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Abstract

Coexistence and cooperation between dogs and humans over thousands of years have supported convergent evolution-
ary processes in the two species. Previous studies found that Eurasian dogs evolved into a distinct geographic cluster. In
this study, we used the genomes of 242 European dogs, 38 Southeast Asian indigenous (SEAI) dogs, and 41 gray wolves to
identify adaptation of European dogs . We report 86 unique positively selected genes in European dogs, among which is
LCT (lactase). LCT encodes lactase, which is fundamental for the digestion of lactose. We found that an A-to-G mutation
(chr19:38,609,592) is almost fixed in Middle Eastern and European dogs. The results of two-dimensional site frequency
spectrum (2D SFS) support that the mutation is under soft sweep . We inferred that the onset of positive selection of the
mutation is shorter than 6,535 years and behind the well-developed dairy economy in central Europe. It increases the
expression of LCT by reducing its binding with ZEB1, which would enhance dog’s ability to digest milk-based diets. Our
study uncovers the genetic basis of convergent evolution between humans and dogs with respect to diet, emphasizing the

import of the dog as a biomedical model for studying mechanisms of the digestive system.
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Dogs were domesticated between 15,000 and 40,000 years
ago and spread around the world alongside humans (Vila
et al. 1997; Germonpré et al. 2009; Ostrander et al. 2019).
They have adapted to both natural and human environments
through natural and artificial selection (Wang et al. 2013,
2014, 2020; Gou et al. 2014; Li et al. 2014; Freedman et al.
2016; Liu et al. 2018; Wu et al. 2020). For example, AMY2B
(amylase-alpha-2B) and MGAM (maltase-glucoamylase)
which are under positive selection in dogs are known to
play an important role in starch digestion (Axelsson et al.
2013; Wang et al. 2013). Thus, adaptation to a starch-rich
diet during the agricultural revolution was crucial to the do-
mestication of dogs. Meanwhile, a new copy of AKR1B1 (aldo-
keto reductase family 1 member B) transcript is identified in
the dog genome but absent in gray wolf and dhole genomes
(Wang, Shao, et al. 2019b). That may enhance de novo fatty
acid synthesis and antioxidant capacity in dogs. These genetic
changes are indicative of the dog's adaptability to dietary
changes during the spread of prehistoric agriculture

(Arendt et al. 2016). It is undeniable that human culture
heavily impacts the evolution of dogs (Ollivier et al. 2016).

Based on whole-genome sequencing of canids, Eurasian
dogs bifurcate into two major genetic groups: European
dogs and Southeast Asian indigenous (SEAI) dogs (Frantz et
al. 2016, Wang et al. 2016). Another study revealed that
Eurasian dogs split into four distinct geographic clusters:
Southeast Asia, India, Middle East, and Europe (Botigué et
al. 2017). This population structure implies that Eurasian dogs
underwent divergent evolution. Recently, 722 canine whole-
genome sequences were published (Plassais et al. 2019),
expanding the capacity for in-depth investigation of the adap-
tive evolution in European dogs.

Genetic basis of adaptation to milk-based diets in
Europeans has been reported (Hollox et al. 20071; Enattah et
al. 2002). Human has a great impact on dogs, including the
diets (Axelsson et al. 2013; Arendt et al. 2016; Wang, Larson, et
al. 2019a). Here, we have studied the genomes of 242
European dogs, 38 SEAIl dogs, and 41 gray wolves to
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understand the adaptation of European dogs. We discuss
how dogs were influenced by the dietary cultures of the
European people.

Results and Discussion

Sample Information and Population Structure
Previous study confirmed that the best cost/benefit argu-
ment of whole-genome sequencing is two dogs per breed
(Dreger et al. 2016). To avoid sampling bias (from 1 to 44
individuals per breed), we picked 5 individuals with the high-
est genome coverage for every breed with more than 5 indi-
viduals. We used all individuals for breeds in which sample
size is less than 5. In total, we have 242 European dog sequen-
ces including 239 samples from 96 European breeds and 3
Portugal village dogs, 38 SEAI dogs, and 41 gray wolves from
the public 722 canine genomes data set (supplementary table
S1, Supplementary Material online) (Plassais et al. 2019).
Principal component analysis (PCA) explores the consistency
of the genetic structure and the origin information assigned
in the Federation Cynologique Internationale (FCI). PC1 and
PC2 showed clear three groups: SEAI dogs, European dogs,
and gray wolves (supplementary fig. S1, Supplementary
Material online).

