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Abstract

Bacterial infections occur when the natural host defenses are overwhelmed by invading bacteria. The main component of
the host defense is impaired when neutrophil count or function is too low, putting the host at great risk of developing an
acute infection. In people with intact immune systems, neutrophil count increases during bacterial infection. However, there
are two important clinical cases in which they remain constant: a) in patients with neutropenic-associated conditions, such
as those undergoing chemotherapy at the nadir (the minimum clinically observable neutrophil level); b) in ex vivo
examination of the patient’s neutrophil bactericidal activity. Here we study bacterial population dynamics under fixed
neutrophil levels by mathematical modelling. We show that under reasonable biological assumptions, there are only two
possible scenarios: 1) Bacterial behavior is monostable: it always converges to a stable equilibrium of bacterial concentration
which only depends, in a gradual manner, on the neutrophil level (and not on the initial bacterial level). We call such a
behavior type I dynamics. 2) The bacterial dynamics is bistable for some range of neutrophil levels. We call such a behavior
type II dynamics. In the bistable case (type II), one equilibrium corresponds to a healthy state whereas the other corresponds
to a fulminant bacterial infection. We demonstrate that published data of in vitro Staphylococcus epidermidis bactericidal
experiments are inconsistent with both the type I dynamics and the commonly used linear model and are consistent with
type II dynamics. We argue that type II dynamics is a plausible mechanism for the development of a fulminant infection.
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Introduction

The human body is constantly exposed to bacterial influx from

the environment via the skin, the respiratory tract and the

digestive organs. At the acute stage of bacterial infection, the

neutrophils (phagocytic white blood cells), which make up about

70% of the white-cell blood count in adults, are the main cells that

fight the bacteria. The environmental conditions, neutrophil level

and efficiency of the human barrier tissues play a crucial role in

the susceptibility of the human body to infections [1]. There are

several known medically significant conditions of neutrophils with

reduced number or function that are associated with an increased

risk of infection: patients with severe neutropenia (neutrophil

count less than 500|103 neutrophils/mL in the blood, which is

three to ten times less than the normal values) [2,3]; people

suffering from impaired microbicidal machinery (such as chronic

granulomatous disease-CGD) [4,5]; individuals with neutrophil-

adhesion deficiency (which prevents the neutrophils from leaving

the blood vessels and reaching the site of infection) [6]; individuals

with insufficient vasculature to deliver neutrophils to the site of

infection (e.g. deep burns) [7]. We refer to these medical

conditions as neutropenia-associated conditions. In the medical literature

neutropenia-associated conditions refer to reduced number of

neutrophils and is separated from neutrophils malfunction, here

we bind them together for simplicity of presentation. These full-

body conditions seem to establish the notion that there exists a

critical neutrophil concentration below which the risk of infection

dramatically increases. These observations motivated several

groups to perform in-vitro experiments, with the notion that

characterizing the bacterium-phagocyte dynamics would help

decipher the in-vivo behavior of the innate immune system.

Two views regarding the possible in vitro dynamic behavior of

the bacteria emerged from these experiments. Clawson and

Repine, Leijh et al. and Hammer et al. [8–10] proposed that

bacterial killing by neutrophils is ratio-dependent. In their

experiments, the neutrophil concentration was fixed (2{5:106

neutrophils/mL) and neutrophil-bacteria ratios of 1 : 1 to 1 : 400
were achieved by varying the initial bacterial concentration. On

the other hand, Li et al. [11,12] proposed that there is no ratio

dependency, and that there exists a unique critical neutrophil

value: below this value, the neutrophils cannot control the

bacterial growth at all, regardless of bacterial concentration, and

above this value, the neutrophils can control any bacterial

concentration. They further proposed that the value of this critical

neutrophil concentration can be estimated from a simple linear

mathematical model that is fitted to the experimental data.

This estimated critical value agrees with the commonly accepted

in-vivo critical value for severe neutropenia. Here we further

develop this notion of critical neutrophil concentration and show,

by mathematical considerations, that near this critical value,

non-linear effects cannot be ignored even at small bacteria

concentrations.

Mathematical modelling of the immune system has a long and

rich history, mainly in the context of the adaptive immune
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response. There, ordinary differential equations (ODEs) describing

spatially homogeneous population dynamics are commonly used

(see [13–15] and references therein). Indeed, the model proposed

here, as well as Li et al. [11,12] linear model, belong to the class of

predator-prey models in which the predator population is fixed.

The linear version is just the prey equation of the Lotka-Volterra

system (see e.g., [16, p.79]). Non-linear effects and the natural

emergence of bistability have been widely studied in this context,

see e.g., [17, 18, p.74]. Moreover, it has been observed that

bistability can be experimentally verified by taking advantage of

the hysteresis effect [19–21].

Models for studying the innate immune response in general and

the phagocyte-bacterium interactions in particular, are scarce.

Most studies have concentrated on various in vivo medical

conditions, hence these are inherently of higher dimension, and

always include an equation that describes the bacteria dynamics

coupled to the phagocyte concentrations. Most commonly, the

normal to hyper-response of the phagocytes to the invasion of

bacteria is studied. In Kumar et al., Chow et al. and Reynolds

et al. [22–25], the focus is on the relation between the

inflammatory response, anti-inflammation mediators and sepsis.

In Herald [26], the macrophage dynamics is related to the

development of chronic inflammation after eradication of a

pathogen. In Pugliese and Gandolfi [27], the in-vivo pathogens

and specific and non-specific immunity dynamics are shown to be

potentially quite rich: bistable regions and oscillatory regimes

appear as the model parameters are varied. Imran and Smith [28]

consider the influence of bacterial nutrients on the innate immune

response to bacterial infection and identify locally stable disease-

free region, which is used to design a successful antibiotics

treatment. Finally, models concentrating on in vivo blood-tissue

dynamics showed good fit to experimental data of Escherichia coli

concentration in milk produced from infected cows [29].

