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Detecting video-induced P3 is crucial to building the video target detection system
based on the brain-computer interface. However, studies have shown that the brain
response patterns corresponding to video-induced P3 are dynamic and determined
by the interaction of multiple brain regions. This paper proposes a segmentation
adaptive spatial-temporal graph convolutional network (SAST-GCN) for P3-based video
target detection. To make full use of the dynamic characteristics of the P3 signal
data, the data is segmented according to the processing stages of the video-induced
P3, and the brain network connections are constructed correspondingly. Then, the
spatial-temporal feature of EEG data is extracted by adaptive spatial-temporal graph
convolution to discriminate the target and non-target in the video. Especially, a style-
based recalibration module is added to select feature maps with higher contributions
and increase the feature extraction ability of the network. The experimental results
demonstrate the superiority of our proposed model over the baseline methods. Also,
the ablation experiments indicate that the segmentation of data to construct the
brain connection can effectively improve the recognition performance by reflecting the
dynamic connection relationship between EEG channels more accurately.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), P3 detection, graph convolutional
neural networks (GCN), style-based recalibration module (SRM)

INTRODUCTION

Event-Related Potentials (ERP) is a special type of brain-evoked potential. It can reflect the
neurophysiological changes in the human brain according to cognitive behavior, thus revealing
the processing of sensitive information in the brain (Kutas et al., 1977; Brydges and Barceló, 2018).
However, the signal-to-noise ratio of ERP signals is low, and it is difficult to detect these potentials,
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especially in a single trial. In dynamic video target detection
tasks, the dynamic change of the scene has a complex impact
on the brain response, which further improves the difficulty
of single-trial P3 detection. The single-trial video-induced P3
detection model should be considered from many aspects, which
is of great significance to shortening the preparation time of test
users and improving the practicability and generalization of the
brain-computer interface (BCI) system (Song X. et al., 2020).

The previous work used the traditional machine learning
technology and the classifier based on a neural network for
single-trial EEG classification. The classical machine learning
algorithms such as K-Nearest Neighbor (KNN) (Schlögl et al.,
2005), Naive Bayes (NB) (Speier et al., 2012), Support Vector
Machine (SVM) (Thulasidas et al., 2006), Discriminative
Canonical Pattern Matching (DCPM) (Xiao et al., 2020) depend
largely on feature engineering and feature selection, which
requires a lot of expert knowledge. In recent years, deep learning
methods have been widely used in EEG signal classification due
to their strong representation learning ability (Anumanchipalli
et al., 2019). Various deep learning methods have been used for
EEG recognition, and some of them have achieved good results
(Lawhern et al., 2016; Lan et al., 2021; Ma et al., 2021). To achieve
better generalization performance of deep neural networks,
Lawhern et al. (2016). proposed a compact convolutional neural
network EEGNet, which extracts the frequency-domain, space-
domain, and time-domain features of EEG signals through three
different convolutional kernels and achieves a good detection
effect on P300 signals. Meanwhile, some scholars studied
the application of recurrent neural network (RNN) to ERP
classification to capture the time series information hidden in
the ERP signals. An Indian scholar proposed convolutional long
short term memory (ConvLSTM) (Joshi et al., 2018), which
combines a convolutional neural network and a long-short-term
neural network. ConvLSTM extracts the spatial characteristics
of EEG signals by the CNN network and learns the temporal
variation of EEG signals through LSTM to obtain a better ERP
classification effect than the single CNN network.

However, EEG data has spatial and temporal characteristics.
The spatial structure is related to the different EEG sensors placed
on the scalp of the subjects, while the temporal structure is
implicit because it obtains voltage values at each instant (Joshi
et al., 2018). Thus, P300 has similar temporal characteristics but
different spatial characteristics, and the spatial connection should
not be ignored in EEG data. However, the recent commonly
used deep learning methods require grid data as input (itself or
converted into a similar image representation) and ignore the
connection between the spatial regions of the brain (Wang et al.,
2021). Since the brain region is in a non-Euclid space, the graph
is the most suitable data structure to describe brain connections.

The graph neural network (GNN) is a neural network
that can be directly applied to the graph data structure.
The graph convolutional neural network (GCN) is a type
of GNN, which uses convolution operations. It captures
the dependency relationship in the graph according to the
information transmission between the nodes in the graph, and
then it performs end-to-end calculations on the graph data
(Cai et al., 2017; Zhou et al., 2018). The emerging GCN has

shown potential in modeling multi-channel signals through
graphs in a non-Euclid space. Instant applications include image
classification (Bruna et al., 2013; Monti et al., 2017; Chen
et al., 2019), node classification (Kipf and Welling, 2016), action
recognition (Yan et al., 2018; Zhang et al., 2019) and traffic flow
forecasting (Yu et al., 2018; Diao et al., 2019).

