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Abstract

Objective: No relapse risk prediction tool is currently available to guide treat-

ment selection for multiple sclerosis (MS). Leveraging electronic health record

(EHR) data readily available at the point of care, we developed a clinical tool

for predicting MS relapse risk. Methods: Using data from a clinic-based

research registry and linked EHR system between 2006 and 2016, we developed

models predicting relapse events from the registry in a training set (n = 1435)

and tested the model performance in an independent validation set of MS

patients (n = 186). This iterative process identified prior 1-year relapse history

as a key predictor of future relapse but ascertaining relapse history through the

labor-intensive chart review is impractical. We pursued two-stage algorithm

development: (1) L1-regularized logistic regression (LASSO) to phenotype past

1-year relapse status from contemporaneous EHR data, (2) LASSO to predict

future 1-year relapse risk using imputed prior 1-year relapse status and other

algorithm-selected features. Results: The final model, comprising age, disease

duration, and imputed prior 1-year relapse history, achieved a predictive AUC

and F score of 0.707 and 0.307, respectively. The performance was significantly

better than the baseline model (age, sex, race/ethnicity, and disease duration)

and noninferior to a model containing actual prior 1-year relapse history. The

predicted risk probability declined with disease duration and age. Conclusion:

Our novel machine-learning algorithm predicts 1-year MS relapse with accuracy

comparable to other clinical prediction tools and has applicability at the point

of care. This EHR-based two-stage approach of outcome prediction may have

application to neurological disease beyond MS.

Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease

of the central nervous system (CNS) that causes progres-

sive neurological disability.1 Currently available disease-

modifying treatments (DMTs) for MS target neuroinflam-

mation and delay neurodegeneration primarily by reduc-

ing inflammatory disease activity or relapse.2,3 There is

growing awareness of the long-term benefit of early

initiation of DMTs.4–6 particularly higher-efficacy DMTs

in patients with a high likelihood of relapse and acceler-

ated disability accrual consistent with aggressive MS.7–12

The ability to predict a patient’s future relapse risk is

crucial to guide the clinical decision on initiating higher-

efficacy DMTs, given the trade-off of potential DMT-as-

sociated adverse events and costs. Well-established clinical

predictors of future aggressive MS disease activity include

older age at first neurological symptom onset, male sex,
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non-European descent, and importantly, frequency, and

severity of prior relapse.7,10 Additional neuroimaging and

laboratory predictors of relapse include gadolinium

enhancement on magnetic resonance imaging (MRI)13

and low serum 25-OH vitamin D.14 These factors each

have modest power for predicting future relapse. While

predictive models of neurological disability accrual are

available,15,16 to our knowledge, there has been no clini-

cally deployable predictive model of future relapse that

incorporates multiple predictors.

Studies that predict MS outcomes predominantly rely

on research registry data. Increasing analytical capabil-

ity17,18 has enabled the use of electronic health records

(EHR) data to facilitate clinical discovery by providing

complementary features otherwise unavailable from tradi-

tional research registries. We previously integrated

research registry data from a well-characterized, long-

term, clinic-based cohort19,20 with EHR data for develop-

ing EHR-based models of MS classification and neurolog-

ical disability.15,21 Here, we leveraged clinical and

associated EHR data to develop and test a clinically

deployable model for predicting 1-year relapse risk in MS

patients.

Methods

Data source

We included data from January 2006 to December 2016

for 2375 participants ≥18 years of age with neurologist-

confirmed MS diagnosis in the Comprehensive Longitudi-

nal Investigation of Multiple Sclerosis at Brigham and

Women’s Hospital (CLIMB) cohort in the Brigham Mul-

tiple Sclerosis Center (Boston). CLIMB participants have

had at least one annual clinic visit. We additionally

obtained all EHR data for 5482 MS patients from the

Mass General Brigham (MGB, formerly known as the

Partners) HealthCare system using our published MS

classification algorithm, with 4565 receiving neurological

care at the Brigham MS Center.15 The MGB IRB

approved the use of research registry data and EHR data.

For the training set, we included the 1435 CLIMB par-

ticipants with linked EHR data, as previously described.15

For evaluation of model performance in a held-out vali-

dation set, we used annotated relapse events for 186 ran-

domly selected MS patients from the EHR cohort from

the same time period who received neurological care at

MGB (77 in CLIMB) but were not part of the training

set. We assessed for potential selection bias arising from

training the model exclusively on CLIMB patients by

comparing its predictive performance on the 77 CLIMB

patients to the 109 non-CLIMB patients in the validation

set and found no significant disparity between the

subgroups. A research assistant performed the chart

review according to CLIMB guidelines after extensive

training and under the close supervision of an MS neu-

rologist. Figure 1 describes the overall workflow.

