2004) and head
and neck cancer (Shukla-Dave et al, 2002a, b). It is noteworthy that
these studies attempted to predict response before treatment
commencement, always a more valuable prognostic test, sparing
the patients all unnecessary morbidity and time, than reliably
detecting early response, which the methods presented herein
achieve.

This study also demonstrates that histopathology data routinely
available from pre-chemotherapy core biopsies also provide
substantial prognostic power (especially so for PRS score and
grade). This conclusion is supported by other laboratory studies,
which have included investigation of expression of the HER2
oncogene (Penault-Llorca et al, 2003) and the cellular proliferation
marker Ki-67 (Aas et al, 2003). Whereas laboratory analysis of
actual tissue is inherently superior to imaging alone, it should be
noted that the core biopsy technique is always prone to sampling
errors, whereas imaging has the advantage of covering the whole of
the lesion.

This study also demonstrates that a combination of prognostic
variables, via LRA, can be used to provide a synergistic increase in
prognostic accuracy, thus proving the study hypothesis. Although
the perfect prognostic accuracy achieved using one of the LRA
models indicates that the methods used in this study have
substantial prognostic power and could be applied clinically,
leading to benefits for patients, the true accuracy will be less and
will need to be ascertained in larger studies. A multicentre study
would also allow investigation of reproducibility. It might also be
beneficial to split the data acquired in subsequent studies into
separate test and validation subsets, thus allowing optimal model
coefficients to be set with the former subset and their true
prognostic accuracy determined through application of the model
to the completely independent data in the latter.

Early, accurate detection of non-response to chemotherapy
would permit an early change to second-line treatment and thus
spare patients unnecessary toxicity, cost and delay of initiation of
effective treatment. The cessation of treatment that would
ultimately prove ineffective might also be beneficial in terms of
health economics, allowing resources to be applied more
efficiently. Conversely, early, accurate detection of response to
chemotherapy might have positive benefits for the psychological
well-being and quality-of-life of patients through giving them
increased hope. The high prognostic accuracy might be bolstered
by including variables that quantify lesion shape and texture, as
obtained from the post-contrast three-dimensional images, in the
LRA modelling (Esserman et al, 2001).

This study shows that ADC mapping after the second course of
chemotherapy does not contribute significantly towards detecting

early response. Other studies have shown that treatment-induced
changes in ADC in human breast cancer and breast cancer
metastasised to liver are most marked a few days after the first
dose of chemotherapy (Theilmann et al, 2003). Therefore, our
study protocol, with the predictive scans being carried out after
two cycles of chemotherapy rather than one (Gibbs et al, 2003),
was perhaps not well suited to elucidating the relative merits of
ADC mapping.

In contrast to our results, other studies have indicated that PK
parameters derived from DCE-MRI contain prognostic informa-
tion during chemotherapy treatment in a number of locations in
the human body (with reductions in Ktrans being associated with
positive response) as reviewed by Padhani (2002) and Knopp et al
(2003). This apparent discrepancy regarding the efficacy of PK
parameters may be due to the relatively small number of cases
included in various studies, or the wide variety of DCE-MRI
acquisition and PK analysis techniques used. Intra-tumour
vascular heterogeneity might also be significant in some breast
cancers (Hayes et al, 2002), leading to the possible breakdown
of PK model assumptions such as the fast exchange limit within
better-perfused regions (usually located at the tumour rim) (Zhou
et al, 2004; Li et al, 2005). This could present a complicating factor
in obtaining reliable results, an issue not addressed in this study,
which utilised a whole ROI approach so as to minimise the effects
of intra-scan patient motion.

Some DCE-MRI studies of breast cancer have attempted to
improve the accuracy of PK modelling by imaging in the axial
plane so as to allow a plasma concentration time-course to be
measured in the aorta, thus permitting the calculation of an
arterial input function (AIF) for the tumour. It is debatable,
however, whether the benefits of including an AIF measured so
distantly from the tissue of interest (i.e. one which does not allow
for bolus dispersion effects) outweigh the reduction in spatial
resolution and tissue coverage necessitated by axial imaging,
especially when the DCE-MRI images are also used for clinical
purposes. A consensus on the adoption of standardised techniques
and the establishment of large, multicentre studies would, there-
fore, seem appropriate.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of Yorkshire
Cancer Research and also Catherine Bowker, Lynn Cawkwell, John
Greenman, John Read and Irvine Long for assistance with study
design, patient recruitment, data acquisition and data analysis.