By relating each EEG channel to a node of the graph and
the connections between the channels to the edges of the graph,
some scholars proposed to use GCN for EEG data classification
(Wagh and Varatharajah, 2020). Song T. et al. (2020) first used
Dynamical Graph Convolutional Neural Network (DGCNN) for
EEG emotion recognition. The network can construct graph data
more in line with the state of the brain activity by learning
the relationship between different channels, and it achieves
good performance. Zhong et al. (2020) proposed a regularized
convolutional network (RGNN), which considers the global and
local relationships of different EEG channels. The topological
structure of the EEG data is considered by the above studies,
but the ERP signal has obvious time-domain characteristics.
Therefore, Yan et al. (2018) introduced the spatial-temporal
graph convolutional network (GCN). Sun et al. (2021) proposed
an adaptive spatial-temporal GCN for classifying motor imagery
EEG data. Meanwhile, they extracted the spatial-temporal
features synchronously through one-dimensional convolution in
the time domain and graph convolution in space. Jia et al. (2020)
proposed GraphSleepNet for automatic sleep stage classification.
The model uses a graph convolution to extract spatial features
and a time convolution to capture the conversion rules between
sleep stages. Also, it adaptively learns the intrinsic connections
between different EEG channels to best serve the classification
of sleep stages.

At present, the graph connection representation in EEG
data based on graph convolution only uses a static connection
mode, which is not consistent with the fact that the brain
network connection changes from time to time. Especially, for
video-induced P3, the neural response can be divided into
three stages, i.e., information integration, decision process, and
neuronal response (Desmedt, 1980; Song et al., 2021b). Therefore,
this paper proposes a segmentation adaptive spatial-temporal
GCN (SAST-GCN) for single-trial video-induced P3 detection
based on the spatial-temporal structure of multi-channel EEG
signals. According to the neural processing mechanism for
video targets, the EEG data are divided into stages, and the
corresponding graph representations are constructed. Based on
this, the spatial-temporal characteristics are extracted by spatial-
temporal graph convolution.

The main contributions of this paper are as follows:

(1) A segmented constructed graph method is proposed.
Compared with the unified static graph, the segmented
constructed graph can improve network performance by
4.42% (F1-score).

(2) SAST-GCN can adaptively determine the
importance of adjacent nodes and extract spatial-
temporal domain features synchronously in a unified
spatial-temporal GCN layer.
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(3) The style-based recalibration module (SRM) is
introduced to realize adaptive calibration of the
intermediate feature map, which emphasizes the
information related to P3 components and ignores
other information.

DATASET

In this section, the experimental paradigm and data acquisition
and preprocessing methods are introduced.

Experiment Paradigm
The data from Song X. et al. (2020) EEG-based video target
detection experiment are used in this study. In their experiment,
34 healthy college students were recruited, with an average age of
25. All subjects signed informed consent before the experiment.
The experiment was approved by the Ethics Committee of Henan
Provincial People Hospital.

The video stimulus comes from a UAV aerial video. The
experimental paradigm of video target detection based on EEG
signals is shown in Figure 1. The drone flew along a wide street
and was videotaped. The experiment included 200 video clips, of
which 100 video clips containing vehicles were deviation videos,
and 100 video clips without vehicles were standard videos. The
200 video clips were randomly arranged into 10 blocks, and
each block includes 20 video clips with a duration of 4–10 s. In
the experiment, the participants were asked to quickly find the
vehicles in the video and ignore other interference information.
At the end of each video, feedback on whether the vehicle
appeared in the video or not was given via keystrokes.

Data Acquisition and Preprocess
The g. HIamp EEG acquisition system provided by the Austrian
g.tec Company was used to collect EEG signals, which contained
61 channels of effective EEG signals. The online sampling
frequency of the EEG system was 600 Hz, the band-pass
filter was 0.01˜100 Hz, and the notch frequency was 50 Hz.
In the experiment, a 0.1–30 Hz band-pass filter was used to
further filter the signal, the independent component analysis
method was adopted to remove the EOG signal, and the
signal was downsampled to 100 Hz. Meanwhile, the error
key video corresponding to the EEG signal was removed. To
provide reliable sample labels, the bias samples were intercepted
from the EEG signals induced by the biased video, and
the standard samples were intercepted from the EEG signals
induced by the standard video. The interception method of
the target sample is: the targets appearing for 1,500 ms are
intercepted. Since each deviation video contains only one
vehicle, a deviation video can only provide a reliable deviation
sample. The standard video capture method is: the standard
samples with an overlap length of 1,500 ms are captured from
the whole EEG evoked by the standard video. In this way,
each standard video can provide multiple standard samples.
Using the ERP alignment method proposed in the previous
study (Song X. et al., 2020), these samples were aligned with
ERP templates to extract 1,000-ms aligned single-trial EEG

signals, and the signals with an amplitude greater than 100
µV were discarded. After the above preprocessing, 300–500
valid single-trial signals can be obtained for each participant,
and the size of the single-trial signal matrix is 61 × 100.
The ratio of deviation sample to standard sample ranges
from 1:4 to 1:4.5.

METHODS

In this section, the model architecture, implementation details
of the SAST-GCN model, and the training and testing
methods are introduced.

Model Architecture
The overall architecture of the proposed SAST-GCN is shown
in Figure 2. The SAST-GCN model consists of three blocks
that work in order: (1) The original data is represented by
graphs in time dimension according to the neural mechanism
of brain processing videos, and the initial adjacency matrix is
obtained by Pearson coefficient. (2) Spatial graph convolution
is combined with temporal convolution to extract spatial and
temporal features. A style-based recalibration module is added
to enhance the representation ability of CNN. (3) Dimension
reduction is performed by two-layer standard convolution and
pooling operations, and classification is performed by the full
connection layer.

