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Abstract

Autism spectrum disorder (ASD) is a wide-ranging collection of developmental diseases

with varying symptoms and degrees of disability. Currently, ASD is diagnosed mainly with

psychometric tools, often unable to provide an early and reliable diagnosis. Recently, bio-

chemical methods are being explored as a means to meet the latter need. For example, an

increased predisposition to ASD has been associated with abnormalities of metabolites in

folate-dependent one carbon metabolism (FOCM) and transsulfuration (TS). Multiple

metabolites in the FOCM/TS pathways have been measured, and statistical analysis tools

employed to identify certain metabolites that are closely related to ASD. The prime difficulty

in such biochemical studies comes from (i) inefficient determination of which metabolites

are most important and (ii) understanding how these metabolites are collectively related to

ASD. This paper presents a new method based on scores produced in Support Vector

Machine (SVM) modeling combined with High Dimensional Model Representation (HDMR)

sensitivity analysis. The new method effectively and efficiently identifies the key causative

metabolites in FOCM/TS pathways, ranks their importance, and discovers their independent

and correlative action patterns upon ASD. Such information is valuable not only for providing

a foundation for a pathological interpretation but also for potentially providing an early, reli-

able diagnosis ideally leading to a subsequent comprehensive treatment of ASD. With only

tens of SVM model runs, the new method can identify the combinations of the most impor-

tant metabolites in the FOCM/TS pathways that lead to ASD. Previous efforts to find these

metabolites required hundreds of thousands of model runs with the same data.

Introduction

Autism Spectrum Disorder (ASD) is a serious developmental disease that is characterized by

difficulty in socializing, communicating, and interacting with others. According to research

done by the Center for Disease Control and Prevention, in 2000, an average of 1 in every 150,

while in 2012 about 1 in every 68 (*1.5%) American children were diagnosed with autism [1].

Some symptoms of ASD are not evident until age two or later. In other cases, a child may

appear to be developing normally until age two, and then may stop learning new skills, or may

even forget old skills [2]. Psychometric tools are often used to diagnose ASD. The Childhood
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Autism Rating Scale (CARS) [3] and Autism Diagnostic Observation Scale (ADOS) [4] are

two instruments used for ASD diagnosis, which utilizes behavioral observations from parents,

teachers, and caregivers. However, “in the current practice, diagnosis often has to be delayed

until the behavioral symptoms become evident during childhood” [5], which prevents the

child from getting prompt treatment.

ASD is not necessarily just a genetic disorder, as it is thought that environmental effects

also contribute to ASD’s etiology [6]. Recently, researchers have been developing a biochemi-

cal approach that is able to diagnose a significant portion of ASD cases. There have been

observed differences in FOCM/TS pathways between children with ASD and individuals con-

sidered as disease free neurotypical controls (NEU) [7].

Multivariate statistical analysis was used by Howsmon et al. [8] to obtain information uti-

lized to distinguish ASD from NEU, and to draw correlations between metabolite measure-

ments and the severity of ASD. In particular, twenty four measurements of the metabolites in

FOCM/TS pathways listed in Table 1 were utilized. A linear classifier based on Fisher Discrim-

inant Analysis (FDA) [9, 10] was then used to distinguish ASD and NEU participants. The

cross-validated misclassification rates were only 4.9% and 3.4% for the NEU (76 normal chil-

dren) and ASD (83 patients) samples, respectively.

Not all the metabolites listed in Table 1 are necessary for classification of ASD and NEU.

Using all of them may not only lead to overfitting, but also fail to distinguish the key causative

and less-informative metabolites. To avoid overfitting caused by simultaneous use of multiple

metabolites, Howsmon et al. used cross-validation. They further mitigated over-fitting prob-

lems by selecting only a minimum number of metabolites required to adequately classify the

ASD and NEU groups [8]. The wrapper method [11] was used to evaluate the performance of
the chosen learning algorithm (i.e., FDA) for all possible combinations of up to six metabolites for

FDA classification to find the best combination. Then they selected combinations of higher

numbers of metabolites in a greedy fashion to sequentially add additional metabolites that best

improved the classification of the original identified best six metabolites. The selected best

combination of seven metabolites given in the text and the caption of Fig 5 in Howsmon’s

paper [8] are given in Table 2.

The wrapper method has three shortcomings: 1) there are

X6

i¼1

Ci
24
¼ 190; 050

Table 1. FOCM/TS metabolites considered for analysis [8].

Variable Metabolite Variable Metabolite

x1 Methionine x13 fGSH

x2 SAM x14 GSSG

x3 SAH x15 fGSH/GSSG

x4 SAM/SAH x16 tGSH/GSSG

x5 % DNA methylation x17 Chlorotyrosine

x6 8-OHG x18 Nitrotyrosine

x7 Adenosine x19 Tyrosine

x8 Homocysteine x20 Tryptophan

x9 Cysteine x21 fCystine

x10 Glu.-Cys. x22 fCysteine

x11 Cys.-Gly. x23 fCystine/fCysteine

x12 tGSH x24 % oxidized glutathione

https://doi.org/10.1371/journal.pone.0192867.t001
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combinations of up to 6 members selected from the 24 metabolites, and evaluation of all these

combinations requires running FDA 190,050 times, which is very computationally demand-

ing. If the number of variables (metabolites here) is large (e.g., hundreds or thousands often

occur in various biochemical data sets), testing for all possible combinations is infeasible; 2)

the wrapper method provides no information about which members of the identified metabo-

lites contribute the most in classification of ASD; and 3) the procedure does not reveal the rela-

tionship between the identified metabolites, i.e., whether they contribute independently or

correlatively.

The problems posed above are a general challenge in machine learning: feature (metabolite

here) selection, prioritization and correlation identification. Note that in the remainder of the

paper, we will interchangeably use the words: metabolites, features, or (input) variables to avoid

confusion or maintain terminology that is standardly used with various algorithms in the paper.

Feature selection is the process of finding a small subset of significant variables that have

good classification performance. Feature selection algorithms may be conveniently grouped

into two categories: filter and wrapper methods. In contrast to wrapper methods, filter methods

rely on the application of an univariate criterion to each feature separately in order to select the

important feature subsets without running the chosen learning algorithm [11].