REFERENCES

Aas T, Geisler S, Eide GE, Haugen DF, Varhaug JE, Bassoe AM, Thorsen T,
Berntsen H, Borresen-Dale AL, Akslen LA, Lonning PE (2003) Predictive
value of tumour cell proliferation in locally advanced breast cancer
treated with neoadjuvant chemotherapy. Eur J Cancer 39: 438 – 446

Altman DG, Bland JM (1994) Diagnostic tests 3 – receiver operating
characteristic plots. BMJ 309: 188

Anonymous (1982) Geigy Scientific Tables. Basle: Geigy
Arias-Mendoza F, Smith MR, Brown TR (2004) Predicting treatment response

in non-Hodgkin’s lymphoma from the pretreatment tumor content of
phosphoethanolamine plus phosphocholine. Acad Radiol 11: 368 – 376

Bland JM, Altman DG (1986) Statistical methods for assessing agreement
between two methods of clinical measurement. Lancet 1: 307 – 310

Bolan PJ, Meisamy S, Baker EH, Lin J, Emory T, Nelson M, Everson LI, Yee
D, Garwood M (2003) In vivo quantification of choline compounds in the
breast with H-1 MR spectroscopy. Magn Reson Med 50: 1134 – 1143

Bradamante S, Barchiesi E, Pilotti S, Borasi G (1988) High-resolution H-1-
NMR spectroscopy in the diagnosis of breast-cancer. Magn Reson Med 8:
440 – 449

Buckley DL, Kerslake RW, Blackband SJ, Horsman A (1994) Quantitative
analysis of multisclice GD-DTPA enhanced dynamic MR-images using an
automated simplex minimisation procedure. Magn Reson Med 32:
646 – 651

Buscombe JR, Cwikla JB, Thakrar DS, Hilson AJW (1997) Scintigraphic
imaging of breast cancer: a review. Nucl Med Commun 18: 698 – 709

Byrne AM, Hill ADK, Skehan SJ, McDermott EW, O’Higgins NJ (2004)
Positron emission tomography in the staging and management of breast
cancer. Br J Surg 91: 1398 – 1409

Chu DZJ, Yamanashi WS, Frazer J, Hazlewood CF, Gallager HS, Boddie
AW, Martin RG (1987) Proton NMR of human breast tumors –
correlation with clinical prognostic parameters. J Surg Oncol 36: 1 – 4

Predicting chemotherapy response with quantitative MRI

DJ Manton et al

433

British Journal of Cancer (2006) 94, 427 – 435& 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



Daniel BL, Butts K, Glover GH, Cooper C, Herfkens RJ (1998) Breast cancer:
gadolinium-enhanced MR imaging with a 0.5 T open imager and three-
point Dixon technique. Radiology 207: 183 – 190

Drew PJ, Kerin MJ, Mahapatra T, Malone C, Monson JRT, Turnbull LW,
Fox JN (2001) Evaluation of response to neoadjuvant chemoradiotherapy
for locally advanced breast cancer with dynamic contrast-enhanced MRI
of the breast. Eur J Surg Oncol 27: 617 – 620

Duvvuri U, Poptani H, Feldman M, Nadal-Desbarats L, Gee MS, Lee WMF,
Reddy R, Leigh JS, Glickson JD (2001) Quantitative T1-rho magnetic
resonance imaging of RIF-1 tumors in vivo: detection of early response
to cyclophosphamide therapy. Cancer Res 61: 7747 – 7753

Esserman L, Hylton N, Yassa L, Barclay J, Frankel S, Sickles E (1999) Utility
of magnetic resonance imaging in the management of breast cancer:
evidence for improved preoperative staging. J Clin Oncol 17: 110 – 119

Esserman L, Kaplan E, Partridge S, Tripathy D, Rugo H, Park J, Hwang S,
Kuerer H, Sudilovsky D, Lu Y, Hylton N (2001) MRI phenotype is
associated with response to doxorubicin and cyclophosphamide
neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol
8: 549 – 559

Gallons JP, Altbach G, Paine-Murrieta C, Taylor C, Gillies RJ (1999) Early
increases in breast tumor xenograft water mobility in response to
paclitaxel therapy detected by non-invasive diffusion magnetic reso-
nance imaging. Neoplasia 1: 113 – 117

Gibbs JE, Partridge SC, Hylton NM (2003) Incremental value of ADC as an
indicator of treatment response in patients undergoing neoadjuvant
chemotherapy for locally advanced breast cancer. Proc Int Soc Magn
Reson Med 11: 291

Gibbs P, Tozer DJ, Liney GP, Turnbull LW (2001) Comparison of
quantitative T2 mapping and diffusion-weighted imaging in the normal
and pathologic prostate. Magn Reson Med 46: 1054 – 1058

Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour
vascular function using dynamic contrast-enhanced magnetic resonance
imaging. NMR Biomed 15: 154 – 163

Hittmair K, Gomiscek G, Langenberger K, Recht M, Imhof H, Kramer J
(1994) Method for the quantitative assessment of contrast agent uptake
in dynamic contrast-enhanced MRI. Magn Reson Med 31: 567 – 571

Hosmer DW, Lemeshow S (1989) Applied Logistic Regression. Chichester:
Wiley

Jackson EF, Doyle TJ, Wolinsky JS, Narayana PA (1994) Short TE H-1
spectroscopic MR-imaging of normal human brain – reproducibility
studies. JMRI J Magn Reson Imaging 4: 545 – 551

Jacobs MA, Barker PB, Argani P, Ouwerkerk R, Bhujwalla ZM, Bluemke DA
(2005) Combined dynamic contrast enhanced breast MR and proton
spectroscopic imaging: a feasibility study. J Magn Reson Imaging 21:
23 – 28

Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA (2004)
Proton magnetic resonance spectroscopic imaging of human breast
cancer: a preliminary study. J Magn Reson Imaging 19: 68 – 75

Jagannathan NR, Kumar M, Seenu V, Coshic O, Dwivedi SN, Julka PK,
Srivastava A, Rath GK (2001) Evaluation of total choline from in vivo
volume localized proton MR spectroscopy and its response to
neoadjuvant chemotherapy in locally advanced breast cancer. Br J
Cancer 84: 1016 – 1022

Jagannathan NR, Singh M, Govindaraju V, Raghunathan P, Coshic O, Julka
PK, Rath GK (1998) Volume localized in vivo proton MR spectroscopy of
breast carcinoma: variation of water – fat ratio in patients receiving
chemotherapy. NMR Biomed 11: 414 – 422

Katz-Brull R, Lavin PT, Lenkinski RE (2002) Clinical utility of proton
magnetic resonance spectroscopy in characterizing breast lesions. J Natl
Cancer Inst 94: 1197 – 1203

Kline RP, Wu EX, Petrylak DP, Szabolcs M, Alderson PO, Weisfeldt ML,
Cannon P, Katz J (2000) Rapid in vivo monitoring of chemotherapeutic
response using weighted sodium magnetic resonance imaging. Clin
Cancer Res 6: 2146 – 2156

Knopp MV, von Tengg-Kobligk H, Choyke PL (2003) Functional magnetic
resonance imaging in oncology for diagnosis and therapy monitoring.
Mol Cancer Ther 2: 419 – 426

Kumar R, Alavi A (2004) Fluorodeoxyglucose-PET in the management of
breast cancer. Radiol Clin N Am 42: 1113 – 1122

Li X, Huang W, Yankeelov TE, Tudorica A, Rooney WD, Springer CS (2005)
Shutter-speed analysis of contrast reagent bolus-tracking data: pre-
liminary observations in benign and malignant breast disease. Magn
Reson Med 53: 724 – 729

Liney GP, Knowles AJ, Manton DJ, Turnbull LW, Blackband SJ, Horsman A
(1996) Comparison of conventional single echo and multi-echo

sequences with a fast spin echo sequence for quantitative T2
mapping: application to the prostate. JMRI J Magn Reson Imaging 6:
603 – 607

Meisamy S, Bolan PJ, Baker EH, Bliss RL, Gulbahce E, Everson LI, Nelson
MT, Emory TH, Tuttle TM, Yee D, Garwood M (2004) Neoadjuvant
chemotherapy of locally advanced breast cancer: predicting response
with in vivo H-1 MR spectroscopy – a pilot study. Radiology 233:
424 – 431

Miller AJ, Joseph PM (1993) The use of power images to perform
quantitative analysis on low SNR MR images. Magn Reson Imaging 11:
1051 – 1056

Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q,
Tsien C, Mukherji S, Quint DJ, Gebarski SS, Robertson PL, Junck LR,
Rehemtulla A, Ross BD (2005) Functional diffusion map: a noninvasive
MRI biomarker for early stratification of clinical brain tumor response.
Proc Natl Acad Sci USA 102: 5524 – 5529

Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology:
current status and future directions. J Magn Reson Imaging 16: 407 – 422

Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Tripathy D, Wolverton DS, Rugo
HS, Hwang GE, Ewing CA, Hylton NM (2005) MRI measurements of
breast tumor volume predict response to neoadjuvant chemotherapy and
recurrence-free survival. Am J Roentgenol 184: 1774 – 1781