Segmented Graph Construction
Data Segmentation
Studies have shown that the human brain has obvious temporal
characteristics for video target perception. Video target-induced
P3 can be divided into three stages: (1) information integration
(about 0–200 ms), (2) decision process (about 200 ms to
P300 latency), and (3) neuronal response (after P300 peak
latency). The brain response intensity gradually increases and
then weakens; correspondingly, the brain network connection
gradually enriches and then weakens. Therefore, it is necessary
to construct an adjacency matrix according to the continuous
change of the brain connection network (Desmedt, 1980; Wang
et al., 2014; Song et al., 2021b).

To further determine the division range through the changes
in the brain neural response, this paper draws the average ERP
response of each channel to the neural response of the task target
within 1 s in the video, as shown in Figure 3. Each curve in the
figure represents the average ERP signal of a channel, showing
the target and non-target signals of 61 channels. According to
the superimposed ERP waveform, the EEG response induced
by the task target has obvious time characteristics, and the
signal can be divided into three stages. Therefore, this paper
further clarifies the specific time scale of each stage. Positive
P1 and P2 components appear at about 130 and 230 ms, so
the range of 0–250 ms is adopted to represent the information
integration stage. The attention and information integration of
task objectives are performed by the brain. There is an obvious
P3 peak around 350 ms, so the range of 250–520 ms is adopted
to represent the decision processing stage of the task target.
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FIGURE 1 | Experimental paradigm of UAV video target detection (Song et al., 2021a).

FIGURE 2 | The overall architecture of the proposed SAST-GCN. The model consists of three parts: the segmented adjacent matrix construction module, the
spatial-temporal graph convolution module, and the classification module.

Besides, the range of 520–1,000 ms is adopted to represent the
neuronal response stage.

Graph Construction
Inspired by the application of graph convolution neural networks
in image processing (Rivet et al., 2015; Levie et al., 2017; Fu

et al., 2020), this paper transforms the video-induced P3 detection
problem into the graph data processing problem. In the proposed
graph representation, each EEG channel is represented as a
node, and the functional relationship between the two channels
is represented as an edge of the graph (Song T. et al., 2020).
The value of the edge indicates the closeness of the functional
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FIGURE 3 | The brain response of the video target. After overlaying and averaging the EEG signals of all trials according to the channel, the red curve represents the
target trial data, and the blue curve represents the non-target trial data.

relationship. The larger the edge value, the closer the functional
relationship between the two channels.

To represent the connection between electrodes, this paper
introduces the Pearson coefficient to calculate the connection
between electrodes. The calculation formula is as follows Eq. (1)
(Bao et al., 2022):

S(i, j) =
∣∣PCC(xi, xj)

∣∣ = ∣∣∣∣∣ cov(xi, xj)

σxiσxj

∣∣∣∣∣ (1)

where i, j = 1, 2, ......, n, and n is the number of channels
for EEG signals; xi/j is the i/j-th channel EEG signal; cov()
means covariance.

To ensure the sparsity of the matrix, a threshold α is defined in
this paper. When S(i, j) ≥α, the i-th node is connected to the j-th
node in the constructed graph and vice versa; when S(i, j)<α, it
was considered unconnected. Thus, the structure of a graph can
be represented as:

Aij = {
1,s(i,j)≥α

0,s(i,j)<α (2)

where, A represents the connection between electrode channels.
According to the time division of the segmentation and the

graph construction formula, the initial adjacency matrix of
the brain connection in three stages is calculated, respectively,
and the three matrixes are obtained to represent the brain
network connection of video target-induced P3. Need to
say, here we set the threshold α to 0.8, for the adjacency
matrix of each stage, we retain 15.83, 28.57, and 19.59%
of the node connection, so the average sparsity is about
20.00%. This is also a widely accepted degree of sparsity
in computing brain network connection. In Figure 4, the

yellow block represents connections between nodes, and the
blue block rep resents no connections. All connections are
bidirectional, so all matrices are symmetric. It can be seen
that the connections between the electrodes in different
stages are distinguished, and the brain connections are
the most abundant in the decision process stage. This is
because the decision process stage is to identify the integrated
information, and the specific brain area communication of
different task-related networks is crucial to the generation
of P3. Therefore, the activation intensity of the brain
and the richness of brain network connections are the
highest in this stage.

Adaptive Spatial-Temporal Graph Convolution With
Style-Based Recalibration
Spatial-temporal graph convolution combines space graph
convolution and time standard convolution, which is
used in this paper to extract space and time features
simultaneously. Spatial features are extracted by collecting
information from neighbor nodes of each electrode node,
and temporal features are extracted by time dependence in
the time dimension.