For example, the t-test is a filter method most commonly used for feature selection and pri-

oritization [12]. In this case, the data are separated into two sets according to their grouping,

e.g., “NEU” and “ASD”. Then, a comparison of the two data sets for each feature, xi, by t-test is

performed under the null hypothesis that the two data sets for xi are drawn from the same nor-

mal distribution. The p-value obtained in the t-test for each xi is used as an univariate criterion

of how effective xi is at separating groups. The larger the p-value for xi, the less effective xi is. In

this fashion, the magnitudes of the p-value for all features inversely define their prioritization

order. An appropriate threshold for the p-value needs to be set for feature selection. If the

p-value is close to zero (e.g., less than the threshold 0.05 or 0.01), the null hypothesis is rejected,

i.e., the two data sets of xi may not come from the same distribution, and xi is most probably a

causative feature. Otherwise, xi is not a causative feature and can be removed. However, for

experimental and clinical data, the assumption of a normal distribution may not be valid. Fur-

thermore, if the sample size is small, the comparison of two data set distributions is often not

reliable; in this case the t-test may not give a correct answer.

Compared to wrapper methods, filter methods are simple and fast as they do not need to

run a learning algorithm. Moreover, filter methods treat each feature separately, the number of

features does not have an influence on its performance, and thus filter methods can handle

very high dimensional systems.

In this paper we propose a new two stage method based on two univariate criteria: (i) the

sensitivity index, main effect Ŝi ði ¼ 1; 2; :::; nÞ, defined by the variance-based method [13–16],

Table 2. The best combination of metabolites selected by wrapper method [8].

Variable Metabolite

x5 % DNA methylation

x6 8-OHG

x10 Glu.-Cys.

x23 fCystine/fCysteine

x24 % oxidized glutathione

x17 Chlorotyrosine

x16 tGSH/GSSG

https://doi.org/10.1371/journal.pone.0192867.t002
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and (ii) the sensitivity structural (independent) index Sa
i ði ¼ 1; 2; :::; nÞ, deduced from Struc-

tural and Correlative Sensitivity Analysis (SCSA) based on HDMR [17, 18]. This dual analysis

method can treat data of small size and with an arbitrary probability distribution. The proposed

method is a special filter method based on the Support Vector Machine (SVM) learning algo-

rithm. For illustration of the proposed method, the same ASD data used by Howsmon et al. [8]

will be treated by this new two stage method.

Both Ŝi and Sa
i are positive quantities. The larger the value of Ŝi or Sa

i , then xi is concluded to

be more important. Thus, the magnitudes of Ŝi or Sa
i lead to a prioritization order for input

variables. Moreover, the additional correlative sensitivity index Sb
i from SCSA discovers the

correlative action patterns of the identified metabolites upon ASD. With only tens of SVM

model runs, the new method identifies the combinations of the most important metabolites in

the FOCM/TS pathways that lead to ASD. In contrast, to find these metabolites, Howsmon

et al. performed hundreds of thousands of FDA model runs. Furthermore, the information

about the importance order and the correlative action patterns of the identified metabolites for

ASD predisposition provides valuable additional insight for a deeper understanding of ASD

mechanism and a possible future path to its treatment. The newly introduced analysis tools are

general and should be applicable for other diseases requiring a like analysis to reveal their bio-

logical origins.

Methods

To understand the two stage method for feature selection, prioritization and correlation iden-

tification, we need some knowledge of HDMR sensitivity analysis.

Here the principles of HDMR sensitivity analysis are briefly summarized. The details can be

found in references [17–20]. We will consider sensitivity indexes of a continuous output y with

respect to the input variables x = (x1, x2, . . ., xn)T

y ¼ f ðxÞ; ð1Þ

where f is the function for x! y. In classification, the output y is a categorical variable repre-

senting labels, like [NEU, ASD] or equivalently [−1, 1]. In this case, sensitivity analysis utilizing

proposed two indexes, Ŝi and Sa
i , cannot be readily performed. Fortunately, in many classifica-

tion learning algorithms (e.g., FDA and SVM), the implicit output y actually is a continuous

variable referred to as score. Fig 1 gives the output score of the SVM model with a linear kernel

for the ASD-NEU data using all the 24 metabolites as input variables x.

The explicit output of SVM is given by the sign function of the score, i.e.,

sgnðyÞ≔

(
� 1 if y < 0;

0 if y ¼ 0;

1 if y > 0:

ð2Þ

Using the SVM classification score as the continuous output, then the classification prob-

lem may be treated by regression (Support Vector Regression (SVR)) [21], and sensitivity anal-

ysis can be readily performed. Fig 2 plots the relation between the score of the SVM model

with all 24 metabolites as input variables x versus variable x24 (% oxidized glutathione) in

ASD-NEU data.

Following this procedure we may identify the most important feature as the one whose varia-
tion has the largest influence on the variation of the output score.
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Sensitivity index: Main effect Ŝi

The sensitivity index, main effect Ŝi is a commonly used measure for ranking the importance

of input variables, defined by the variance-based method as [13–16]

Ŝi ¼
Vxi
½Ex� i
ðf ðxjxiÞÞ�

Vðf ðxÞÞ
; i 2 f1; 2; :::; ng: ð3Þ

whereVxi
and Ex� i

denote the conditional variance and conditional expectation operators with

respect to xi and x−i = (x1, x2, . . ., xi−1, xi+1, . . ., xn)T, respectively, and Vðf ðxÞÞ denotes the

unconditional variance of the output. The output y = f(x) is a continuous variable given by the

function f(x). Ŝi reflects the portion of the output variance caused by the variation of the input
variable xi. The larger the value of Ŝi, then the more xi contributes to the variance of the output.

Thus, Ŝi is a well established univariate criterion to rank the importance of input variables and

can be used for feature selection and prioritization.

The determination of Ŝi by the traditional variance-based methods above is quite computa-

tionally demanding and requires a large number (thousands or more) of specifically designed

samples based on assumed knowledge of the probability distribution of the input variables

[14–16, 22, 23]. However, for experimental and clinical data, the input probability distribu-

tions are often explicitly unknown. Therefore, traditional variance-based methods cannot be

used to treat the latter types of data. A new algorithm to estimate Ŝi from a limited number of

Fig 1. The score of the SVM model for the ASD-NEU data with all the 24 metabolites as input variables (ASD is

set to be 1, and NEU is set to be −1 in SVM classification).

https://doi.org/10.1371/journal.pone.0192867.g001

High efficiency classification of children with autism spectrum disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0192867 February 15, 2018 5 / 23

https://doi.org/10.1371/journal.pone.0192867.g001
https://doi.org/10.1371/journal.pone.0192867


experimental or clinical samples has been developed without requiring explicit knowledge of

the probability distribution of the input variables [19].