Early modelling efforts of bacterium-phagocyte dynamics in

vitro [30,31] focused on probabilistic modelling of the number of

digested particles per neutrophil. These issues were further

explored experimentally, and led to the proposal of a three-

compartment linear ODE model in which the dynamics of viable,

phagocytosed and perforated bacteria are presented [32]. The

works of Li et al. [11,12] were the first to relate the implication of

such experiments and models to the observed in-vivo critical value

of neutrophils.

Notably, in mathematics, as in biology, characterization of a

simplified system (such as an in-vitro experiment) serves as a

building block for more complex systems. The mathematical

building block of Li et al. [11] was utilized in several models of

in-vivo dynamics, e.g., [29,33], whereas others modified this part of

the model and included non-linear and saturation effects (see e.g.

[27]). Thus, our work may be viewed as a careful construction of an

essential building block of more complex systems (see discussion).

Below we briefly describe a class of mathematical models for

bacterial growth when neutrophils are present. We show that non-

linear models that respect elementary robust biological observa-

tions can be divided into exactly two types of behavior that we call

type I and type II. In the Results section, we show that the data in

Li et al. [12] provide experimental evidence that falsifies the

adequacy of the type I and linear behaviors, yet corroborates the

adequacy of type II behavior, (We purposely avoid the word

‘‘validate’’, taking the Popperian [34] view that scientific theories

may only be falsified by experiments). In particular, we show that

the dynamics is not ratio-dependent, and the critical neutrophil

value does depend on the initial bacterial concentration. We

conclude with some observations regarding the clinical implica-

tions of these findings.

Methods

Modelling the Bacterium-Phagocyte Dynamics
To model the bacterial dynamics in a suspension, we write an

ordinary differential equation for the rate of change of the

bacterial concentration B [bacteria/mL], and describe how this

rate depends on the neutrophil concentrationN [neutrophils/mL]

and on the external bacterial influx, Infx [bacteria/mL min]. Such

models are adequate for describing well-mixed large population

dynamics. For the clinically relevant values (§104 cells/mL)

stochastic effects may be neglected (see e.g. [35]). Our aim here is

to construct such a model from first principles, so that the

qualitative dynamic consequences will depend only on the

biological assumptions that enter the model and will not depend

on the detailed functional form of the equations.

To this aim, the rate of change of the bacterial concentration is

divided into bacterial birth terms (natural growth and influx) and

death terms (bacterial natural death and killing by neutrophils):

B rate

of change

 !
~

B natural

grow thrate

 !
z

B

influx

 !

{
B

natural death

 !
{

B killing

rate by N

 !
:

Below, we list our assumptions on the form of each of the above

terms. In particular, these considerations imply that each of the

non-constant terms is a monotonic function of B (and the killing

term is also monotone in N ). Moreover, we always assume that

the growth/death rates (namely, terms on the right hand side of

the equation divided by B) are saturable as these are controlled by

biological processes that always have a finite maximal rate.

A1. The natural bacterial dynamics (with no neutrophils) has

a limited growth curve.

Namely, by this assumption, the sum of the first two

terms is larger than the third term for BvB� and the

opposite statement holds for BwB�, where B� denotes the

maximal capacity state (also known as the carrying

capacity in the logistic model). Indeed, it is observed that

in well-mixed suspensions, small concentrations of bacteria

grow till they reach high concentrations and then the

density asymptotes to a natural stable equilibrium, the

maximal capacity state. Various mathematical models that

fit experimental growth curves (e.g. logistic, Gomperz, and

saturated growth models such as eq. (1)) satisfy this

assumption (see [36]).

A2. Sufficiently large neutrophil concentrations defeat small

bacterial concentrations.

This assumption presents the minimal requirement for

the ability of neutrophils to control bacteria as observed in

the lab and in the clinic (see e.g. [10]). This assumption

holds for both gram-positive and gram-negative bacterial

strains provided that in the gram-positive case, there is an

ample supply of opsonins [9].

A3. The kill rate increases and is saturable with both B and N .

The monotonicity assumption, namely that the more

neutrophils or bacteria we have, the larger the killing, is

plausible for any killing-term form. The saturability effects

in both B and N (as in the Michaelis-Menten type terms

that appear in predator-prey models with predator
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interference) [37,38] also have a clear biological motiva-

tion: each neutrophil has a limited killing capacity so the

killing term is saturable in B [9]. At high concentrations of

N (for a fixed Bw0), the availability of bacteria per

neutrophil decreases and thus the killing term is saturable

in N . At limited B values, this assumption is valid for all

bacterium-phagocyte dynamics, see the Discussion section.

A4. The rate of change of B does not depend explicitly on time

or space, or on any other dynamic variable (so in

particular, the neutrophil level N and the B influx Infx

are non-negative constants).

This assumption is reasonable for standard in-vitro

experiments and lab tests in well mixed suspensions for a

limited time scale of about 90 min (so that the neutrophil

function and number are not affected, nor is any other

aspect of the medium that influences the natural bacterial

growth, see e.g. [8,11,39]). The possible applicability of A4

to specific in-vivo situations is a non-trivial issue, see the

Discussion section.