PSGs in European Dogs
We performed extended number of segregating sites by
length (XP-nSL) (Garud et al. 2015) and cross-population ex-
tended haplotype homozygosity (XP-EHH) tests (Sabeti et al.
2007) to scan for positively selected signals in the autosomes.
Using empirical P < 0.01 as threshold (supplementary note,
Supplementary Material online), 104 positively selected genes
(PSGs) were commonly identified by XP-nSL (363 PSGs) and
XP-EHH (429 PSGs) in European dogs. To identify the unique
PSGs in European breeds, XP-nSL and XP-EHH were also car-
ried out to detect the PSGs in SEAI dogs. There are 137 PSGs
commonly identifying in SEAI dogs by both methods. Out of
the 104 PSGs in European dogs, 86 genes (supplementary
table S2, Supplementary Material online and fig. 1) were
retained after excluding 137 PSGs detected in SEAI dogs.
Among the 86 PSGs, three genes show strong positively
selected signals (P < 0.001) in XP-EHH and XP-nSL (fig. 1),
including lactase (LCT), minichromosome maintenance com-
plex component 6 (MCM6), and LIM homeobox 8 (LHXS).
LCT is a hydrolase that hydrolyze lactose into galactose and
glucose. After weaning, most mammals reduced expression of
LCT in the intestinal tissues and cannot digest milk (Sebastio
et al. 1989; Billler et al. 1990; Lacey et al. 1994). However,
lactase persistence (LP) is common in adult humans who
live at northern and western Europe, as well as in African
and Middle Eastern pastoralist groups, providing for by muta-
tions in LCT and MCM6 (Hollox et al. 2001; Enattah et al. 2002;
Ingram et al. 2009). A Steppe-associated expansion during the
early Bronze Age contributed to advance LP in South Asians
(Satta and Takahata 2020). Positive selection always creates
long linkage disequilibrium (LD). LD analysis using Haploview
(Barrett et al. 2005) shows that LCT and MCMG6 are tightly
linked in European dogs (supplementary fig. S2,

Supplementary Material online). It is consistent with the find-
ing in Finnish pedigrees (Enattah et al. 2002).

The Convergent Distribution of LP in Humans and
LCT-G SNP in Dogs

To identify candidate SNPs, Fst by site between European
dogs and gray wolves were calculated across whole genome
and the top 1% sites taken for gene annotation (Danecek et
al. 2011). One SNP (chr19:38,609,592, A-to-G) showed high
allele frequency in European dogs (91.7%) compared with the
SEAI dogs (61.8%) and wolves (6.1%). Thus, we used inte-
grated Selection of Allele Favored by Evolution (iSAFE) anal-
ysis to search for candidate SNPs in a 1.2-Mb around
chr19:38,609,592 (fig. 1C) (Akbari et al. 2018). To exclude
effects of the demographic history, we simulated 100,000
regions with 1.2 Mb to calculate iSAFE under the demo-
graphic history (Liu et al. 2018). The result of iSAFE shows
that the A-to-G mutation is significantly under positive se-
lection (P = 1.09E-7). We performed 2D SFS to infer the core
region under selection (Fujito et al. 2018; Satta et al. 2020).
There are 69 SNPs located at the core region with strong LD
(¥ > 3/4). Thus, we performed the simulations for 20,000
regions with 11,630 bp containing 69 SNPs and calculated
2D SFS under the demographic history (Liu et al. 2018). The
significantly small values of F,, Lo, and large i, 7*(10) and
G*o support that LCT is under soft sweep in European dogs
(supplementary table S3, Supplementary Material online). It
suggests that more than one derived allelic lineages have been
undergoing the selective sweep. The time to the most recent
common ancestor (t,,) of A-to-G mutation is
6,535 = 180 years ago. This time is longer than 4,000 years
that LP-associated allele earliest appeared in ancient
Europeans (Gamba et al. 2014; Mathieson et al. 2015), and
longer than the t ., (3,280 = 480 years ago) of T at rs4988235
in Europeans inferred by 2D SFS (Satta et al. 2020; Satta and
Takahata 2020). Because T at rs4988235 in Europeans is under
hard sweep, its onset time of positive selection (tsg ) is longer
than t.. (3,280years) (Satta and Takahata 2020). On the
contrary, the ts; of A-to-G mutation in European dogs is
younger than t., (6,535years) due to its soft sweep.
Considering the presence of A-to-G mutation in wolves
and gene flows between dogs and wolves (Wang et al.
2016), it is plausible that A-to-G mutation had been existing
in European dogs before the onset of positive selection. The
tsp. of A-to-G mutation is shorter than the time that the
earliest milk consumption in the Near East and southeastern
Europe appeared around 6,500 BC (Evershed et al. 2008).
Dairy economy was well developed in central Europe by
6,500 years ago (Curry 2013).