First, the variable xi is transformed to a new independent variable zi uniformly distributed

in [0, 1] by the Rosenblatt transformation [24]

zi ¼ PfXi � xig ¼ FiðxiÞ; ð4Þ

where F denotes the cumulative distribution function (cdf). Many numerical methods have

been developed for empirical determination of a cdf from the data [25–27]. Matlab has a code

ecdf for this purpose. As zi is an independent variable, the first order HDMR component func-

tion fi(zi) for zi can then be determined as [19]

fiðziÞ ¼
Z

½0;1�n� 1

f ðzi; x� iÞdx� i � �y; ð5Þ

where �y is the mean value of the output y for all samples. This procedure is equivalent to deter-

mining fi(zi) by least squares regression from zi and all outputs f(zi, x−i) at the same value of zi.
Fig 3 gives the least squares regression for f24(z24) with respect to z24 in the ASD-NEU data.

As zi is a function of xi only, the main effect, Ŝi, for xi can be estimated as [19]

Ŝi �

1

N

XN

s¼1

f 2

i ðz
ðsÞ
i Þ

1

N

XN

s¼1

ðyðsÞ � �yÞ2
; i 2 f1; 2; :::; ng ð6Þ

Fig 2. Relation between the score of the SVM model with 24 input variables versus the particular input variable

x24 (% oxidized glutathione).

https://doi.org/10.1371/journal.pone.0192867.g002
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where zðsÞi and y(s) are the values of zi and y in the sth sample; N is the total number of samples

used to determine Ŝi.

Since Ŝi is determined separately for each xi, the number of input variables does not have an

influence on its determination. Thus, Ŝi can be used to treat vary high (e.g., thousands and

more) dimensional systems. Still a shortcoming of using Ŝi is that it contains the contributions

from other xj’s correlated to xi [19]. When the correlation is positive (negative), Ŝi is larger

(smaller) than the independent contribution of xi. The resulting ordering of the features from

Ŝi then may incorrectly represent the independent contributions of features. Therefore, Ŝi will

be used first in the two stage method for feature pre-selection to remove the most insignificant
input variables which is especially important to perform when the number of input variables is

large.

Determination of SCSA indexes

SCSA is based on HDMR with independent and/or correlated input variables [17]. A newly

developed svr-based HDMR algorithm with independent input variables and known probabil-

ity distributions of inputs is efficient for HDMR modeling and sensitivity analysis with a mod-

est number of samples [20]. As the variables in experimental and clinical data are often

correlated and their probability distributions are explicitly unknown, here, we extend the

above svr-based HDMR algorithm to correlated variables. As shown below, without the

Fig 3. Least squares regression for f24(z24) with respect to z24.

https://doi.org/10.1371/journal.pone.0192867.g003
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knowledge of the variable probability distribution the first order HDMR expansion with corre-

lated variables still can be constructed from experimental and clinical data, and will be used to

determine the first order SCSA indexes for ASD-NEU data.

HDMR and SCSA. Many problems in science and engineering reduce to the need for effi-

ciently and functionally describing the relationship between a set of high dimensional system

input variables x = (x1, . . ., xn)T and the system output y = f(x). As the contributions of the

multiple input variables upon the output can act individually and interactively, it is natural to

express the (explicitly known or unknown) function f(x) as a finite hierarchical expansion

[18]:

f ðxÞ ¼ f0 þ
Xn

i¼1

fiðxiÞ þ
X

1�i<j�n

fijðxi; xjÞ

þ :::þ f12:::nðx1; x2; :::; xnÞ

¼
X

u�f1;2;:::;ng

fuðxuÞ:

ð7Þ

where u is a subset in {1, 2, . . ., n} including the empty set ;, (i.e., f;(x;) = f0) and xu are the

elements of x whose indexes are in u. For simplicity, in sequel we will write u� n in place of

u� {1, 2, . . ., n}. When the component functions satisfy the hierarchical orthogonality condi-

tion (i.e., they are optimally defined to maximize the contribution of low order component

functions), the above expansion is referred to as an HDMR expansion. For many systems, the

higher order HDMR component functions are negligible, and f(x) can be approximated by a

low (e.g., first or second) order HDMR expansion. For the ASD-NEU metabolite system in

this paper, the first order HDMR expansion

f ðxÞ ¼ f0 þ
Xn

i¼1

fiðxiÞ ð8Þ

was found to give a very good approximation, where f0 is a constant representing the

mean contribution of all input variables, and fi(xi) represents the contribution of xi to the

output.

Based on a covariance decomposition of the unconditional variance of the output, a general

global sensitivity analysis for independent and correlated variables, referred as structural

(independent) and correlative sensitivity analysis (SCSA) was proposed [17, 18].

Vðf ðxÞÞ ¼ E½ðf ðxÞ � f0Þ
2
� ¼ E

X

;6¼u�n

fuðxuÞðf ðxÞ � f0Þ

" #

¼
X

;6¼u�n

VðfuðxuÞÞ þ Cov fuðxuÞ;
X

; 6¼ v � n
u 6¼ v

fvðxvÞ

0

B
@

1

C
A

2

6
4

3

7
5;

ð9Þ

where Cov(�) denotes covariance, and the property of zero expectation EðfuðxuÞÞ ¼ 0 for

the HDMR component functions was used. The SCSA sensitivity indexes are defined by
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normalization, i.e., by dividing both sides of Eq (9) with Vðf ðxÞÞ.