Most of the results described in this paper apply to all models

that satisfy the robust biological assumptions A1–A4. However, for

concreteness and simplicity of presentation, we hereafter consider

the following explicit model:

dB tð Þ
dt

~
rB tð Þ

1zbB tð ÞzInfx{dB tð Þ{ a NB tð Þ
1zcB tð ÞzgN : ð1Þ

This model satisfies assumptions A1–A4 for sufficiently small

bacterial influx (0ƒInfx%r=b) provided the six parameters

r,d,b,a,c,gð Þ are all positive and satisfy rwd (the maximal

capacity here is B�~ r{d

bd
) and aw r{dð Þg. The first three

parameters govern the natural dynamics of the bacteria: r and d
control the natural linear growth/death rates of the bacteria and b
controls the natural saturation of the bacterial growth rate at high

concentrations (this term reduces to the commonly used logistic

term when bB tð Þ is sufficiently small). The other three parameters

control the killing of the bacteria by the neutrophils: a is the

neutrophils’ bacterial killing rate at low concentrations, and c and

g control the saturation in the killing rate as the concentrations of

B and N are increased (see A3). All of these parameters depend on

both the bacterial strain and the environmental setting: for

example, in an experimental set-up, the serum content and the

form of the toxic clearance affect them. In fact, these parameters

represent global effective responses to a large complex network of

molecular and cellular processes that are associated with the

bacteria natural growth and with the capture and killing of the

bacteria by neutrophils. A calibration of these parameters with

extensive experimental data and with the corresponding molecular

markers may be important for identifying the main effect of these

cellular processes on the bacteria-neutrophil population dynamics

in health and in disease.

This model is non-linear–it takes into account the saturation

effects that appear at high concentrations. If these effects are

neglected, and the influx is set to zero (so b~c~g~Infx~0), we

arrive at the linear model:
dB
dt

~ r{d{aNð ÞB, (see e.g. [11]).

This linear model has, for all N , only a single equilibrium at the

origin. This fixed point is unstable for small N and stable when

Nw

r{d

a
~N c{lin (as in [11]). Thus, the transient bacterial

dynamics is always independent of the initial bacterial concentration: if

NvN c{lin (respectivelyNwN c{lin), the bacterial population grows

exponentially without bound (respectively shrinks exponentially to

zero). Moreover, the exponential rate of transient growth/decay of the

bacterial population depends only on the neutrophil concentration: it is

independent of the initial positive concentration of the bacteria.

Notice that this linear model fails to satisfy assumptions A1 and

A3. One may postulate that since saturation occurs only at high

concentrations (near B�), the linear model will adequately

describe the dynamics at smaller concentrations. Next, we show

that near N c{lin this postulate is false: the dynamics in the non-

linear and linear models are substantially different, even when B
is small.

Results

Two Possibilities: Robust Dynamics vs. Bistable Dynamics
Mathematical analysis of Eq. (1) shows that depending on the

parameters, one of exactly two types of behaviors, called hereafter

type I and II, can occur (a similar statement can be made for all

models satisfying assumptions A1–A4.).

In the type I parameter regime, the model has no critical

dependence on neutrophil concentration N . That is, for all levels

of neutrophils there is a single stable equilibrium point (EP)

which depends gradually on N : for low values it corresponds to

the high concentration point associated with the maximal

capacity branch–the branch of stable equilibria that emanates

from the point N , Bð Þ~ 0, B�ð Þ, where B� is the maximal

capacity state of the natural bacterial dynamics. As the

neutrophil level increases, this EP gradually lowers till, for

sufficiently high neutrophil level (N§N 1), it reaches the origin

(see Fig. 1a and Models section; for simplicity of presentation, we

consider here the zero influx and show in the Bacterial Influx

section that the results are only slightly modified for small

bacterial influx, see also Fig. 2).

In the type II parameter regime, the model exhibits bistability

for neutrophil concentrations between levels N 1 and N 2 (see

Fig. 1b). For neutrophil levels below N 1, small bacterial

concentrations always grow to the maximal capacity branch.

For neutrophil levels in the range N 1, N 2ð Þ, the neutrophils can

overcome some portion of the bacterial population but not all of it

(see Fig. 1b). Therefore, in this range, there exists a critical

bacterial concentration, Bc Nð Þ, above which bacterial growth

dominates and below which the neutrophils take control (see

dashed curve in Figs. 1b, 2b). Moreover, in this range the critical

curve Bc Nð Þ is a non-linear increasing function of the neutrophil

count N . Summarizing, N 1 distinguishes between neutrophil

levels that cannot control any non-trivial initial population of the

bacteria and levels that can control a limited size of the initial

bacterial population. A further increase in neutrophil levels

beyond N 2 again leads to robust dynamics by which the

neutrophils can control any size of bacterial population (see

Fig. 1b). This regime, of complete robustness, appears in the ideal

in-vitro setting, where the bacterial natural growth is limited and

the neutrophils concentration and function is kept constant.

Then, very high initial concentrations of bacteria naturally

decrease to the maximal capacity concentration, and so, if there

are enough neutrophils to overcome the maximal capacity, they

indeed defeat any size of bacterial infection. This part of the

dynamics is expected to be usually irrelevant to the in-vivo

dynamics due, for example, to the neutrophil toxicity (see model

limitation section).

To succinctly present the differences between the type I and

type II behaviors, we plot representative bifurcation diagrams

(Fig. 1)– diagrams that show the equilibrium points dependence on

N . It is important to note that these bifurcation diagrams also

Bistability & Bacteria Dynamic
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explain how the transient behavior depends on the initial

concentrations in the different regimes. Indeed, the bifurcation

diagrams help us divide the B, Nð Þ plane into regimes of

qualitatively different transient behaviors: regimes in which the

bacterial concentration grows vs. regimes in which it decays.

Notably, such predictions regarding the different transient regimes

may be tested by the standard 90-min bactericidal-phagocyte

experiments (see the Published Data section).

Finally, note that the parameter regimes that determine the resulting

type of behavior depend on the bacterial strain, on neutrophil function

and on the environmental factors (see Models for the exact expression).