Spatial Graph Convolution
GCN can be implemented in two approaches, i.e., spectral
approaches and spatial approaches. However, spectral
GCN has great limitations, such as failing to deal with
directed graphs and large graphs, leading to poor scalability.
Currently, spatial approaches have developed rapidly in
recent years because of their good efficiency, flexibility,
and versatility. Therefore, this paper adopts spatial
graph convolution.
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FIGURE 4 | The adjacent matrix of the information integration, decision process, and neuron response. The yellow block represents a connection between the
corresponding electrodes, and the blue block represents no connection.

FIGURE 5 | The architecture of the style-based recalibration module. This module is mainly composed of two parts: style pooling and style integration. AvgPool refers
to global average pooling; StdPool refers to global standard deviation pooling; CFC refers to the channel fully connected layer; BN refers to batch standardization.

TABLE 1 | SAST-GCN architecture.

Block Layer Kernel size Stride Input Output Activation

ST-graph convolution Input (1,T,C)

Segmentation (1,T,C) (1,T1,C) (1,T2,C) (1,T3,C)

STGCN1-TCN (63,1) 1 (1,T1,C) (1,T2,C) (1,T3,C) (8,T1,C) (8,T2,C) (8,T3,C) ELU

STGCN1-GCN (1,1) 1 (8,T1,C) (8,T2,C) (8,T3,C) (8,T1,C) (8,T2,C) (8,T3,C) ELU

STGCN2-TCN (63,1) 1 (8,T1,C) (8,T2,C) (8,T3,C) (16,T1,C) (16,T2,C) (16,T3,C) ELU

STGCN2-GCN (1,1) 1 (16,T1,C) (16,T2,C) (16,T3,C) (16,T1,C) (16,T2,C) (16,T3,C) ELU

Concatenation (16,T1,C) (16,T2,C) (16,T3,C) (16,T,C)

Standard convolution Conv1 (1,61) 1 (16,T,C) (32,T,1) ELU

Avg_pool1 (5,1) 1 (32,T,1) (32,T/5,1)

Conv2 (1,1) 1 (32,T/5,1) (64,T/5,1) ELU

Avg_pool2 (5,1) 1 (64,T/5,1) (64,T/25,1)

Classifier Reshape (64,T/25,1) (64×T/25×1)

Full-connection (64×T/25×1) 2 Softmax

Where, T refers to the number of time points in all stages; C refers to the number of channels; T1, T2, and T3 refers to the number of time points in the formation
integration, decision process, and neural response stages, respectively.

As for graph construction, in the case of a single frame,
the adjacency matrix 3 is used to represent the internal
connection between nodes, and the weight matrix W is formed
by stacking the weight vectors of multiple output channels. To
avoid the product multiplication in the adjacency matrix and

feature matrix to change the original distribution of features,
this paper conducts a normalization processing on A. Let A
be multiplied with the degree matrix labeled −1 and further
split into a symmetric matrix and a normalized matrix labeled
−1/2. Therefore, the propagation of GCN is realized by the
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FIGURE 6 | The overall performance of the SAST-GCN model. Average
Accuracy refers to average accuracy of all subjects, which is 0.9055.

following formula Eq. (3) and Eq. (4) (Kipf and Welling,
2016):

G(k)
=D−

1
2 3D−

1
2 G(k−1)Wk−1 (3)

G(0)
= X (4)

where, 3(3 ∈ RN×N) denotes the adjacency matrix of the data;
D is the degree matrix of 3; G(k) and G(k−1) represent the output
of the next layer and the input of the upper layer, respectively;
k ∈ 1, 2...N, and Nis the total number of layers of the network;
W is the weight matrix, and X is the input data.

In the actual implementation, the input feature map can
be expressed as a tensor with a dimension of (C, V, T).

Graph convolution is realized by multiplying a 1×0 two-
dimensional convolution result with a normalized adjacency
matrix D−

1
2 3D−

1
2 on the second dimension.

In the spatial-temporal graph convolution, the normalized
adjacency matrix D−

1
2 3D−

1
2 (3 ∈ RN×N) is used to represent

the connection relationship between nodes. For an undirected
graph, if there is a connection between nodes, 3ij is equal to 1;
otherwise, 3ij is equal to 0. However, for EEG data, neighbor
nodes have different influences on central nodes, and the weights
of edges are unknown, so it is not suitable to describe the EEG
data by undirected graphs. Therefore, this paper proposes an
adaptive graph convolution to adaptively learn edge weights. To
ensure the adaptability of the graph representation, a learning
weight matrix Mis introduced, and it is multiplied with the
normalized adjacency matrix, i.e., M � D−

1
2 3D−

1
2 , where �

means element-wise product between two matrices, and M is
initialized to consist of all 1 s. In this way, the calculation of
adaptive graph convolution can be defined as Eq. (5) (Yan et al.,
2018):

G(k)
= D−

1
2 3D−

1
2 �MG(k−1)Wk−1 (5)

Time Convolution
For time-varying graph data, it is necessary to extract features in
the time domain, so this paper adds a one-dimensional standard
convolution to extract time-domain features. Specifically, a
standard 1D convolution layer is used to extract time-domain
features in the current time domain and send them to the graph
convolution operation to fully extract spatial features. Then, the
time-domain convolution can be defined as:

H(k)
=ELU8∗Ĥ(k−1) (6)

where, ELU is the activation function, 8 represents the
convolution kernel parameter, and ∗ is the standard convolution.