1 ¼
X

;6¼u�n

VðfuðxuÞÞ

Vðf ðxÞÞ
þ

Cov fuðxuÞ;
X

;6¼v�n
u6¼v

fvðxvÞ

0

@

1

A

Vðf ðxÞÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼
X

;6¼u�n

½Sa
u þ Sb

u� ¼
X

;6¼u�n

Su:

ð10Þ

Here, for xu we denote Sa
u as the structural (independent) contribution (i.e., related to fu(xu)

and the marginal probability density function (pdf), pu(xu), only), Sb
u as the correlative contri-

bution (i.e., related to fu(xu), other component functions fv(xv)’s and the joint pdf, p(x)) and Su
as the total contribution equal to

Su ¼ Sa
u þ Sb

u: ð11Þ

Especially, for u = {i}, we have

Si ¼ Sa
i þ Sb

i ; ð12Þ

the first order SCSA indexes for variable xi.
We can also consider the correlation of each pair of variables by computing

SbðijÞ ¼
CovðfiðxiÞ; fjðxjÞÞ

Vðf ðxÞÞ

�

1

N

XN

s¼1

fiðx
ðsÞ
i Þfjðx

ðsÞ
j Þ

1

N

XN

s¼1

ðyðsÞ � �yÞ2

; i; j 2 f1; 2; :::; ng: ð13Þ

Note that

Sbði; iÞ ¼ Sa
i ;

Xn

j¼1;j6¼i

SbðijÞ ¼ Sb
i ;

Xn

j¼1

SbðijÞ ¼ Si: ð14Þ

SCSA separates the independent and correlative contributions of the input variable xi. In

particular, Sa
i is referred to as the structural index giving the independent contribution of input

variable xi upon the variation of y, while the Sb
i index gives the correlative contribution of xi

arising from all other variables, xj’s, correlated with xi. Hence, Sa
i is an ideal univariate criterion

for feature selection and prioritization, and Sb
i is used for correlation identification. Sb(ij) can

be considered as a nonlinear correlation coefficient for variables xi and xj. Si is referred to as the

total index. When the output is satisfactorily approximated by the first order HDMR expan-

sion, the sum of all total indexes should satisfy [18]

Xn

i¼1

Si � 1: ð15Þ

The closer ∑i Si is to 1, then the first order sensitivity analysis is deemed more reliable. Further-

more, the first order HDMR component fi(xi) as a function of xi provides the influence pattern

of xi upon the output y.
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The advantage of the first order SCSA indexes, Sa
i ; S

b
i ; Si, lies in their ability to perform fea-

ture selection, prioritization and correlation identification to good accuracy even with small

size data samples (e.g., in the present case, there are 169 points of ASD-NEU data). SCSA

requires the construction of an HDMR model utilizing all input variables, and thus it is more

reliable than Ŝi or the t-test which only employ information for each input variable separately.

This situation becomes significant when the sample size is small.

A shortcoming of performing SCSA is that it is difficult to treat very high dimensional sys-

tems because construction of an HDMR model with thousands of input variables is computa-

tionally intensive. Therefore, as remarked earlier, Ŝi may be used first for feature pre-selection

when the number of features is large, then followed by SCSA for refined feature selection, pri-

oritization and correlation identification. If the number of features is not large, the feature pre-

selection by Ŝi may be avoided.

svr-based HDMR algorithm with independent input variables. The function f(x) is

approximated by SVR as [21]

f̂ ðxÞ ¼ hw;FðxÞi þ b ¼
XN

s¼1

ðas � a�s ÞhFðx
ðsÞÞ;FðxÞi þ b

¼
XN

s¼1

ðas � a�s ÞKðx
ðsÞ; xÞ þ b;

ð16Þ

where K(x(s), x) is referred to as a kernel. When an HDMR kernel, i.e., an HDMR expansion of

kernels with different numbers of variables [20]

KðxðsÞ; xÞ ¼ cþ
Xn

i¼1

Kiðx
ðsÞ
i ; xiÞ þ

X

1�i<j�n
Kiðx

ðsÞ
i ; xiÞKjðx

ðsÞ
j ; xjÞ þ :::þ

Yn

i¼1

Kiðx
ðsÞ
i ; xiÞ; ð17Þ

where c� 0, and the kernels Kiðx
ðsÞ
i ; xiÞ satisfy the zero expectation and mutual orthogonality

conditions

Exi
½Kiðx

ðsÞ
i ; xiÞ� ¼ 0; Exi;xj

½Kiðx
ðsÞ
i ; xiÞKjðx

ðrÞ
j ; xjÞ� ¼ 0;

is used in Eq (16), the svr-based HDMR expansion is obtained

f̂ ðxÞ ¼ bþ
XN

s¼1

ðas � a�s Þcþ
Xn

i¼1

"
XN

s¼1

ðas � a�s ÞKiðx
ðsÞ
i ; xiÞ

#

þ
X

1�i<j�n

XN

s¼1

ðas � a�s ÞKiðx
ðsÞ
i ; xiÞKjðx

ðsÞ
j ; xjÞ

" #

þ :::

þ
XN

s¼1

ðas � a�s Þ
Yn

i¼1

Kiðx
ðsÞ
i ; xiÞ

¼ f0 þ
Xn

i¼1

fiðxiÞ þ
X

1�i<j�n

fijðxi; xjÞ þ :::þ f12::nðxÞ:

ð18Þ

This result shows that all non-constant HDMR component functions are represented as linear

combinations of one variable kernels or products of some one variable kernels with combina-

tion coefficients αs and a�s . Thus, an HDMR model can be constructed by using an SVR algo-

rithm, i.e., the determination of the unknown parameters αs and a�s , which is more efficient

when fewer samples are adequate. This method is referred to as the svr-based HDMR
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algorithm. The key step is the construction of HDMR kernels satisfying the zero expectation

and mutual orthogonality conditions. Various (polynomial, radial basis, exponential, Fourier)

analytical HDMR kernels for independent variables with a known probability distribution of

the variables have been constructed [20].

Extension of svr-based HDMR to correlated input variables. In most realistic experi-

mental and clinical circumstances, the variables are correlated. For example, the occurrence of

one causative metabolite is often accompanied by the occurrence of other causative metabo-

lites. Moreover, the input variable probability distribution for experimental and clinical data is

often explicitly unknown, and hence the analytical HDMR kernels cannot be constructed.

Therefore, we need to extend the svr-based HDMR algorithm with independent input variables

to correlated input variables without requiring knowledge of the input variable probability dis-

tribution. For the first order svr-based HDMR with correlated variables we only need to con-

struct single variate HDMR kernels without requiring the knowledge of the pdf of input

variables.