Relapse data

We used relapse events, dates, and type, from the CLIMB

registry (training set) and annotation (validation set). For

this study, we defined a relapse event as a clinical and/or

radiological relapse. Clinical relapse was defined as having

new or recurrence of neurological symptoms lasting per-

sistently for ≥24 h without fever or infection. Radiological

relapse was defined as having either a new T1-enhancing

lesion and/or a new or enlarging T2-FLAIR hyperintense

lesion on brain, orbit, or spinal cord MRI on clinical

radiology report.

EHR data

For each patient, we extracted relevant demographic and

clinical information (i.e., age, sex, race/ethnicity, disease

duration [years elapsed between the first MS diagnostic code

and index encounter]) from the EHR data. We extracted all

occurrences over time of the following codified variables: (1)

diagnostic (International Classification of Disease 9th/10th

edition, ICD-9/10) codes; and (2) procedural (Current Pro-

cedural Terminology, CPT) codes. Using a published classifi-

cation system that consolidates multiple related ICD codes

of each unique medical condition,22 we mapped each ICD

code to a single clinically informative condition represented

by a “phenotype” code (PheCode).18 To mitigate sparsity,

we consolidated CPT codes according to groupings defined

by the American Medical Association, with the exception of

certain MRI procedures (orbit, brain, and spine) because of

relevance to MS.

From free-text clinical narratives (e.g., outpatient

encounters, radiology reports, discharge summaries), we

extracted patient-level counts of all clinical terms mapped

to concept unique identifiers (CUIs) using the Natural

Language Processing (NLP)-based clinical Text Analytics

and Knowledge Extraction System (cTAKES).23 Only pos-

itive mentions of CUIs were included.

Feature selection and data preprocessing

We first derived an EHR algorithm for predicting 1-year

relapse history using all available EHR features. From a

list of 2726 features consisting of PheCode, CPT, and

CUI occurrences within a 1-week period of a given index

patient encounter, we first screened for potentially infor-

mative features by fitting marginal logistic regression

models to identify features significantly associated with
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relapse. We removed features with insignificant P-values

after adjustment using the Benjamini–Hochberg proce-

dure with a false discovery rate of 0.1.24 This screening

procedure identified a few hundred features to be

included in further algorithm development. For each pos-

itively screened feature, we aggregated total counts over

the prior 1-year period and log-transformed these counts.

From the gold-standard CLIMB registry, we separately

extracted the number of relapses each patient had in the

prior 1-year period, described as 1-year relapse history

(RH). We also experimented with extracting EHR data

and relapse information in the prior 6-month and 2-year

period. While past 1-year relapse history yielded the most

accurate prediction of future 1-year relapse, predictive

performance reassuringly appeared mostly insensitive to

the choice of the training period length.

Figure 1. Study schematics. (A) data source of electronic health records and research registry data, training and validation set, (B) overall study

workflow, and (C) two-stage development of phenotyping and prediction model of MS relapse risk.
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The main objective of the study was to predict a

patient’s future probability of relapse within one year

using EHR feature counts and demographic information

rather than RH, as RH is often not readily available at

the point of care. To prepare algorithm development, we

classified a patient encounter as a case if the patient had

a relapse within 1 year after the index date, and as a con-

trol otherwise. To avoid overcounting closely occurring

encounters, we randomly sampled one encounter per

nonoverlapping 3-month time window for inclusion in

the final preprocessed dataset. To mitigate sparsity, we

eliminated features with prevalence <5% in both case and

control groups. In this preprocessed dataset, each patient

had multiple index timepoints over the intersection of the

study inclusion period and the patient’s records.