Thus, the whole spatial-temporal graph convolution layer can
be represented as:

χl
= ELU((8g

_
∗ (ELU(8∗χl−1)))) (7)

where, 8g represents the convolution kernel of the graph
convolution.

Style-Based Recalibration
Based on the spatial-temporal graph convolution, this
paper adds a style-based recalibration module and a graph
adaptive mechanism to improve the spatial-temporal feature
extraction ability of spatial-temporal graph convolution for
video-induced P3.

The style-based recalibration module is a simple and effective
architecture unit. This module was first proposed by Lee et al.
(2019), and it can adaptively recalibrate intermediate feature
maps by using their style information. As shown in Figure 5,
the module consists of two main components: style pooling
and style integration. Style pooling extracts style features from
each channel by summarizing the feature responses across
spatial dimensions (including the parallel processing of global
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average pooling and global standard deviation pooling) and
splicing the pooling data. Subsequently, style integration uses
style features to generate specific style weights through channel-
based operations, including forming a set of weight vectors
through CFC (Channel Full Connection layer), BN (Batch
Normalization), and sigmoid activation functions. Then, the
input data is multiplied with the weight in the feature dimension
to emphasize or hide information.

It can be seen from the operation of SRM that it can
recalibrate the intermediate feature map adaptively by using its
style information. SRM first extracts the style information from
each channel of the feature map through style pooling and then
estimates the recalibration weight of each channel through the
style integration unrelated to the channel. SRM can effectively
improve the representation ability of CNN by incorporating the
relative importance of each style into the feature map with fewer
parameters, which performs better than the traditional attention
mechanism SENet.

After adding a layer of SRM operation before one-dimensional
time-domain convolution, the whole spatial-temporal graph
convolution layer can be represented as:

χl
= ELU((8g

_
∗ SRM(ELU(8∗χl−1)))) (8)

where, SRM(·) representing the style-based recalibration
operation.

Classification Module
In the classification module, the extracted features of the
segmented spatial-temporal convolution are spliced in the time
domain, and the classification is made according to the output
of the two convolution layers and one fully connected layer.
The first convolution layer includes a convolution operation
with a convolution kernel size of (1, N) and an average
pooling operation with a pooling size of (K1, 1). N is the
number of electrodes, so the output of the first convolution
layer is (F1, T/K1, 1). The second convolution layer includes a
convolution operation with a convolution kernel size of (1, 1)
and an average pooling operation with a pooling size of (K2, 1)
to extract and integrate features and reduce the dimension. To
further extract important features, the SRM module is added to
the convolution operation here. Each convolution layer can be
represented as:

Ck
= Pool(ELU(SRM(8∗C(K−1)))) (9)

where, Pool(·) refers to the pooling operation, C0
=χ l .

Finally, the prediction results are output by a full connection
layer. Therefore, the classification of input EEG signals is:

ŷ = softmax(FC(C)) (10)

where, C refers to the output after the convolution layer;
FC(·)refers to the full connection layer operation; ŷ ∈ R2 is a
two-class prediction label.

Cross-entropy is used here to measure the difference between
the real probability distribution and the predicted probability
distribution to optimize the model.

L = cross_entropy(y, ŷ) (11)

where, y refers to the real label of the sample, and cross_entropy(·)
refers to the cross-entropy calculation.

Implementation Details of the
Segmentation Adaptive Spatial-Temporal
Graph Convolutional Network Model
The specific algorithm of SAST-GCN is shown in Algorithm 1.
The raw data is divided into three segments, and the adjacency
matrix is constructed. Then, the features are extracted through
the spatial-temporal graph convolution layer with the SRM.
After splicing, the dimension is reduced through the standard
convolution layer and average pooling. Finally, the prediction
label is output by the full connection layer.

Considering that the amount of target detection EEG data
is too small, this paper aims to design a compact architecture
for SAST-GCN so that: (1) it can alleviate overfitting problems
and (2) can achieve better efficiency. Meanwhile, the graph
convolution network should be superimposed within 5 layers;
otherwise, the performance will be affected. After a small number
of trial-and-error experiments, it was observed that SAST-GCN
achieved high accuracy under a two-layer graph convolution
layer and two-layer convolution layer plus a one-layer full
connection layer. The detailed description of the SAST-GCN
model is shown in Table 1.

Training and Testing Method
The SAST-GCN network is implemented based on the PyTorch
framework. The input signal size is 61×100 (number of channels

ALGORITHM 1: The training process of SAST-GCN.

Input: A labeled training data set{X, Y} = {xi, yi}
N
i=1, the maximum number of

training epochs T; the initialize adjacency matrixA1, A2, A3; the learnable weight
matrixM1, M2, M3;

Output: The learned adjacency matrixÂ1, Â2, Â3, the model parameter2for
SAST-GCN and the predicted labelŷ.