The HDMR kernel satisfies the property: zero expectation and its general formula is given

by [28]

K0ðxi; x0iÞ ¼ Kðxi; x0iÞ �
R
Kðxi; vÞpiðvÞdv

R
Kðu; x0iÞpiðuÞduR R

Kðu; vÞpiðuÞpiðvÞdudv
: ð19Þ

To construct HDMR kernels, we need to know the pdf, pi(xi)’s, for determination of the inte-

grals in Eq (19). For real data, the pdf is likely correlated and unknown, but implicitly involved

in the sampled data x(s)(s = 1, 2, . . ., N) because the samples are drawn according to their prob-

ability distribution function. Thus, without explicit knowledge of the pdf, we can construct the

one-variate HDMR kernel numerically. Hence, the integrals in Eq (19) can be approximately

computed by using Monte Carlo integration as follows.

The one-variate kernel kðxi; x0iÞ at N sample points xðsÞi ðs ¼ 1; 2; :::;NÞ, drawn from an

explicitly unknown pdf, can be written as a matrix

kðxð1Þi ; ðx0iÞ
ð1Þ
Þ kðxð1Þi ; ðx0iÞ

ð2Þ
Þ � � � kðxð1Þi ; ðx0iÞ

ðNÞ
Þ

kðxð2Þi ; ðx0iÞ
ð1Þ
Þ kðxð2Þi ; ðx0iÞ

ð2Þ
Þ � � � kðxð2Þi ; ðx0iÞ

ðNÞ
Þ

..

. ..
. . .

. ..
.

kðxðNÞi ; ðx0iÞ
ð1Þ
Þ kðxðNÞi ; ðx0iÞ

ð2Þ
Þ � � � kðxðNÞi ; ðx0iÞ

ðNÞ
Þ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

: ð20Þ

According to Monte Carlo integration, the first integral
R
K(xi, v)pi(v)dv at xi ¼ xðkÞi in the

numerator in Eq (19) can be approximated as the average value of all the elements of the

kth row in the above matrix. In the same fashion, the average value of all the elements of

the kth column of the matrix is an approximation to the second integral
R
Kðu; x0iÞpiðuÞdu at

x0i ¼ ðx
0
iÞ
ðkÞ

in the numerator. The integral in the denominator of Eq (19) can be approximated

as the average value of all the elements in the matrix.

As the above matrix is symmetric, the average values of all rows are just the average values

of all columns. Therefore, the one-variate HDMR kernels can be constructed numerically

from the N average values of the rows and the average value of all elements of the matrix no
matter whether the variables are independent or correlated and regardless of the pdf they possess.
For an arbitrary xi, the integrals in the numerator can be obtained by interpolation from the N
average values for the xðsÞi ’s.

Using the one-variate HDMR kernels with correlated input variables, the first order

HDMR expansion with correlated variables can be constructed by determining the parameters

High efficiency classification of children with autism spectrum disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0192867 February 15, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0192867


α and α� with the SVR algorithm. The SCSA indexes are then computed from the resultant

HDMR component functions, and used for sensitivity analysis.

The procedure of the two stage method. The procedure for feature selection, prioritiza-

tion and correlation identification for ASD-NEU classification by the new proposed two stage

method is as follows:

• First, construct an SVM model with a properly chosen kernel (in the present ASD-NEU

data, a linear kernel was found to be satisfactory) using all (24) metabolites as the input vari-

ables x whose values are normalized to [−1, 1], and the output y takes the values −1 and 1 to

represent NEU and ASD, respectively. Then, collect the SVM scores for all 159 samples (76

normal children and 83 patients).

• For the present ASD-NEU data, the total number of 24 metabolites is not large, and one can

directly use SCSA without feature pre-selection by Ŝi. However, for illustration of the general

two stage method we will still use Ŝi pre-selection first to remove some of the most unimpor-

tant metabolites defined as those with the smallest Ŝi values. Then, the first order svr-based

HDMR expansion with all retained xi’s is constructed, and the corresponding first order

SCSA indexes Sa
i ; S

b
i ; Si are computed to perform a final refined stage of feature selection, pri-

oritization, and correlation identification.

• The selection of significant metabolites is performed by a bottom-up method, i.e., removing

the most insignificant metabolites first with the smallest values of Ŝi and then with the small-

est values of Sa
i , step-by-step, to obtain the final significant metabolites. There is no strict

threshold for the magnitude of Ŝi or Sa
i to remove insignificant metabolites. The guiding rule

is that removal of metabolites does not significantly reduce the classification accuracy of the

new SVM model with the retained metabolites.

The reason for using the bottom-up method is that the importance order of metabolites

obtained from either Ŝi or Sa
i depends on SVM scores, which is a function of all the metabo-

lites used in the SVM construction. We found that the order of the top significant metabo-

lites is generally contaminated by including less-informative metabolites, and the result is

not the same as their true order when only significant metabolites are used in SVM model

construction. However, even if less-informative metabolites are included in SVM model

construction, we may still reasonably assume that the metabolites with the smallest values of

Ŝi or Sa
i are the most insignificant and can be removed. As mentioned above, the smallest Ŝi

does not necessarily mean that xi is the most insignificant metabolite if the smallest value of

Ŝi is obtained due to the negative correlations of xi with other xj’s. However, in this case,

removing xi may result a significant reduction of classification accuracy of the new SVM

model. If so, we keep xi and remove the xj with the next smallest value of Ŝj right above

the Ŝi.

• After removing some identified possibly insignificant metabolites, a new SVM model is con-

structed with the remaining metabolites, and the new SVM scores are collected to perform

the above procedure again for further metabolite removal. The process continues until no

more metabolite can be removed without significant reduction in accuracy of the next SVM

model. The removal order of the removed metabolites is the inverse of their importance

order, i.e., the earliest removed metabolites are deemed the least significant. Thus, using the

inverse of the removal order of metabolites, the importance order of removed metabolites

can be obtained.
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• The final remaining metabolites are the most significant, and the values of Sa
i give their

importance order based on their independent contributions. The index Sb
i provides the cor-

relative contribution of xi and all other variables xj’s correlated with xi, and Sb(ij) gives the

pairwise correlation between xi and xj. The sum of Si indicates the reliability of the overall

sensitivity analysis. The first order HDMR component function fi(xi) plotted versus xi pro-

vides the influence pattern of xi to the predisposition of ASD.

Results

Feature pre-selection utilizing the main effect Ŝi

The total number of 24 metabolites is not large, and we could directly perform SCSA. How-

ever, we still use the main effect Ŝi to remove the most unimportant metabolites first as an

illustration of a general two stage procedure, especially valuable in situations having large

numbers of input variables.