Prediction of future 1-year relapse
probability

We use N, T(i), and p to represent the number of

patients, number of timepoints for patient i, and number

of features in the preprocessed dataset, respectively. We

denote the complete feature vector for patient i in time

period (t-1y, t) as Xi,t = (Xi,t,1,. . ., Xi,t,p)ʹ and Xi =
(Xi,1,. . ., Xi,T(i))ʹ. We let Xi = (ASRDi, EHRi), where

ASRDi denotes age, sex, race/ethnicity, and disease dura-

tion, whereas EHRi denotes aggregated EHR features in

the prior 1-year period. Furthermore, we use Yi,t to indi-

cate whether patient i has a relapse in time period (t,

t + 1y), and let Yi = (Yi,1, . . ., Yi,T(i))ʹ. Finally, we repre-

sent the prior 1-year relapse history of patient i as RHi,t

and let RHi = (RHi,1, . . ., RHi,T(i))ʹ. We use (Xtrain, Ytrain,

RHtrain) and (Xtest, Ytest, RHtest) to designate nonoverlap-

ping training and validation sets, respectively, for model

development and independent evaluation (Fig. 1B).

We predicted Yi using a two-stage procedure (Fig. 1C).

In the first stage (phenotyping for RH), we predicted con-

temporaneous relapse within the same 1-year period as the

EHR features by fitting an L1-regularized (LASSO) linear

regression to {Xtrain, log (RHtrain + 1)}. We used log

(RH + 1) instead of log(RH) such that RH = 0 would

yield a log relapse count of 0 rather than negative infinity.

We optimized the LASSO regularization hyperparameter

λ using 10-fold cross-validation to maximize Spearman

correlation with the true count RHi. We use cRHi,t to

denote the LASSO-predicted past 1-year log relapse count

for patient i at timepoint t, and letcRHi ¼ cRHi,1, . . ., cRHi,T ið Þ
� �

. We further experimented with

two alternative models for imputing RHi: (1) LASSO

logistic regression predicting I (RHi > 0) (i.e., at least 1

relapse) and (2) LASSO Poisson regression predicting

RHi. Poisson regression assumes that the outcome follows

a Poisson rather than a normal distribution (as in

standard linear regression). We selected the model with

the best performance to impute cRH.

In the second stage (prediction), we predicted future

1-year relapse by fitting a LASSO logistic regression

to (A) ASRDtrain, cRHtrain

� �
,Ytrain

n o
, and (B)

Xtrain, cRHtrain

� �
,Ytrain

n o
. Model (A) used age, sex, race,

and disease duration plus cRH to predict Y, whereas

Model (B) includes the features in Model (A) and all

EHR features that passed the feature selection process.

Importantly, neither model used the actual prior relapse

history to predict future relapse, because cRH is a function

of EHR but not RH.

Model evaluation

To report model performance in the validation set, we

computed AUC as well as sensitivity, specificity, positive

predictive value (PPV), negative predictive value (NPV),

and F score, using a time-dependent threshold set at the

observed prevalence among observations within �1 year

of a patient’s time since the first MS relapse. AUC, sensi-

tivity, and specificity are agnostic to outcome prevalence

(which is relatively low in this study), whereas PPV,

NPV, and F score (i.e., the harmonic mean of sensitivity

and PPV) depend on outcome prevalence. We compared

the two-stage phenotyping-prediction model to three

LASSO logistic regression models trained without relapse

history (model 1–3) and two models trained with relapse

history (model 4–5): (1) ASRDi alone, (2) ASRDi + MS

PheCode (335), (3) ASRDi + EHRi, (4) ASRDi + RHi, and

(5) ASRDi + EHRi+RHi (Fig. 2). We obtained the stan-

dard error estimates, 95% confidence intervals, and P val-

ues for comparisons of all models to the baseline ASRD

model nonparametrically by bootstrapping with 1000

replicates.

Data availability

Code for analysis and figure generation is available at

https://tinyurl.com/MS-Relapse-Prediction. Anonymous

data that support the findings of this study are available

upon request to the corresponding author.

Results

Patient characteristics

MS patients in the training and validation sets were com-

parable, specifically with respect to the percentage of

women, percentage of self-reported non-Hispanic Euro-

peans, median age at the first MS diagnosis code, and
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median age at the first occurrence of (any) ICD, CPT, or

CUI code in the EHR data, whereas the disease duration

was slightly shorter in the validation set (Table 1). From

2000 to 2016, the annualized relapse rate (clinical and/or

radiological) was overall low, though the training set

(0.074 � 0.003) was marginally lower than the validation

set (0.116 � 0.017).