Step1: Initialize the model parameters2in SAST-GCN model. Set iteration unit
iter = 1;

Step2: whileiter < Tdo

Step3: Splitting single trial data into three segments in time domain,X1, X2, X3;

Step3: fork = 1, ..., ldo

Step4: Calculate the k-th spatial-temporal graph convolution via Eq. 8;

Step5: Concatenate the featuresχ1, χ2, χ3 after spatial-temporal graph
convolution in time domain;

Step5: fork = 1, ..., ldo

Step6: Calculate the k-th convolution layerCkvia Eq. 9;

Step7: Calculate the prediction labelŷ via Eq. 10;

Step8: Update the learnable weight matrix M1, M2, M3and the model
parameters2via optimizer according to the cross entropy loss Eq. 11;

Step9:iter = iter + 1;

Step10: end while
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TABLE 2 | The accuracy, F1-score, precision, recall and complexity of different methods.

Model Accuracy F1-score Precision Recall FLOPs Parameters

KNN 0.6776 0.3728 0.2897 0.5323

RF 0.7143 0.4236 0.3381 0.5834

SVM 0.7856 0.5351 0.4554 0.6864

Naive Bayes 0.6863 0.4017 0.3114 0.6072

AdaBoost 0.6762 0.3915 0.3147 0.5723

Fusion of traditional algorithms 0.7541 0.4731 0.3983 0.6251

EEGNET 0.8274 0.6195 0.5536 0.7390 0.837G 1.2K

CNN-LSTM 0.8509 0.5647 0.6145 0.5418 61.34G 282.2K

SAST-GCN 0.9055 0.7042 0.7003 0.7100 3.72G 23.8K

The bold values represent the results of the proposed method.

× number of sampling points), and the sampling frequency is 100
Hz. The data segmentation in SAST-GCN is 61× 25 (0–250 ms),
61× 27 (250–520 ms), and 61× 48 (520–1,000 ms), respectively.
All dropout rates are 0.5. In the experiment, the Adam optimizer
was used to fit the model. The learning rate was set to 0.0003, 100
rounds of iterative training were performed, and the batch size
was K = 128.

The leave-one method is adopted to verify the proposed
method. Each training set includes the data of 33 subjects, and
the test set includes the EEG data of the remaining one subject.
To ensure the sample balance during training, the non-target
data in the training set was downsampled to keep balance with
the target data.

RESULTS AND ANALYSIS

This section introduces the evaluation of the effectiveness and
advancement of the proposed model on the data sets described
in section “Dataset.”

Overall Performance
Each participant was tested, and the cross-subject results of the
training set were obtained. As shown in Figure 6, the proposed
SAST-GCN model performs well on the whole dataset, with the
lowest accuracy of 86.30% in Sub3 and the highest accuracy
of 93.91% in Sub26. The average accuracy of the model is
90.55%, and the standard deviation is 2.08%. The accuracy of
17 subjects exceeds the average accuracy. These results show
that the proposed SAST-GCN model is effective and stable for
video-induced P3 detection.

Method Comparison
To further explore the benefit of the spatial-temporal structure
of SAST-GCN, eight widely used competitive EEG models were
taken for performance comparison, including KNN, Random
Forest, Support Vector Machine, Naive Bayes, AdaBoost,
Fusion of Traditional Algorithms, EEGNet, and CNN-LSTM.
Meanwhile, the fusion of traditional algorithms was considered,
i.e., fusing KNN, RF, SVM, Naive Bayesian, and AdaBoost
by a voting method. EEGNet is an EEG signal classification
network proposed by Lawhern, and it has high recognition

accuracy and good generalization performance. CNN-LSTM
represents the combination of CNN and LSTM by the method
proposed in the previous study (Abibullaev and Zollanvari, 2021),
which extracts EEG features by using the representation ability
of the convolution layer and the ability to capture temporal
dependencies of LSTM.

The average accuracy, F1-score, precision, recall, Floating
Point Operations (FLOPs) and parameters of each method are
presented in Table 2. The results show that compared with other
baseline methods, our SAST-GCN achieves the best performance
in three evaluation indicators.

The traditional machine learning methods (KNN, RF, SVM,
Naive Bayes, and AdaBoost) and their fusion algorithms cannot
learn complex spatial-temporal features well and cannot obtain
satisfactory results. However, the existing deep learning models,
such as EEGNet and CNN-LSTM, can extract spatial or temporal
features. Therefore, they achieve better performance is better than
those based on traditional machine learning.

Although CNN and RNN have high precision, their limitation
is that the input of the model must be grid data, and the
connection between regions is ignored. Since the brain region is
in a non-Euclid space, the spatial relationship of signals cannot
be fully and accurately reflected by flattening EEG channels on
irregular grids into two-dimensional representations with regular
grids. The graph is the most suitable data structure to represent
the connection, The proposed SAST-GCN extracts spatial and
temporal features based on the segmentation adaptive graph
structure to improve performance. Therefore, the SAST-GCN
method proposed in this paper is superior to other baseline
methods. Its accuracy is 9.44 and 6.42% higher than that of
EEGNET and CNN-LSTM, and its F1-score is 13.67 and 24.70%
higher than that of EEGNET and CNN-LSTM, respectively.