Fig 4 gives the Ŝi’s determined from the scores of the SVM model constructed by 10-fold

cross-validation with the 24 metabolites. They are arranged in decreasing order of the magni-

tudes of Ŝi. Note that the abscissa indexes in Figs 4–6 do not correspond to the sequentially

labeled metabolites in Table 1; the particular metabolites of interest in these figures will be

specified in the text discussion, as called for.

Fig 4. The 24 Ŝi’s arranged in decreasing order of their magnitudes.

https://doi.org/10.1371/journal.pone.0192867.g004
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From Fig 4, we consider that the last six (going from 19 to 24) values of Ŝi are small, and

their corresponding metabolites in Table 1 are x7 (Adenosine), x11 (Cys.-Gly.), x19 (Tyrosine),

x22 (fCysteine), x8 (Homocysteine) and x20 (Tryptophan), respectively, which can be treated as

the most unimportant and removed. After removing the latter six metabolites, a new SVM

model was constructed with the retained 18 metabolites. The prediction accuracy of the new

SVM model did not change significantly. Therefore, the removal of the last six metabolites in

Fig 4 is deemed proper. The scores of the SVM model with the retained 18 metabolites were

used to compute the new 18 main effect Ŝi’s. The new Ŝi’s arranged in decreasing order are

given in Fig 5.

Fig 5 shows that the last two (the 17th and 18th) Ŝi’s have the smallest magnitudes and their

corresponding metabolites: x3 (SAH), x21 (fCystine) from Table 1 may be removed. We tested

the removal of more, i.e., removing the last 3 or 4 metabolites (i.e., starting from the 15th or

16th position to the end in Ŝi sequence), but removing x5 (% DNA methylation) in the 15th

position caused a significant reduction of accuracy of the new SVM model, so only the last

three metabolites (x2 (SAM), x3 (SAH), x21 (fCystine)) were removed, resulting in a new subset

of 15 metabolites. This overall procedure illustrates the means for systematic pre-selection of

the likely significant metabolites utilizing Ŝi.

Fig 5. The Ŝi’s obtained from the SVM model with 18 metabolites arranged in decreasing order of their

magnitudes.

https://doi.org/10.1371/journal.pone.0192867.g005
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Feature selection and prioritization by the SCSA index Sai
We transferred from the Ŝi-based feature pre-selection procedure to now use Sa

i ; S
b
i ; Si for more

refined feature selection, prioritization and correlation identification. Using the score of the

SVM model as the output y and the 15 metabolites pre-selected by Ŝi as the input variables, the

first order HDMR expansion was constructed by the svr-based HDMR algorithm with corre-

lated variables, and the corresponding first order SCSA indexes Sa
i ; S

b
i ; Si were computed. The

15 Sa
i ’s are arranged in decreasing order of their magnitudes in Fig 6.

From Fig 6, we see that the last few Sa
i ’s are very small suggesting that their corresponding

metabolites may be removed. Removal of metabolites should be carefully performed such that

the accuracy of the new SVM model with the retained metabolites is not significantly influ-

enced. In this way, significant metabolites will not be mistakenly removed. A reliable procedure

is removal of one metabolite at a time, but it may not be efficient when the number of metabo-

lites is large. In the present case with just 15 metabolites, we did remove insignificant metabo-

lites one-by-one. Thus, in seven separate sequential steps, x14 (GSSG), x13 (fGSH), x12 (tGSH),

x15 (fGSH/GSSG), x4 (SAM/SAH), x9 (Cysteine) and x1 (Methionine) were removed to obtain

a set of 8 metabolites. For brevity, the detailed results of the seven steps are not given here.

Only the SCSA indexes arranged in decreasing order of Sa
i for the subsequent few steps in

going from 8 to 6 remaining metabolites are given below in Tables 3–5.

From Tables 3–5, we see that x18 (Nitrotyrosine) and x16 (tGSH/GSSG) were removed

sequentially. The importance order of the six metabolites in Table 5 is different from that in

Fig 6. The 15 Sai ’s arranged in decreasing order of their magnitudes.

https://doi.org/10.1371/journal.pone.0192867.g006
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Tables 3 and 4. As discussed before, the order of the top significant metabolites is likely con-

taminated by the less-informative metabolites included in the SVM model construction; the

true order is only obtained when the actually significant metabolites are used in SVM model

construction. This is why the bottom-up method is utilized to correctly obtain the most impor-

tant metabolites.

According to the values of the Sa
i ’s given in Table 5, x6 (8-OHG) could be considered as

another candidate for removal. Upon doing so, the accuracy of SVM model with the first 5

metabolites in Table 5 significantly decreased. The prediction error of the SVM model is repre-

sented by the mean classification error (MCE), the misclassifications for both ASD and NEU.

MCE ¼
Number of misclassifications

total number of data
:

Table 3. The Sai ; Sbi ; Si obtained from the first order HDMR expansion with 8 metabolites.

Order Variable Sai Sbi Si Metabolite

1 x6 0.0623 0.0962 0.1585 8-OHG

2 x17 0.0518 0.0823 0.1340 Chlorotyrosine

3 x5 0.0493 0.0604 0.1098 % DNA methylation

4 x24 0.0428 0.1133 0.1561 % oxidized glutathione

5 x16 0.0401 0.1081 0.1582 tGSH/GSSG

6 x23 0.0351 0.0547 0.0899 fCystine/fCysteine

7 x10 0.0343 0.0524 0.0867 Glu.-Cys.

8 x18 0.0266 0.0772 0.1039 Nitrotyrosine

Sum 0.3424 0.6447 0.9871

https://doi.org/10.1371/journal.pone.0192867.t003

Table 4. The Sai ; S
b
i ; Si obtained from the first order HDMR expansion with 7 metabolites.

Order Variable Sai Sbi Si Metabolite

1 x5 0.1122 0.0653 0.1774 % DNA methylation

2 x10 0.0835 0.0738 0.1571 Glu.-Cys.