For example, by increasing the bacteria’s nutrient supply, the bacterial

dynamics will change from type I behavior under very poor conditions,

to type II dynamics for a sufficiently rich environment (see Fig. 3 for the

separation of the two behaviors in parameter space).

Notably, only the type II dynamics admits the hysteresis effect;

starting with a neutrophil level N� in the interval N 1, N 2ð Þ and a

tiny bacterial population that is under control (representing a

healthy person), a slow decrease in N followed by a slow increase

in neutrophils back to the original value N� (due, e.g., to a

chemotherapy treatment), may result in subsequent bacterial

growth that may lead to a fulminant infection. The same cycle of

N with the type I dynamics or the linear model will always

eventually result in full recovery. We thus propose that while there

are strains of bacteria exhibiting both types of dynamics in the

body, those that exhibit type II dynamics are the main

Figure 1. The bifurcation diagram: the bacterial equilibrium points (EPs) as a function of neutrophil concentration. Solid line indicates a
branch of stable EPs, and dashed line indicates a branch of unstable EPs. (a) Type I dynamic has a unique stable branch of EPs for allN values. The black
arrows demonstrate that for any positive initial value of the bacteria, for anyN , B tð Þ converges to the corresponding unique stable EP (the intersection
of the solid black curve with a vertical line). Bifurcation diagram is drawn for Eq. (1) with r,d,b,a,c,gð Þ~ 10{2,10{3,9:10{9,10{8,10{8,10{10

� �
: (b) Type

II dynamic has a region of bistability: when N [ N 1, N 2ð Þ, the final state of B depends on whether the initial bacterial concentration is above or below
the critical bacterial curve of unstable EPs (dashed line). The bifurcation diagram is drawn for Eq. (1) with r,d,b,a,c,gð Þ~ 10{2,10{3,10{9,

�
10{8,10{8,10{10Þ. (c–d) Time plots of the two initial bacterial concentrations notated by red up and blue down arrows in (b) for a fixedN value (notice
the different time scales).
doi:10.1371/journal.pone.0010010.g001
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contributors to the onset of acute infections (see Discussion). We

next show that type II dynamics indeed appear in nature.

Experimental Evidence for Bistability
Here we analyze the results published by Li et al. [12] of

bactericidal experiments, and show that the published data

correspond to type II bacterial dynamics rather than to type I or

linear dynamics.

Our analysis of the type II model predicts the existence of a

critical bacterial curve, Bc N ,Infxð Þw0 (dashed branch in Fig. 1b)

at which the rates of growth and killing exactly balance, yet this

balance is unstable. This sensitive dependence of the dynamics on

initial conditions presents the fundamental difference between the

type II behavior and the linear and type I behaviors. This

dependency appears only in the type II parameter regime and only

in the interval N 1, N 2ð Þ where the critical bacterial curve

separates between initial conditions of bacterial concentrations

that decay towards the stable healthy state (the lower equilibrium

curve) and those that grow towards the infectious state (the upper

equilibrium curve).

We show next that the data of the bactericidal experiments [12]

support the existence of such a critical bacterial curve.

Published Data. In the experiments by Li et al. [11,12],

105{107 neutrophils/mL, and 103{108 CFU/mL of S.

epidermidis bacteria were added into a suspension or a fibrin gel,

simulating human blood and tissue, respectively. The bacterial

level was then recovered from the suspension/gel after 90 min.

Fig. 4a presents the data from Li et al. (Fig. 3b in [12]) in a

different way, namely in the B, Nð Þ plane. Each colored horizontal

dotted line connects the experiments with identical initial bacterial

levels. These horizontal lines are mapped, after 90 min, to the

solid curves of the same color, now connecting the final data points

of the experiments that started with identical initial bacterial

concentration; for clarification, some are emphasized by arrows:

Figure 2. Bifurcation diagrams with zero and small positive bacterial influx. Bifurcation curves for Infx = 0, 2:105, 4:105 are shown in black,
magenta and green, respectively. When Infx w0, the bifurcation curves are shifted to the right. (a) Type I: the zero Infx transcritical bifurcation point
at N 1 disappears when Infxw0. (b) Type II: the zero Infx transcritical bifurcation becomes a saddle-node bifurcation that appears at a distance

O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Infx

b

r

s !
from the transcritical bifurcation point (see Bacterial Influx). (Insert) A close-up around the transcritical bifurcation of (b). This diagram

shows that under perturbation (Infxw0), the transcritical bifurcation becomes a saddle-node bifurcation.
doi:10.1371/journal.pone.0010010.g002

Figure 3. The natural bacterial parameter space division into type I and type II dynamics. The behavior type is found from the derived
analytical conditions (see Methods) for fixed killing-term parameters as in Fig. 1 (a,c,gÞ~ 10{8,10{8,10{10

� �
. Notably, most of the parameters give

rise to type II behavior. (a) The r,bð Þ space is shown for d~10{3. (b) The r,dð Þ space is shown for b~10{9. The grey region rvd is forbidden, as it
corresponds to a reduction in the bacterial population even with no neutrophils, violating A1.
doi:10.1371/journal.pone.0010010.g003
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each arrow indicates the bacteria at t~0 (tail) and at t~90 min