In order to analyze the possible real-time application and
technology transfer scenarios of this method, this paper further
analyzes the time complexity and spatial complexity of the
model, and compares it with the two baselines (EEGNET and
CNN-LSTM). The Floating-Point Operations (FLOPs) is used to
measure the time complexity of the model. High time complexity
will lead to a large amount of time for model training and
prediction, which means the model cannot be quickly verified,
improved, and achieve rapid prediction. The parameters are
used to measure the space complexity of the model. Due to the
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TABLE 3 | Ablation studies.

Operation Accuracy F1-score Precision Recall FLOPs Parameters

ASTGCN 0.8787 0.6607 0.6414 0.6812 3.72G 15.3K

ASTGCN+SRM 0.8883 0.6744 0.6816 0.6814 3.72G 15.5K

ASTGCN+SRM + Segmentation 0.9055 0.7042 0.7003 0.7100 3.72G 23.8K

The bold values represent the results of the proposed method.

TABLE 4 | Comparison of effects of using the data in different stages on classification results.

Stage of the brain response for classification Accuracy F1-score Precision Recall FLOPs Parameters

Formation integration 0.8772 0.6344 0.6322 0.6521 1.23G 15.1K

Decision processing 0.8836 0.6499 0.6475 0.6594 1.30G 15.1K

Neural response 0.8816 0.6447 0.6378 0.6613 2.00G 15.1K

All stages 0.9055 0.7042 0.7003 0.7100 3.72G 23.8K

The bold values represent the results of the proposed method.

FIGURE 7 | (A) Is the heatmap of adaptive adjacency matrix. (B) Is the brain network connection of three stages.

limitation of dimension disaster, the more parameters of the
model, the more data is needed to train the model, and the
EEG data set is usually not too large, which will lead to the
problem of overfitting.

It can be seen from Table 2 that FLOPs and Parameters of
SAST-GCN are much lower than those of CNN-LSTM, but higher
than those of EEGNET, which may be due to the increase of
convolution layers. However, considering the improvement of
performance, this should be within an acceptable range.

Ablation Studies
To verify the contribution of each module to the model
performance, ablation experiments were conducted on the
model, and the results are presented in Table 3.

To measure the influence of segmented construction
adjacency matrix operation, the segmented construction
adjacency matrix operation (ASTGCN + SRM + Segmentation)
is further added based on the adaptive spatial-temporal graph
convolution (ASTGCN + SRM) with SMR. It can be found that
the accuracy, F1-score, precision, and recall are increased by
1.94, 4.42, 2.74, and 4.20%, respectively.

For the whole non-segmented adjacency matrix, the
performance of the segmented matrix is excellent. The reason
is that the connection of the brain network changes in different
processing stages of the brain, so the segmented construction
matrix can more accurately reflect the relationship between
EEG channels. By contrast, the whole uniform adjacency matrix
ignores the dynamic changes in the brain network.
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We also conducted an ablation study of complexity. It can be
found that after adding SMR, FLOPs are not affected, and the
number of parameters increases by only 0.2 K, which also proves
that SMR can improve model performance without increasing
model complexity. Further, after segmenting, FLOPs are not
affected, but the number of parameters increases by 8.3 K due to
the addition of spatial-temporal graph convolution layers to the
simultaneous convolution of three segments of data.

Impact of Different Stages
Furthermore, to verify the impact of the information integration,
decision process, and neural response stages on target recognition
performance, the results of using the data in each of the stages
and all stages are compared, as shown in Table 4. It can be
observed that the classification accuracy of using the data in
the decision processing stage alone is the highest, and the F1-
score is 2.45 and 0.81% higher than that of using the data in the
formation integration and neural response stages, respectively,
which is consistent with the existing studies. These studies show
that the cognitive function of the brain reaches the strongest
in the decision processing stage. Meanwhile, the connection
strength and information conversion ability between the multi-
brain regions reach the highest, which is conducive to identifying
the integrated information (Li et al., 2018).

However, it is also observed that the classification results of
using the data in all stages are significantly better than those
of using the data in only one stage. The F1-score of using the
data of all stages is 11.00, 8.36, and 9.23% higher than that
of using the data in the formation integration stage, decision
processing stage, and neural response stage, respectively. There
are two reasons for this. One is that when the data in a certain
stage are used separately for classification, the amount of data
is too small to extract more effective information. Second, the
perception of brain processing video targets consists of a series of

complex processing processes, involving evidence accumulation
across time and space. Therefore, the joint action of all the stages
is needed to detect the target (Desmedt, 1980; Verleger, 1988).

The complexity analysis shows that FLOPs and Parameters
using full-segment data are significantly higher than using single-
segment data, which is due to the increase of input data volume
and the increase of spatial-temporal graph convolution layers.
However, the increased complexity remains in the same order of
magnitude, so this is within an acceptable range.

Study of Node Connection
Here, the parameters of the SAST-GCN model are saved, and
the learned adjacency matrix is calculated. To better display,
the connection weight between the channels (matrix M) is
transformed into the interval of [0,1], and a hot map is drawn
in Figure 7A. In the figure, the closer the yellow blocks, the
closer the connection between the electrodes; The closer the blue
blocks, the sparser the connection between the electrodes. The
results in the figure indicate that the adaptive spatial-temporal
graph convolution can adaptively adjust the edge weights, make
the network more flexible, and improve the performance of the
model. Meanwhile, it is also proved that the connection between
electrodes is not of the same importance, and different neighbor
nodes can have different effects on the central node.