3 x17 0.0757 0.1032 0.1790 Chlorotyrosine

4 x23 0.0561 0.0531 0.1091 fCystine/fCysteine

5 x24 0.0479 0.1090 0.1568 % oxidized glutathione

6 x6 0.0382 0.0751 0.1134 8-OHG

7 x16 0.0201 0.0789 0.0990 tGSH/GSSG

Sum 0.4337 0.5583 0.9920

https://doi.org/10.1371/journal.pone.0192867.t004

Table 5. The Sai ; S
b
i ; Si obtained from the first order HDMR expansion with 6 metabolites.

Order Variable Sai Sbi Si Metabolite

1 x5 0.1137 0.0668 0.1805 % DNA methylation

2 x24 0.0926 0.1224 0.2149 % oxidized glutathione

3 x10 0.0875 0.0708 0.1583 Glu.-Cys.

4 x17 0.0800 0.1027 0.1827 Chlorotyrosine

5 x23 0.0755 0.0604 0.1359 fCystine/fCysteine

6 x6 0.0427 0.0774 0.1207 8-OHG

Sum 0.4920 0.5004 0.9924

https://doi.org/10.1371/journal.pone.0192867.t005

High efficiency classification of children with autism spectrum disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0192867 February 15, 2018 16 / 23

https://doi.org/10.1371/journal.pone.0192867.t003
https://doi.org/10.1371/journal.pone.0192867.t004
https://doi.org/10.1371/journal.pone.0192867.t005
https://doi.org/10.1371/journal.pone.0192867


The MCE’s of the SVM models with 4 to 8 metabolites obtained from all 159 samples with

10-fold cross-validation are given in Table 6, which shows that a significant increase of SVM

prediction error occurs starting from 5 metabolites. This implies that x6 (8-OHG) is still a

causative metabolite for ASD and we have conservatively retained it. Thus, the six metabolites

in Table 5 are chosen as the final significant metabolites. As explained earlier, their importance

order defined by their independent contribution is determined by their Sa
i values.

As remarked before, the bottom-up method of feature removal gives the importance order

inversely for all removed metabolites at each step. Thus, combining the importance order for

the identified six significant metabolites given in Table 5 with the importance order of all
removed metabolites, we obtain the overall prioritization order for all the 24 metabolites in

Table 7.

The metabolites close to the end of this prioritization sequence are the least informative to

ASD. If Ŝi were not used for feature pre-selection, and only Sa
i were employed, then the priori-

tization order of the metabolites at the last several positions might be different, but this differ-

ence is unimportant because these metabolites are all insignificant no matter what order they

have.

The differences between the Sa
i values for the most important 6 metabolites given in Table 5

are not very large, especially, for the middle 4 metabolites where the difference of neighbor

metabolites is only *0.01. Such a small difference may be real or caused by the small sample

size (159 samples), experimental errors (measurements of the metabolites) and numerical

errors (construction of the SVM and HDMR models). Therefore, their order may not be very

significant, and possibly some of them are almost equally important.

Ignoring the precise orderings, the resulting best 7 and 6 metabolite subsets from Table 7

are exactly the same as those given in Table 2 reported by Howsmon et al. [8] However, to

obtain these optimal sets of metabolites Howsmon et al. performed an enormous number of

Fisher discrimination classification tests, but we obtained the same results with only a few

steps.

Table 6. The MCE’s of SVM models with 4 to 8 metabolites.

Number of metabolites 8 7 6 5 4

MCE 0.0126 0.0126 0.0126 0.0314 0.0626

https://doi.org/10.1371/journal.pone.0192867.t006

Table 7. The prioritization order of FOCM/TS metabolites.

Order Variable Metabolite Order Variable Metabolite

1 x5 % DNA methylation 13 x12 tGSH

2 x24 % oxidized glutathione 14 x13 fGSH

3 x10 Glu.-Cys. 15 x14 GSSG

4 x17 Chlorotyrosine 16 x2 SAM

5 x23 fCystine/fCysteine 17 x3 SAH

6 x6 8-OHG 18 x21 fCystine

7 x16 tGSH/GSSG 19 x7 Adenosine

8 x18 Nitrotyrosine 20 x11 Cys.-Gly.

9 x1 Methionine 21 x19 Tyrosine

10 x9 Cysteine 22 x22 fCysteine

11 x4 SAM/SAH 23 x8 Homocysteine

12 x15 fGSH/GSSG 24 x20 Tryptophan

https://doi.org/10.1371/journal.pone.0192867.t007
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Note that the first 5 metabolites in the sequence given in Table 7 is different from that given

by Howsmon et al. As shown below, our selection of the most important 5 metabolites pro-

vides better accuracy in ASD classification than that selected by Howsmon et al. This result

implies that the new method more reliably identifies the significant metabolites.

To test the validity of our selections, the prediction error of the SVM models with the best

combination of k(= 5–8) metabolites chosen by the first k metabolites in Table 7 was com-

puted. For comparison, the prediction error of the SVM model with the 5 metabolites chosen

by Howsmon et al. is also included.

To determine the prediction error, Howsmon et al. used leave-one-out cross-validation [8].

However, the leave-one-out algorithm may be a good method to construct a model with a lim-

ited amount of data, but may not be the best algorithm to estimate the prediction error because

every datum is still involved in the model construction anyway. So we use a different method.

All 159 data points are randomly separated into training (100 points) and testing (59 points)

data subsets. The SVM model with a linear kernel for a given subset of metabolites was con-

structed only from the training data with 10-fold cross-validation, which was then used to pre-

dict the testing data not involved in the model construction. We ran these tests 100 times and

calculated the mean and standard deviation of the 100 MCE’s for the training and testing data

of SVM models with different numbers of metabolites. The results are given in Table 8.

In Table 8, the mean MCE is less than 2% and 4% for training and testing data (correspond-

ing to an average of 2 and 2.36 misclassifications) respectively when the SVM model contains

6 and more metabolites. Therefore, the prediction accuracy is larger than 98% and 96% for

training and testing data respectively, which are satisfactory. The results in Table 8 show that

the MCE decreases when the number of metabolites increases. The MCE’s for the 5 metabo-

lites selected by our method and Howsmon et al. are very close, but our selection has a little

better accuracy.

Correlation identification by the SCSA indexes Sbi and Sb(ij)
Correlation of metabolites means simultaneous variations or variation dependency of metabo-

lites, which may be caused by different sources such as correlated metabolites are on the same

path leading to predisposition of ASD; correlated metabolites can have either a promotion or

inhibition effect on each other. The doctors or researchers working on ASD may find correct

interpretation of these correlations. Discovery of correlations is important for a pathological

interpretation and comprehensive treatment of ASD.