(head) for the relevant neutrophil concentration level. When

looking at a fixed B t~0ð Þ for increasing N values, the arrows (see

e.g. the dotted orange horizontal line and the orange, green, and

two orange arrows in Fig. 4a) decrease in size, till they change

direction, and then they increase again in the opposite direction

(i.e., B t~90ð Þ is decreasing with the increase in N ). From these

two properties (size and direction) we conclude that there is a

curve of ‘‘zero-sized arrows’’, i.e., points of balance between

natural bacterial growth and their killing by neutrophils–these

points belong to the approximated black bold dashed curve in

Fig. 4a. Looking at a fixed N for increasing B t~0ð Þ values

(vertical direction in Fig. 4a) shows that for low initial bacteria

below the dashed-black curve, the bacterial population is

decreasing (B t~90ð ÞvB t~0ð Þ, arrow down) and for high initial

bacteria, above this line, the population is increasing

(B t~90ð ÞwB t~0ð Þ, arrow up). This experimentally derived

curve (dashed line in Fig. 4b) corresponds to the predicted

critical bacterial curve Bc Nð Þ (dashed line in Fig. 1b). Thus, the

existence of a positive unstable equilibrium curve Bc Nð Þ for a

range of N values is now established–for the experimental setting

in [12] we now know that 0:5|106, 2|106
� �

5 N 1,N 2ð Þ. Such

behavior is consistent with type II dynamics and is inconsistent

with either the linear or type I dynamics. We conclude that the

results presented in Fig. 4a refute the validity of linear and type I

dynamics: in these two cases, one may not change the transient

behavior of the bacteria from decreasing to increasing by elevating

the initial bacterial concentration as occurs at N&1:5|106 (see

green arrows in Fig 3a). These experimental results corroborate

the theoretical prediction that the in-vitro dynamics exhibits a type

II behavior.

Discussion

A model of bacterial dynamics interacting with a constant level

of neutrophils and a constant influx term was constructed. Two

distinct dynamic behaviors, identified as type I and type II,

emerged. In the type II regime, the bacterial dynamics exhibits

bistability for a range of neutrophil levels. We showed that

published experiments do exhibit such bistability, namely that type

II dynamics do appear in in vitro experiments of bacterial growth

under phagocyte attack.

Plausible Clinical Implications
Our modelling effort has two objectives: first, to describe the

dynamics of bacteria interacting with constant levels of neutrophils in

vitro and second, to gain some insights on the role of neutrophil levels

and barrier integrity at the onset of bacterial infection in humans.

We first stress that in vitro studies are clinically important: these

are widely used to estimate neutrophils functionality in patients

with repeated infections (e.g., to diagnose neutropenia-associated

conditions such as the malfunctioning of the neutrophils in CGD

patients [4]). Our findings suggest an additional perspective on

some of the bactericidal tests that are performed in clinical

immunology labs [4]. In these tests, the neutrophil killing

functionality for a given ratio between the bacteria and the

neutrophils (e.g. 1:2 ratio of N : Bð Þ) is recorded, where

neutrophil function in patients and healthy controls are compared,

and multiple wells are used for quality assurance. The common

wisdom among clinicians is that these tests are unreliable when the

actual concentrations are too low. We can now explain this: at low

concentrations, the tests are probably performed near the critical

bacterial curve, and near this curve very small experimental

inaccuracies can push one well to be above the critical curve and

the other to be below it–leading to substantial deviation in the

results that are thus interpreted as unreliable data. Notably, this

experimental experience again supports the emergence of type II

dynamics in such clinical evaluations: type I behavior does not

support sharp transitions at any given N , and thus predicts small

error bars between different experiments, contrary to the clinical

observations at small concentrations. Thus, we conclude that one

needs to fit a non-linear model (like Eq. (1)) to well-designed

experimental data to decipher the limitations and possible

extensions of these tests. Of note, it is now clear that these in

vitro tests are robust to small measurement errors when the

B, Nð Þ values are far from the critical bacterial curve Bc Nð Þ. The

current protocol of performing these tests at concentrations of

B, Nð Þ& 107,5|106
� �

indeed satisfies this condition.

Figure 4. Experimental support for the model prediction of bistability. (a) A phase-space presentation of the data from Li et. al. [12]. In this
experiment, neutrophils and S. epidermidis bacteria were added into a gel and the bacteria were recovered after 90 min. The tail of each of the arrows
indicates the bacterial concentration at t~0 and the head indicates the concentration at t~90 min. Dashed colored lines: the initial bacterial
concentrations. Solid colored lines: the corresponding final bacterial concentrations (connecting the corresponding data points). The black bold-
dashed line is the estimated critical curve between neutrophil killing and bacterial growth rate. (b) The type II model (Fig. 1b) bifurcation diagram in
logarithmic scale.
doi:10.1371/journal.pone.0010010.g004
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Our second objective is to shed some light on the neutrophils

function in vivo. However, the relation between the in-vitro

bacterial-neutrophil tests and the in-vivo strongly coupled

dynamics is known to be non-trivial. This coupling may lead, for

example, to recovery from an initial state at which the bacterial

concentration is above its critical value by a spontaneous increase

inN . In our axiomatic formulation, such normal in-vivo dynamics

clearly violates assumption A4, and indeed we cannot expect that

any one-dimensional model will adequately describe this interac-

tion. Nonetheless, there are two important implications of our

construction on the in-vivo dynamics: first is the possible direct

clinical implication for patients suffering from neutropenia-

associated conditions as described below, and second, our

construction serves as an important building block for constructing

more realistic models for the common in vivo development of

infections (see Models).

We propose that from a clinical perspective, the model is

relevant to neutropenia-associated conditions, namely, to clinical

situations in which the neutrophil bactericidal functionality is

effectively constant. In each of these conditions (severe neutro-

penia, adhesion or bactericidal malfunction, etc.), the neutrophil

supply from the bone marrow to the infected region is at maximal

capacity, and so the in vivo levels and functionality of the

neutrophils are essentially constant, at least for a few hours,

sometimes for a few days. For example, under severe prolonged

neutropenia, the neutrophil levels are fixed at very low values

(below 500|103 and often in the range of 100|103 cells/mL)

for several days. Moreover, a major cause of this condition are

high-dose chemotherapy treatments that also damage the

mucous. Such chemotherapy treatments increase the bacterial

influx (Infx) and lower the N values in our model. We thus

believe that our model, and in particular assumption A4, may be

relevant for such specific in vivo conditions (see further discussion

in Model Limitations).