Prediction of 1-year relapse probability

The primary objective was to develop models to predict

the future risk of relapse within 1 year. As measured by

both AUC and F score, a model comprising basic clinical

features (age, sex, race/ethnicity, and disease duration)

and prior 1-year relapse history (ASRDi + RHi) per-

formed the best in predicting future 1-year relapse risk

(Fig. 2, Table 2), significantly better than the baseline

ASRDi model, reflecting the important predictive value of

prior relapse history. The addition of EHR features that

passed the feature selection screening process to this

model (ASRDiþRHiþEHRi) diminished AUC and F

score while markedly widening 95% confidence intervals

(Fig. 2). Finally, the model comprising basic clinical fea-

tures and selected EHR features (ASRDiþEHRi) without

prior 1-year relapse history did not significantly improve

AUC or F score over the baseline model (ASRDi) while

also widening confidence intervals.

Next, we built a phenotyping algorithm to impute past

relapse history using EHR data for subsequent input into

the future relapse risk prediction model, as we aimed to

predict future relapse probability without using the actual

Figure 2. Performance of models in predicting the future 1-year MS relapse risk as measured by AUCs and F scores. ASRD (red), a baseline

model comprising only basic clinical factors (age, sex, race/ethnicity, disease duration); ASRD + PheCode (dark blue), baseline model plus PheCode

for MS; ASRD + EHR (light blue), baseline model plus selected EHR features that passed the feature selection process; ASRD + RH (dark green)

and ASRD + RH+EHR (light green), baseline model plus actual prior 1-year relapse history without and with selected EHR features, respectively;

ASRD + RH^ (dark purple) and ASRD + RH^+EHR (light purple), baseline model plus two-stage phenotyping and prediction model without and

with selected EHR features in the prediction stage, respectively. RH^ (equivalent to cRH) denotes prior 1-year relapse history imputed from EHR

data using phenotyping algorithm rather than actual relapse history (RH). Models were developed using the training set and evaluated on the

held-out validation set. 95% confidence intervals were computed nonparametrically via bootstrap with 1000 replicates.

Table 1. Demographics of the training and validation sets.

Training

set*
Validation

set* P-value

Total number of patients 1435 186 NA

Sex, % Women 73.9% 74.2% 0.924

Race, % non-Hispanic European 85.9% 84.9% 0.719

Median (IQR) age at first code1 43.3

(15.6)

43.7

(16.0)

0.109

Median (IQR) age at first ICD

code for MS

43.3

(15.5)

43.5

(16.2)

0.151

Median (IQR) disease duration,

years

5.12

(2.03)

4.37

(2.82)

<0.0001

Annualized relapse rate

2006–2016, mean (SD)2
0.075

(0.002)

0.118

(0.009)

<0.0001

1The first of any ICD, CPT, or CUI code in the EHR data.
2Relapse type includes clinical, radiological, or both.
*The training set derives entirely from the CLIMB cohort, whereas the

validation set is a random sample of MS patients from the Mass Gen-

eral Brigham (formerly known as the Partners) healthcare system (77

from CLIMB, none in the training set).
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relapse history RHi. With the finding that prior 1-year

relapse history is an important predictor of future relapse

risk, we also recognized that relapse history is often

unavailable at the point of care while chart review is time

consuming. In the first part of a two-stage model (phe-

notyping), we used selected EHR features (EHRi) to

impute contemporaneous RHi for subsequent use in

future relapse risk prediction. For this stage, LASSO lin-

ear regression achieved the highest AUC (0.790) and

Spearman correlation (0.487) in the validation set (Table

S1). As such, we used this model to impute cRH. Among

the 205 features that passed the feature selection screen-

ing process, the LASSO phenotyping algorithm selected

111 features (12 CPT codes, 60 CUIs, and 35 PheCodes)

as informative of RHi (Table S2). We found that age and

disease duration were inversely associated with contem-

poraneous relapse. On the other hand, the CPT code for

“MRI spine,” PheCodes for “optic neuritis,” and “other

demyelinating diseases of the CNS,” and CUIs for “intra-

venous steroid injection”, “Lhermitte’s sign,” and “flare”

were positively associated with relapse, consistent with

clinical experience. When examining the Spearman corre-

lations among the 111 selected variables (Fig. 3), we

found the vast majority of features to have pairwise cor-

relations in the range of 0–0.2, suggesting that these vari-

ables conveyed sufficiently nonredundant information.