To further explore the global distribution of LCT-G in dogs,
we calculated its allele frequency from 737 individuals (fig. 2)
(Plassais et al. 2019). The LCT-G allele is almost fixed in Middle
Eastern dogs (92.2%). A similar pattern has been reported in
Middle Eastern human populations (Swallow 2003; Ingram et
al. 2009). Because milk consumption emerged in the Near
East and southeastern Europe 7,000-8500years ago
(Evershed et al. 2008). On the contrary, most Chinese adult
humans are lactose intolerant (Bolin et al. 1970; Bolin and
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Fic. 1. The positive selection analysis of European dogs. Genome scans with XP-EHH (A) and XP-nSL (B). Red dotted line marks empirical P = 0.001.

(C) iSAFE analysis across 1.2 Mb around chr19:38,609,592 (red).

Davis 1970; Bryant et al. 1970; Wang et al. 1984). Therefore, it
is clearly plausible that the increased expression of LCT
helps European dogs to adapt to a milk-based diet. The
allele frequency is also high in Indian dogs (90.0%). The LP
among Indian human populations is complex, with LP
high in the North Indians but low in South Indians
(Tandon et al. 1981; Enattah et al. 2002). In Africa, the
allele frequency is low among Congolese (basenji, 12.5%)
and Nigerian indigenous dogs (31.6%), but high in
Namibian village dogs (83.3%) and Moroccan (Sloughi,
87.5%). Notably, central Namibian dogs are genetically
closest to American dogs, which implies predominantly
non-African origins (Boyko et al. 2009). Their high allele
frequency might be caused by the nonindigenous lineage.
For African human populations, pastoralist populations
predominantly exhibit high LP in contrast to nonpastor-
alists (Mulcare et al. 2004; Tishkoff et al. 2007).
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LCT SNP (A > G) Increase the LCT Expression

The A-to-G mutation is located in intron 2 of LCT. The intron
2 is highly conserved across mammals and its deletion signif-
icantly reduces the expression of LCT in mice (Labrie et al.
2016). Based on JASPAR database (Khan et al. 2017), tran-
scription factor ZEB1 (zinc finger E-box-binding homeobox 1)
potentially binds to this SNP position (supplementary table
S4, Supplementary Material online). The A-to-G mutation in
LCT reduces its consistency with ZEBT (relative score 0.987 vs.
0.853). Additionally, the base in ZEB1 which binds to this SNP
in LCT is highly conserved in Homo sapiens (sequence logo =
2, supplementary fig. S3, Supplementary Material online). It is
plausible that the A-to-G mutation may change LCT expres-
sion by modifying ZEB1 binding. To verify this, LCT-G and
LCT-A luciferase reporter constructs were engineered (fig.
3A and supplementary note, Supplementary Material online)
and cotransfected into HEK-293T cells with ZEB1 expression
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Fic. 2. The distribution SNPs of LCT in the global panel. Red portions of the pies represent the ratio of LCT SNP (G) whereas the blue represents the
ratio of LCT SNP (A). The breed origin was obtained from FCI.

| ZEB1 binding sites |

A SV40 promoter
LCT partial genomic sequences
B
—| EF-NS promoter ZEB1 ] Flag l Puro l—

C

& “ O pGL3-basic

5 b M LCT3-SNP(G)

5 250 [ LCT3-SNP(A)

E 200

§ 150

£ 100

2 50

o

RFP ZEB1

Fic. 3. LCT SNP (G > A) influences the suppression of LCT expression with the involvement of ZEB1. (A) A schematic representation of the LCT
construct. The DNA sequence including exon2, intron2, and exon3 of LCT are linked by a promoter and luciferase. (B) A schematic representation
of the ZEBT construct. ZEBT is linked by a promoter, flag and puro. (C) HEK-293T cells were cotransfected with pPCMV-Renilla (control), LCT SNP (G)
or LCT SNP (A) Luciferase reporter construct as well as the ZEBT expressing vector in sextuplicate. Two days after transfection, the cells were
collected for the dual-luciferase reporter assays. Data are means = SD. ** Mean P < 0.05 (t-test), *** Mean P < 0.001. RFP, red fluorescent protein.
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vector (fig. 3B). Luciferase activity shows that LCT-G has a
higher expression than LCT-A (fig. 3C). When ZEB1 was
cotransfected, the luciferase activity of LCT-A and LCT-G lu-
ciferase reporter constructs were significantly decreased.
These results suggest that A-to-G mutation in LCT increases
the expression of LCT by weakening the binding of ZEBT.
Thus, we infer that the mutation enhances the function of
LCT, resulting in LP of European dogs. The similar pattern is
found in humans. For Europeans, the SNP C/T-13910 located
~14 kb upstream of LCT is associated with the LP and under
strong positive selection (Enattah et al. 2002). The region
surrounding C/T-13910 increases the expression of LCT as a
strong enhancer (Enattah et al. 2002; Olds and Sibley 2003;
Troelsen et al. 2003). The LCT intron 2 is a regulatory element
for the development of LP in humans and mice (Labrie et al.
2016). We therefore infer that an elevated expression of LCT
in European dogs confers their adaptation to milk-based
diets.