The matrix Sb(ij)(i, j = 1, 2, . . ., n) gives all the information of metabolite pairwise correla-

tion (see Eq (13)). The Sb(ij) matrix for the 6 important metabolites is given below where the

Table 8. The mean and standard deviation of MCE for training and testing data.

Number of metabolites Metabolites Training data Testing data

Mean Std Mean Std

5� x5, x6, x10, x23, x24 0.0262 0.0478 0.0537 0.0492

5 x5, x10, x17, x23, x24 0.0266 0.0155 0.0437 0.0226

6 x5, x6, x10, x17, x23, x24 0.0135 0.0114 0.0392 0.0268

7 x5, x6, x10, x16, x17, x23, x24 0.0147 0.0118 0.0356 0.0257

8 x5, x6, x10, x16, x17, x18, x23, x24 0.0124 0.0010 0.0313 0.0238

�selected by Howsmon et al.

https://doi.org/10.1371/journal.pone.0192867.t008
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metabolite order is x5, x24, x10, x17, x23, x6 given in Table 5,

0:1137 0:0220 � 0:0066 0:0141 0:0190 0:0183

0:0220 0:0926 0:0343 0:0237 0:0224 0:0199

� 0:0066 0:0343 0:0875 0:0386 � 0:0045 0:0089

0:0141 0:0237 0:0386 0:0800 0:0098 0:0166

0:0190 0:0224 � 0:0045 0:0098 0:0755 0:0136

0:0183 0:0199 0:0089 0:0166 0:0136 0:0427

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð21Þ

Note that the diagonal elements are Sa
i ’s; and the sum of all elements except the diagonal

one in the ith row (or column) of the Sb(ij) matrix is just Sb
i , i.e., the sum of all pairwise correla-

tive contributions of xi with all other xj’s; and the sum of all elements in the ith row (or col-

umn) of the Sb(ij) matrix is Si.
Table 5 shows that (i) the magnitudes of all six Sb

i are comparable to the magnitudes of cor-

responding Sa
i , and (ii)

P
iS

b
i �

P
iS

a
i � 0:5 (i.e., the total contribution of all six metabolites is

composed of half independent and half correlated contributions). Hence, all six significant

metabolites are strongly correlated to one another, and ASD predisposition is not caused or

represented by individual but rather synergistic effects of the abnormality due to the six metab-

olites. Especially, x24 (% oxidized glutathione, row 2 in the Sb(ij) matrix) and x17 (Chlorotyro-

sine, row 4 in the Sb(ij) matrix) have the largest values 0.1224 and 0.1027 for Sb
i , respectively

Fig 7. Relations between the measurements of x17 versus x6 and x10 versus x5.

https://doi.org/10.1371/journal.pone.0192867.g007
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(see Table 5), showing that within the six metabolites, they are most correlated to other

metabolites.

The off-diagonal elements in the Sb(i, j) matrix give the pairwise correlation between xi and

xj. Consider two pairwise correlations: the (6, 4)- and (1, 3)-entry of the Sb(ij) matrix, i.e.,

Sb(x6, x17) = 0.0166 and Sb(x5, x10) = −0.0066. Fig 7 plots the relationship between the measure-

ments of x17 versus x6 and x10 versus x5, along with the linear fitting of their correlations (since

the linear kernel is used in the SVM modeling for the present ASD-NEU data, the correlation

here is linear; in general case, the correlation may be non-linear).

When x6 increases, x17 has a tendency to increase while when x5 increases, x10 has a ten-

dency to decrease consistent in both cases with the sign of their Sb(ij)’s. Thus, the magnitudes

and signs of Sb(x6, x17) and Sb(x5, x10), respectively, represent the correlative strength and

nature of the respective pairs of metabolites. Similar interpretations can be made for other

pairwise correlations. Within all the pairwise correlations, the largest are the (2, 3)- and (3, 4)-

entries of the Sb(ij) matrix, i.e., Sb(x24, x10) = 0.0343 and Sb(x10, x17) = 0.0386.

Influence patterns of metabolites upon ASD predisposition

The first order HDMR component functions provide information about the influence pattern

of metabolites upon ASD predisposition. Fig 8 gives the first order HDMR component func-

tions for the HDMR model with the six metabolites.

Fig 8. The first order component functions of the HDMR model with the six metabolites (all metabolites are normalized to

[−1, 1]).

https://doi.org/10.1371/journal.pone.0192867.g008
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As setting ASD = 1 and NEU = −1 in SVM classification, respectively, Fig 8 shows that

larger values of x6 (8-OHG), x17 (Chlorotyrosine), x23 (fCystine/fCysteine) and x24 (% oxidized

glutathione) but smaller values of x5 (% DNA methylation) and x10 (Glu.-Cys.) imply stronger

ASD predisposition. Thus, the former metabolites might enhance, but the latter metabolites

might inhibit ASD predisposition. This information is valuable for aiding a pathological inter-

pretation of the influence of the metabolites on ASD.

Conclusion

The discovery of the metabolite abnormalities in FOCM/TS pathways that have effects upon

increasing or decreasing ASD predisposition is a significant advance in understanding ASD.

The identification of which metabolites are relevant to ASD and how they either inhibit or

enhance ASD is important to discern. In this paper, we present a new method that utilizes the

scores produced in SVM modeling combined with HDMR sensitivity analysis to effectively

and efficiently identify causative metabolites in FOCM/TS pathways, rank their importance,

and discover their independent and correlative action patterns upon ASD. We expect that

such information will not only be important for a pathological interpretation but also for early

diagnosis and ideally providing a path leading to a comprehensive treatment of ASD. These

prospects and analyses will most surely benefit from additional metabolite data, and this paper

serves the purpose to provide an efficient means of extracting such information even with

increasing numbers of metabolites for assessment. The new method, with only tens model

runs, can identify the best combination of metabolites in FOCM/TS pathways leading to ASD,

in comparison to a previous analysis method requiring hundreds of thousands model runs [8].

The same method introduced in the present paper may be useful for different types of bio-

chemical applications and in other areas of data.

Supporting information

S1 Dataset. Biochemical and adaptive behavior data from ASD, NEU, and SIB partici-

pants.
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