Notably, the two-stage model comprising basic clinical

features and the imputed prior 1-year relapse history

based on the EHR-based phenotyping algorithm

(ASRDiþ cRHi) achieved an AUC and F score of 0.707

and 0.307, respectively, both significantly higher than the

baseline model ASRDi (AUC, P < 0.01; F score, P < 0.01)

(Fig. 2, Table 2). Moreover, both the AUC and F score of

the ASRDiþ cRHi model were statistically noninferior to

those of the model containing actual prior relapse history

(ASRDiþRHi), as ascertained nonparametrically via boot-

strap (AUC, P = 0.27; F score, P = 0.38). The ROC curve

demonstrated that ASRDiþ cRHi performed the best when

setting the threshold for either high sensitivity (>~0.9) or
high specificity (>~0.9), suggesting that it is best suited as

either a high-sensitivity screening tool or a high-speci-

ficity prognostic algorithm (Fig. 4). The two-stage model

(ASRDiþ cRHi ) also exhibited markedly narrower 95%

confidence intervals than ASRDiþEHRi or

ASRDiþRHiþEHRi, suggesting that using EHRi to

impute RHi in the phenotyping stage rather than in the

final prediction model mitigated the variance-increasing

effect of the high-dimensional EHR feature set (Fig. 2).

The final prediction model (ASRDiþ cRHi) was driven by

just three factors: age, disease duration, and prior 1-year

relapse history imputed from EHR data (see coefficients

in Table S3). We demonstrated sample implementations

of the model as applied to one low-risk patient (who may

benefit from standard-efficacy DMT or perhaps no DMT

and infrequent monitoring of MS disease activity) and

one high-risk patient (who may benefit from early initia-

tion of higher-efficacy DMT and frequent monitoring of

disease activity) (Fig. S2).

Calibration of relapse risk probabilities

To evaluate the utility of the two-stage model predictions

as relapse probabilities rather than risk scores, we com-

pared 1-year predicted relapse probability to the

Table 2. Performance of models in predicting the future 1-year MS relapse risk.

Models1 AUC P2 F score P3 Sensitivity Specificity PPV NPV

ASRD 0.686 0.288 0.520 0.676 0.199 0.901

ASRDþPheCode 0.686 0.14 0.292 0.10 0.537 0.668 0.200 0.903

ASRDþEHR 0.695 0.56 0.319 0.25 0.509 0.738 0.232 0.906

ASRDþRH 0.712 <0.01 0.339 <0.01 0.478 0.791 0.262 0.907

ASRDþRHþEHR 0.700 0.15 0.319 0.07 0.459 0.780 0.245 0.903

ASRDþ cRH 0.707 <0.01 0.307 <0.01 0.499 0.719 0.223 0.900

ASRDþ cRHþEHR 0.696 0.43 0.318 0.09 0.501 0.743 0.233 0.906

1ASRD, a baseline model comprising only basic clinical factors (age, sex, race/ethnicity, disease duration); ASRD + PheCode, baseline model plus

PheCode for MS; ASRD + EHR, baseline model plus selected EHR features that passed the feature selection process; ASRD + RH and ASRD +
RH+EHR, baseline model plus actual prior 1-year relapse history without and with selected EHR features, respectively; ASRD + RH^ and ASRD +
RH^+EHR, baseline model plus the two-stage phenotyping and prediction model without and with selected EHR features in the prediction stage,

respectively. RH^ differs from RH in that the former denotes prior 1-year relapse history imputed from EHR data using the phenotyping algorithm,

whereas the latter denotes actual prior 1-year relapse history. Models were developed using the training set and performance was evaluated on

the held-out validation set. AUC and F score of all models were compared to the baseline model (ASRD).
2Comparison in AUC between each model and the baseline model (ASRD). P-values were computed nonparametrically via bootstrap with 1000

replicates.
3Comparison in F score between each model and the baseline model (ASRD). P-values were computed nonparametrically via bootstrap with 1000

replicates.
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proportions of patients experiencing an actual relapse in

the same 1-year, stratified by disease duration and patient

age. We found that the actual 1-year relapse proportion

declined significantly over disease duration (coefficient =
−0.150, 95% CI [−0.191, −0.108], P < 2 × 10−16) and

age (coefficient = −0.054, 95% CI [−0.065, −0.043],
P < 2 × 10−16) (Fig. 5, Table S4), consistent with the

notion that inflammatory disease activity in MS dimin-

ishes over time. In parallel, the predicted relapse probabil-

ities also significantly declined with both disease duration

(coefficient = −0.226, 95% CI [−0.242, −0.211],
P < 2 × 10−16) and age (coefficient = −0.060, 95% CI

[−0.064, −0.056], P < 2 × 10−16). The mean rates of

decline in predicted relapse probability over age and dis-

ease duration were comparable to that of the actual

relapse proportion. These results support the utility of the

two-stage model as an unbiased predictor of 1-year

relapse risk. By effectively leveraging EHR information to

predict relapse, the two-stage model allows for a more

precise, personalized prediction of risk than a predictor

using age and disease duration information alone.