Conclusion

Genes for LP coevolved over time with variations in human
dietary preferences and milk-ingestion cultures (Beja-Pereira
et al. 2003) . Of all domestic animals, dogs have had one of the
longest mutual coexistence with humans, sharing among
other things like food and living environments. There is evi-
dence for convergent evolution between humans and dogs
regarding several factors (Perry et al. 2007; Axelsson et al. 2013;
Wang et al. 2014; Liu et al. 2018). Here, we describe the co-
evolution between dogs and human dietary culture at the
genome level. Based on whole-genome analyses and gene
expression assays, we outline the mutational change in LCT
gene which increases its expression to confer adaptability to
milk-based diets. This study expands our understanding of
the genetic basis of dogs’ adaptation to human diets. It is
imperative that the dog provides a suitable large animal
model for studying human diseases and medicines, especially
those of the digestive tract.

Materials and Methods

Sample Information

The raw SNPs files of 722 individuals were downloaded
from  NCBI  (https://www.ncbinlm.nih.gov/bioproject/
PRINA448733, last accessed July 17, 2021) (Plassais et al.
2019). SNPs in autosomes marked by PASS were used for
analysis. We created a metadata of countries of origins of
dog breeds from the FCI (http://www./fcibe, last accessed
July 17, 2021). PCA was carried out using smartpca in
EIGENSOFT (v7.2.1). Chr19:38,609,592 SNP information of
15 Nigerian dogs were obtained from Liu et al. (2018).

Positive Selection

Based on the genetic map downloaded from https://github.-
com/auton1/dog_recomb/tree/master/canFam3.1/maps
(last accessed July 17, 2021)(Auton et al. 2013), genotypes
were phased by SHAPEIT (v2.r904) with 0.5 Mb windows
and an effective population size of 83,600 (Delaneau et al.
2012). Subsequently, XP-EHH and XP-nSL were calculated
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using selscan (v1.3.0) (Sabeti et al. 2007; Szpiech and
Hernandez 2014). The empirical P value of XP-EHH and XP-
nSL were calculated following the method previously
reported (supplementary note, Supplementary Material on-
line) (Lee et al. 2014). The genomic regions with P < 0.01 were
considered for gene annotation. Gene set was download from
Ensembl (version CanFam3.1.101). iSAFE was performed for
12Mb around the chr19:38,609,592 (chr19:36,109,592-
41,109,592) with gray wolves as the control. 2D SFS was car-
ried out for 69 SNPs located at the core region with strong LD
(chr19: 38,600,610-38,612,240, 1> > 3/4). P values for iSAFE
and 2D SFS were got based on the simulations (supplemen-
tary note, Supplementary Material online) of population his-
tory from Liu et al (2018) by ms (Hudson 2002). LD was
carried out for LCT and MCM6 (19:38,572,058-38,660,280)
by haploview (Barrett et al. 2005). SNPs with minor allele
frequency >0.01 were used.

Generation of Constructs and Dual-Luciferase Assays
The 5,643-bp partial genomic DNA sequences of LCT genes,
including exon 2, intron 2, and exon 3, were amplified. The
PCR products were cloned into pGL3-basic Luciferase
Reporter Vector (Promega, Madison, WI, USA) in Xbal and
BamHI (NEB, USA) digestion sites to generate wild-type LCT
luciferase constructs. It is formed the template for making
mutated LCT luciferase constructs. The 3,378-bp full-length
CDS (Coding DNA Sequence) of dog ZEB1 was amplified by
primers. The PCR products were cloned into LentiV2-RFP
vector in Xbal and Xhol digestion sites to generate ZEB1
expressing vector (supplementary note, Supplementary
Material online). The HEK-293T cells were seeded into 24-
well plates at 1x 10° cells per well (supplementary note,
Supplementary Material online). On the following day, the
cells were transfected with SNP (G) or SNP (A) luciferase
reporter construct (500 ng per well), and an internal control
pCMV-Renilla control (25 ng per well) as well as the ZEB1
expressing vector or negative control LentiV2-RFP vector
(25 ng per well) in sextuplicate using Lipofectamine 3000 re-
agent (Invitrogen, Carlsbad, CA, USA). Two days after trans-
fection, cells were collected to measure the luciferase activity
by the Dual-Luciferase Reporter Assay System (Promega), and
luciferase expression was normalized to renilla luciferase ex-
pression. Student’s two-tailed t-test was used to analyze the
statistical significance of data.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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