Penault-Llorca F, Cayre A, Mishellany FB, Amat S, Feillel V, Le Bouedec G,
Ferriere JP, De Latour M, Chollet P (2003) Induction chemotherapy for
breast carcinoma: predictive markers and relation with outcome. Int J
Oncol 22: 1319 – 1325

Preul MC, Caramanos Z, Villemure JG, Shenouda G, LeBlanc R, Langleben
A, Arnold DL (2000) Using proton magnetic resonance spectroscopic
imaging to predict in vivo the response of recurrent malignant gliomas to
tamoxifen chemotherapy. Neurosurgery 46: 306 – 318

Ross BD, Moffat BA, Lawrence TS, Mukherji SK, Gebarski SS, Quint DJ,
Johnson TD, Junck L, Robertson PL, Muraszko KM, Dong Q, Meyer CR,
Bland PH, McConville P, Geng HR, Rehemtulla A, Chenevert TL (2003)
Evaluation of cancer therapy using diffusion magnetic resonance
imaging. Mol Cancer Ther 2: 581 – 587

Schepkin VD, Ross BD, Chenevert TL, Rehemtulla A, Sharma S, Kumar M,
Stojanovska J (2005) Sodium magnetic resonance imaging of chemother-
apeutic response in a rat glioma. Magn Reson Med 53: 85 – 92

Schwarz AJ, Maisey NR, Collins DJ, Cunningham D, Huddart R, Leach MO
(2002) Early in vivo detection of metabolic response: a pilot study of H-1
MR spectroscopy in extracranial lymphoma and germ cell tumours. Br J
Radiol 75: 959 – 966

Shukla-Dave A, Poptani H, Loevner LA, Mancuso A, Serrai H, Rosenthal DI,
Kilger AM, Nelson DS, Zakian KL, Arias-Mendoza F, Rijpkema M,
Koutcher JA, Brown TR, Heerschap A, Glickson JD (2002a) Prediction of
treatment response of head and neck cancers with P-31 MR spectroscopy
from pretreatment relative phosphomonoester levels. Acad Radiol 9:
688 – 694

Shukla-Dave A, Poptani H, Loevner LA, Mancuso A, Serrai H, Rosenthal DI,
Kilger AM, Nelson DS, Zakian KL, Arias-Mendoza F, Rijpkema M,
Koutcher JA, Brown TR, Heerschap A, Glickson JD (2002b) Prediction of
treatment response of head and neck cancers with P-31 MR spectroscopy
from pretreatment relative phosphomonoester levels (vol 9, pg 688,
2002). Acad Radiol 9: 772

Sijens PE, Wijrdeman HK, Moerland MA, Bakker CJG, Vermeulen JWAH,
Luyten PR (1988) Human breast cancer in vivo – H-1 and P-31 MR
spectroscopy at 1.5 T. Radiology 169: 615 – 620

Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes
in the presence of a time dependent field gradient. J Chem Phys 42:
288 – 292

Theilmann RJ, Xia G, Stopeck A, Outwater E, Gillies RJ (2003) Correlation
of chemotherapeutic response with the apparent diffusion coefficient of
water (ADCw) of liver metastases. Proc Int Soc Magn Reson Med
11: 533

Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein
L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther
SG (2000) New guidelines to evaluate the response to treatment in solid
tumors. J Natl Cancer Inst 92: 205 – 216

Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR
imaging. JMRI J Magn Reson Imaging 7: 91 – 101

Toms JR (ed) (2003) CancerStats Monograph. London: Cancer Research UK
Wasser K, Klein SK, Fink C, Junkermann H, Sinn HP, Zuna I, Knopp MV,

Delorme S (2003) Evaluation of neoadjuvant chemotherapeutic response
of breast cancer using dynamic MRI with high temporal resolution.
Eur Radiol 13: 80 – 87

Predicting chemotherapy response with quantitative MRI

DJ Manton et al

434

British Journal of Cancer (2006) 94, 427 – 435 & 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



Weber WA (2005) Use of PET for monitoring cancer therapy and for
predicting outcome. J Nucl Med 46: 983 – 995

Zhao M, Pipe JG, Bonnett J, Evelhoch JL (1996) Early detection of treatment
response by diffusion-weighted H-1 NMR spectroscopy in a murine
tumour in vivo. Br J Cancer 73: 61 – 64

Zhou R, Pickup S, Yankeelov TE, Springer CS, Glickson JD (2004)
Simultaneous measurement of arterial input function and tumor
pharmacokinetics in mice by dynamic contrast enhanced imaging:
effects of transcytolemmal water exchange. Magn Reson Med 52:
248 – 257

Predicting chemotherapy response with quantitative MRI

DJ Manton et al

435

British Journal of Cancer (2006) 94, 427 – 435& 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s