Indeed, several clinical findings regarding such patients and the

current recommended treatment strategies are consistent with type

II behavior. First, it is clinically observed that when the white-cell

blood count is low, sterile conditions and isolation, whereby patients

are not exposed to any sudden influx of bacteria, do help in reducing

the risk of infection [40]. This observation is inconsistent with linear

and type I dynamics, where the development of infection is

independent of the initial bacterial concentration. These observa-

tions are consistent with type II dynamics that predict high

sensitivity to B t~0ð Þ, especially when N is low and Infxw0, as is

the case after chemotherapy. Second, it is known that patients

undergoing such treatments are prone to infections and typically

receive antibiotics and sometime G-CSF (growth factor that

promotes neutrophil production) injections. Such treatments

correspond to introducing bacterial death (by antibiotics) and an

increase in neutrophil concentration (by G-CSF) in our model. We

observe that with the current recommended G-CSF injection

schedule, as the neutrophils recover from the nadir, their level shows

an overshoot and only then settles back to normal values (see e.g.,

Fig. 1 in [41]). The need for such an overshoot is consistent only

with type II dynamics due to the hysteresis effect: the chemotherapy

acts as an external force on the neutrophils, causing these to

decrease in number and then increase again to the normal values as

the bone marrow recovers. This loop in the control parameter N
may lead to hysterises effect by which acute infections are developed

even though the neutrophil count is back to normal. A sufficiently

large overshoot (by G-CSF injection or by natural response) is

needed to overcome such a hysterises effect.

We conclude that bistability may be a major cause of bacterial

infection in neutropenic patients, and that further insights may be

drawn from our model. Once the parameters of the model are

calibrated, the effects of antibiotics, non-sterile conditions, and

externally controlled time-dependent neutrophils can be intro-

duced into our model and studied in more details.

Model Limitations
The properties of the model are derived from the axiomatic

biologically motivated assumptions A1–A4 (and are indepen-

dent of the details of the explicit model Eq. (1), see

Mathematical Remarks). While assumptions A1 and A2 seem

to be common to a variety of bacterial strains, assumption A3,

by which the kill rate is monotonic with B, is expected to be

more strain-specific; it is expected to be universally true at low

concentrations, but at high concentrations of bacteria strains

that form spatial structures [42] it may fail. For such strains, we

expect to see more complex behavior at these high concentra-

tions (which may still be clinically relevant). Notice that

nonetheless, the division into type I and II behaviors at low

concentrations is still valid.

Assumption A4 is the most restrictive, as it excludes many

important in vivo effects such as time-dependent environmental

variations, coupling to the neutrophil dynamics, coupling to other

bacterial strains and coupling to other systemic feedback

mechanisms of the body. For example, the toxic effect of high

levels of neutrophils and the accompanying feedback mechansims

of anti-inflamatory agents (see e.g. [7,24]) do not enter the model.

Thus, the regime of robust stable dynamics at high neutrophil

concentrations of the in-vitro model (at NwN 2) is likely to be

irrelevant for the in-vivo dynamics when N 2wwN 1. We are

currently expanding our model to include some of these effects.

Nonetheless, we listed several clinically relevant scenarios for

which, for limited time scales, assumptions A1–A4 appear to be

reasonable. In particular, we believe that both the in vitro and in

vivo dynamics in the neutropenic-associated conditions fall into

this category.

In the in vitro setting, these assumptions can be experimentally

tested. It is possible to repeat the experiments of Li et al. [11,12]

with other bacteria and other phagocytes to examine the

universality of our model. Moreover, it is also possible to measure

how the suspension’s content deteriorates with time and how

neutrophil function changes with time. Such experiments can thus

determine the time scale for which this simple model is valid and

provid additional insights regarding the in vivo dynamics (see

Models).

Testing these assumptions in the in vivo settings of neutrope-

nic-associated conditions in humans is clearly more difficult–we

may need to resort to Occam’s razor principle by which the

simplest plausible model is chosen. We did provide some

circumstantial evidence for the plausibility of our model and

the impossibility of the simpler linear model or type I behavior.

Nonetheless, we must point out that even under these restricted

conditions of constant neutrophil number and function, other

dynamic variables (such as macrophages, cytokines, opsonins,

anti-bactericidal factors), spatial effects associated with local

infections (especially in the case of deep burns) and other

temporal effects associated with the full body dynamics (like fever)

may influence the bacterial growth and killing term and thus

violate the A4 assumption. Here, we think of all of these as having

secondary effects; nevertheless it is clear that their impact should

be further studied with a specific neutropenic-associated condi-

tion in mind. Well-designed experiments in animal models may

supply more insights regarding the significance of such effects in a

systematic manner.
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Models
Here we discuss some of the properties of the non-linear model:

we first explain in more detail how we construct the bifurcation

diagrams and what kind of information can be extracted from

them, then we discuss the role of the bacterial influx term

(biologically and mathematically) and finally, we remark on the

generality of our results and on their role as a building block in

higher dimensional models.

Bifurcation Diagrams and Hysteresis
The non-linear model (Eq. (1)) is one-dimensional and has

bounded growth together with first-order elimination. Thus, the

bacterial concentration always settles to some equilibrium point

(EP) of Eq. (1), that is, to a finite B value for which the right hand

side of Eq. (1), which we denote hereafter by f B;N , Infxð Þ,
vanishes (see Fig. 1c). In particular, under natural bacterial

dynamics, with no neutrophils or influx (N~0, Infx~0), for any

non-trivial initial concentration, the bacterial growth curve limits

to the maximal capacity, corresponding to the infectious state:

B�~ r{d

bd
(thus, we always take rwd). To describe the B

dynamics for general N , we study how the EPs depend on N .