Figure 7B shows the brain network connection of three stages.
The solid line in the figure represents the connection between
the two electrodes, and the connection weight is greater than 0.8.
The color of the line represents the connection strength between
electrodes. The deeper the color of the line, the stronger the
connection. The arrow in the figure represents the information
flow direction. In the figure, it can be observed that the brain
network connection in the decision process stage is the strongest,
the number and density of connections is the largest, and
the interaction is frequent in parietal lobe, occipital lobe, and

TABLE 5 | Comparison of effects of using different adjacency matrix initialization methods.

Method Accuracy F1-score Precision Recall

Fully connected matrix 0.8238 0.5251 0.4659 0.6202

Random matrix 0.8852 0.6589 0.6619 0.6726

Phase locking value matrix, 0.8861 0.6635 0.6507 0.6848

Coherence value matrix 0.8818 0.6512 0.6456 0.6677

Physical distance matrix 0.8880 0.6767 0.6779 0.6856

Pearson coefficient matrix 0.9055 0.7042 0.7003 0.7100

The bold values represent the results of the proposed method.

TABLE 6 | SWOT analysis.

Strength Weakness Opportunity Threat

1. An adjacency matrix is constructed to
represent the brain network connection
according to the neural mechanism of video
processing

Disturbance of inter-subject
difference on network
performance

1. It is proved that the applicability of graph
neural network for video-induced P3 detection

1. Uncertain perturbations of
data need to be addressed

2. The spatial-temporal features of EEG data
are extracted by adaptive spatial-temporal
graph convolution

2. The construction of brain network
connections by segments are better than those
based on static graph design

2. The initialization method of
adjacency matrix needs to be
optimized.
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frontal lobe regions. In addition, there is a synergistic interaction
between multiple brain regions, and there are more long-range
connections between multiple brain regions. However, in the
information integration and neural response stages, the brain
network connection is sparse and weak, and the connections
are mainly small world connection. The information is mainly
interactive between adjacent electrodes, mainly concentrated in
the parietal lobe. From the changes of brain network in all three
stages, there is a trend that brain network connection gradually
enriched and then gradually weakened, which is consistent with
the previous literature.

In addition, in order to explore the influence of different
initialization methods of adjacency matrix on network
performance, five other initial methods of adjacency matrix
construction are used to represent the brain connection network.
The five initial methods as comparison include fully connected
matrix, random matrix, phase locking value matrix, coherence
value matrix, physical distance matrix. Table 5 shows the
effects of different initial adjacency matrixes on the results,
including average accuracy, F1-score, recall and precious, which
illustrates that the initial method using Pearson coefficient
adjacency matrix is significantly better than other methods.
Phase locking value matrix, coherence value matrix and physical
distance matrix are better than random matrix and fully
connected matrix, because the prior information is added. The
performance of the fully connected matrix is the worst, which
may be because it does not meet the sparsity requirement of the
adjacency matrix.

CONCLUSION

Table 6 shows the SWOT analysis. In this paper, a graph neural
network called SAST-GCN is proposed for single-trial video-
induced P3 detection. The proposed model can extract the
spatial-temporal characteristics of EEG data through adaptive
spatial-temporal graph convolution according to different
stages of video-induced P3. Also, it can learn the brain
connection structure most suitable for ST-GCN to complete the
detection task. In addition, the model introduces the style-based
recalibration module to extract the spatial-temporal features with
the highest contribution.

In order to verify the performance of the proposed method,
we compared the proposed method with the baseline, and
the results showed that the proposed method was significantly
superior to the baseline. Ablation experiments show that the
segmented construction adjacency matrix operation and SRM
have great contribution to improving the classification accuracy
of the network. We also observed that the classification results
using all stages were significantly better than using only one
stage and using Pearson correlation coefficient to construct
initial adjacency matrix than using other adjacency matrix
initialization methods.

Our work proves that graph convolution based on the
segmented constructing brain network connection is superior to
the existing graph convolution based on static graph design. This

is because the state of the brain network is dynamic rather than
static. However, the dynamic variation of the brain network is not
only reflected in the neural reaction stage, but also in the different
subjects. In this paper, we average the ERP of all subjects, so as
to determine the division of each stage, but there is a variation
in latency of P3 between subjects, which may lead to different
neural response stages of different subjects in time. Different
segmentation strategies may be more appropriate for different
subjects. The disturbance of data uncertainty between subjects
will have a negative impact on the performance of the neural
network. The fuzzy encoder can reduce the large fluctuation
of the feature space to a narrower range of membership space,
so the classifier based on fuzzy logic may reduce this adverse
effect (Korytkowski et al., 2015; Versaci et al., 2020). On the
other hand, this paper only discusses the method of constructing
adjacency matrix by using the correlation between electrodes,
however, for EEG data, probabilistic graph representation could
be a better approach to describe the intrinsic relationships
among the electrodes. In the future, our main work is to carry
out the difference research between subjects and optimize the
construction of brain network connections, so as to improve the
robustness and fitting of the model.
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