Figs. 1 and 2 present our findings as bifurcation diagrams, showing

how the EP location and stability vary with N . Solid curves in

these figures correspond to stable EPs whereas dashed curves

correspond to unstable ones. The transient dynamics is also shown

in these figures. Since N is constant, the B dynamics occur along

vertical lines in this B, N plane. The direction of motion is

represented in the figures by arrows. Thus, the arrows point

toward stable branches of EPs (solid curves) and away from

unstable branches of EPs (dashed curves) (see Fig. 1c,d for the

corresponding time-flow plot of B tð Þ vs tÞ. The blue-red regions

are marked to stress that the EP branches separate regions for

which the initial bacterial population grows (red) from regions

where it decreases in size (blue).

Moreover, the bifurcation diagrams clearly show the differences

between the type I and type II dynamics: the type I behavior has a

single stable EP for all neutrophil levels. When Infx ~0, this stable

branch of EPs decreases to zero asN is increased beyondN 1. Thus

N 1 is a bifurcation point when Infx ~0; for (NvN 1), the origin is

an unstable EP, at N 1 this unstable branch meets the stable EP

branch that emerges from the maximal capacity value, and at

(N§N 1), the origin becomes a stable EP. When Infxw0, the

origin is no longer an EP, and the stable EP branch simply decays

smoothly towards zero as N increases (mathematically we can say

that the bifurcation point N 1 disappears in a symmetry-breaking

bifurcation). Notice that for smallN , the stable branch corresponds

to an infectious state, whereas for large N it corresponds to a

healthy state (which is non-vanishing yet small when Infxw0). In

the type I regime, the transition between a healthy state and an

infectious state as the neutrophil level is changed is gradual.

Moreover, in such a regime, the neutrophils always determine the

eventual state of the bacteria (independent of B t~0ð Þ).
The bacterial dynamics in a type II regime (Fig. 1b, 2b) depends

more dramatically on the neutrophil level and, for a range of

neutrophil levels, on the initial bacterial concentration. Here we

have two bifurcation points N 1 Infxð Þ and N 2 Infxð Þ, and both

bifurcation points exist for Infx§0 (see below for more details).

For NvN 1 Infxð Þ, the bacteria always approach the stable EP

that corresponds to high bacterial level (i.e., to an infectious state).

For N 1vNvN 2 there are three EPs forming bistability: the

stable high level infectious state, the stable low level healthy state,

and an intermediate critical unstable state Bc N , Infxð Þ. If

B t~0ð ÞvBc N , Infxð Þ, then the bacterial level decreases towards

the healthy state, whereas if B t~0ð ÞwBc N , Infxð Þ, the bacterial

level increases towards the infectious state. Namely, depending on

the initial infection severity, B may either decrease or increase in

size. When NwN 2 Infxð Þ, there is one stable solution that

corresponds to a healthy state.

At Infx~0, the model type is determined by the non-linear

stability of the origin (B~0) at the critical neutrophil level

N~N 1: if the EP is non-linearly stable (i.e.,
L2f

L2B
0,N 1ƒ0ð ), the

model is of type I, and it is of type II if the EP is non-linearly

unstable. For sufficiently small Infx, the model type remains the

same as for Infx~0. A small calculation of this non-linear stability

coefficient at N 1~
r{d

a{ r{dð Þg shows that type I appears when

b

c
v 1{

d

r

� �
1{

r{dð Þg
a

� �
, and type II follows when the

inequality is reversed (see Fig. 3). More generally, the appearance

of exactly two types of models at low concentration values is not

accidental: this is the simplest typical behavior for models

satisfying assumptions A1–A4.

The second bifurcation point is located at N 2~
c
b 1zd

r{ 1{d
rð Þdg

að Þ{d
r 1z

dg
að Þ{2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cd
br

c
b 1{

gr
a 1{d

rð Þð Þ{ 1z
dg
að Þð Þ

p
a
r 1z

dg
að Þ2

,

and B2~

1{ d
r

� �
gr
a {1

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
d 1{ 1{ d

r

� �
gr
a

� �
{ dg

a z1
� �

b
c

h ir

b 1z dg
a

� � .

It can be shown that B2 is negative in the type I dynamics and

positive in the type II dynamics. If one assumes that
dg

a
vv1,

c

b

d

r
&1, and

c

b
ww

d

r
(as in Fig. 1) the above

expressions simplify to: N 2&
r

a

c

b
1z

d

r

� �
{2

ffiffiffiffiffiffiffiffiffiffiffi
c

b
{1

r� �
,

B2&

ffiffiffi
r

d

r
{1

� �	
b. Namely, B2 depends mainly on the natural

bacteria growth curve, whereas N 2 depends mainly on the ratio of

linear growth vs. linear kill and on the saturation rates of the

natural growth vs. the kill term.

Near the critical neutrophil value N 1, the linear model and the

non-linear model at type I and type II regimes provide three

distinct behaviors for low initial bacterial concentrations. Thus, a

careful in vitro experiment near N 1 can distinguish between the

three models.

Note that hysteresis is realized only in the type II dynamics:

starting with a healthy state (such that N 1 Infxð ÞvNvN 2 Infxð Þ
and B t~0ð ÞvBc N , Infxð Þ is small and under control), the result

of a slow decrease in N below N 1 Infxð Þ followed by a slow

increase of N to the same initial healthy N value may depend

critically on the manner in which N is varied. If at the end of this

N cycle BfinalwBc N , Infxð Þ, this state will evolve to a full-blown

infectious state. A further increase in N or other measures, such as

antibiotics (e.g., decreasing r{d), must be applied to avoid the

onset of an acute infection. Note that a similar cycle of N in either

type I regime or in the linear model will always result in a full

recovery to the healthy state with no need for intervention.

Notably, the hysteresis mechanism of the type II dynamic is

robust: small changes in the parameters or even addition of other

small terms to the right hand side of Eq. (1) will shift the

bifurcation pointsN 1 Infxð Þ, N 2 Infxð Þ, but will not destroy them.

Bacterial Influx
While bactericidal activity experiments are performed with no

bacterial influx, such influx is ubiquitous and arises naturally in the in

vivo setting. For example, the digestive system barriers have to fight
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the bacteria from the gut that are constantly attempting to penetrate

the body [1]. Mathematically, the introduction of a small influx to Eq.

(1) breaks the symmetry of the model, destroying the trivial branch of

equilibrium B~0 and deforming the bifurcation diagrams as shown

in Fig. 2; this deformation is mild for the type I dynamic, but has very

interesting implications for the type II regime, as described next. Most

importantly, note that the main conclusion regarding the zero-influx

model–namely, the existence of bistability for a range of neutrophil

values only in the type II regime, is still valid.

Two interesting features in the type II regime emerge. First, the

unstable branch Bc N , Infxð Þ moves downward (Figs. 2b, dashed

curves) as the influx is increased. Hence, the interval of initial

bacterial concentration in which the bacteria are under control

shrinks (for a fixed neutrophil concentration in the bistable range).

This suggests that if the neutrophil level is kept constant and there

is an increase in bacterial influx, the susceptibility of the patient to

an acute infection increases. In fact, this happens in cemotheraphy

patients, where the neutrophils are fixed at the nadir (due to the

impact of the treatment on the bone marrow) and the influx is

increased (due to the impact of the treatment on the barriers) [40].

Second, the influx shift of the critical neutrophil level is abrupt

(Fig. 2b-insert)–the bifurcation point N 1 Infxð Þ is given by

N 1 Infxð Þ~ r{d

a{ r{dð Þg zO

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Infx

b

r

s !
, and the corresponding

critical bacterial level is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Infx

b

r

s
(provided that

Infxvv

r

b
&107 bacteria

mL:min


 �
for the figure parameters, with r{1

taken as the time scale and b{1 as the bacterial scale).

Biologically, this implies that near sterile conditions (Infx~0),

tiny changes in the bacterial influx lead to dramatic changes in the

critical neutrophil value that is needed to overcome the tiniest

infection; a fourfold decrease in Infx leads to only a twofold

decrease in the influx-shift of the critical neutrophil levels and to a

twofold decrease in the observed bacterial concentration near

criticality. The effect of such sensitivity on the onset of infection is

expected to be especially dramatic when the neutrophils are at low

counts, near the critical value N 1 Infxð Þ.
Mathematically, this singular dependence on Infx is a result of

the symmetry breaking, changing the bifurcation point from

transcritical to a saddle-node bifurcation. In fact, assumption A3

implies that this is the only possibility, and that this property is

independent of the details of the explicit model.

Some Mathematical Remarks
Are there other possible models to consider for the one-

dimensional bacterial dynamics? It is possible to show that under

assumptions A1–A4, the type I and II behaviors are the simplest

possible. Other models that satisfy A1–A4 may exhibit regimes in

which additional multi-stability branches at high bacterial

concentrations emerge. Nevertheless, below a certain bacterial

concentration, all robust models that satisfy A1–A4 must exhibit

either type I or type II behavior. For example, if we replace the

natural bacteria dynamic part of the model (
rB

1zbB{dB) with

e.g., the logistic, (B r{dBð Þ), or Gompertz [36] terms, the model

will result in the same qualitative dynamics.

Finally, from a mathematical perspective, at low bacterial

concentrations, the division into the type I and II regimes (namely

the existence of the unstable positive branch Bc N , Infxð Þ in

regime II and its disappearance in regime I) appears whenever the

coefficient of the quadratic term (B2) in the Taylor expansion of

f B;N , Infxð Þ near B~0 at the bifurcation pointN 1 changes sign

as the parameters are varied. Thus, in particular, models with a kill

term that has no saturation in N (i.e., no predator interference

term, violating part of assumption A3, as in [27]), or even models

for which the bacteria’s natural dynamics is not limited yet has

some non-linear components (violating A1), can still exhibit the

type I and type II dichotomy at low concentrations. For example,

if we take in model (1) g~0 and r{dð Þ,a,c,bw0, we still get the

division into the two regimes. If we further set b~0, we get only

the type II regime. The reasoning for stating assumptions A1–A4 is

thus not mathematical–these are biologically driven assumptions

that are reformulated in mathematical terms.

Some Mathematical Remarks Regarding the In Vivo
Dynamics

The characterization of the principles governing the in vitro

bacterium-neutrophil dynamics may be viewed as a careful

examination of a building block to be utilized in other higher

dimensional models that describe various aspects of the in vivo

dynamics. Indeed, all of the population type models (that neglect

spatial and stochastic effects) for the in vivo dynamics include an

equation which describes how the rate of change in the bacterial

concentration depends on the bacterial concentration, on the

phagocyte concentration and, possibly, on other factors that enter

the model (see e.g. [24,26,43]). Thus, the model presented here

may serve as a solid building block for these more complex models

that are often derived in a phenomenological fashion. In

particular, it is now established that bistability of the bacterial

dynamics arises in nature. Thus, multidimensional models that are

built upon this bistable building block and therefore exhibit rich

dynamics (e.g. [27]) now have concrete reasoning for introducing

this ingredient.
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