Supplementary analysis

We developed a two-stage model for predicting 2-year

relapse risk (Tables S5 and S6, Fig. S1, Supplementary

Material). While this model outperformed baseline pre-

dictors, only the AUC improvement was statistically sig-

nificant. We performed two exploratory analyses to (1)

demonstrate the stability of the model trained on data

from 2006 to 2016 and (2) quantify the improvement of

the two-stage model over baseline model in PPV and

Figure 3. Heat map of pairwise correlations between prior relapse history (RH)-predictive features selected by LASSO in the phenotyping stage.
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NPV when setting the threshold to achieve >95% speci-

ficity and >95% sensitivity as well as the number of addi-

tional high-risk and low-risk patients correctly identified

per 100 tested for future 1-year relapse probability (Sup-

plementary Material).

Discussion

The ability to accurately predict future relapse at the

point of care will improve clinical decision making, par-

ticularly in selecting MS treatment. We report a novel

two-stage model for predicting a patient’s 1-year MS

relapse risk that incorporates imputed prior relapse his-

tory based on EHR data. This model does not require

knowledge of a MS patient’s prior relapse frequency, a

key predictor often unavailable at the point of care.

Achieving clinically actionable accuracy (AUC = 0.707),

this final model performed significantly better than base-

line models and was noninferior to a predictive model

containing actual relapse history. Furthermore, the

model-predicted relapse probability declined with disease

duration and patient age similar to trends seen with

Figure 4. Receiver operating characteristic curves of models for predicting the future 1-year MS relapse probability. See Figure 2 description of

ASRD, ASRD + RH, and ASRDþ cRH.

Figure 5. Relapse trend. Proportion of patients experiencing actual MS relapse (red) and mean predicted future 1-year relapse probability based

on the two-stage model (blue) as a function of MS disease duration (left) and patient age (right). 95% confidence intervals for the predictive

model were computed nonparametrically via bootstrap with 1000 replicates.
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actual relapse proportion, suggesting that it produces a

clinically meaningful estimate of a patient’s relapse risk

over the course of this chronic disease.

This study builds on our prior work on integrating

EHR and research registry data to develop high-dimen-

sional models for not just classifying MS diagnosis but

also estimating a key measure of neurological disability

in MS that is not part of routine medical records (the

multiple sclerosis severity score).15 Following the latest

developments in EHR data analytics for phenotyping dis-

ease outcomes,18 our approach leverages the rich com-

plexity of the available EHR data by incorporating a

variety of codified and narrative variables in our algo-

rithm. The novelty of the two-stage model lies in using

high-dimensional EHR data to impute the key predictor

(past relapse history, which captures important aspects

of individual disease profile) in the phenotyping stage

rather than in the future relapse prediction stage. This

method mitigates variance increase due to the high fea-

ture dimensionality of the EHR data while preserving

accuracy, bypassing the practical bottleneck of the labor-

intensive chart review process for ascertaining prior

relapse history and improving the explicability of the

final model. While the improvement over the baseline

model is modest, the final prediction model achieved

performance comparable to other clinical prediction

algorithms. For comparison, the classic Framingham Risk

Score for predicting coronary heart disease has an AUC

in the 0.6–0.75 range.25,26

The final relapse prediction model comprised only

three familiar factors (age, disease duration, and imputed

number of relapses in the prior year). These predictors

are consistent with prior literature.27,28 In planning the

model development, we consciously avoided including

DMT history among the potential features because we

plan to use the predicted relapse risk as outcomes in

future analyses evaluating efficacy in reducing relapse

across DMTs and because the inclusion of specific DMTs

might limit its future application given the ever-growing

number of DMT options. We also did not include MRI

features as we originally focused on building a parsimo-

nious model comprising clinical predictors readily avail-

able from the EHR data. We plan to incorporate MRI

features in future iterations of the model.

This study faces a limitation of selection bias and

potential generalizability. The relapse prediction algorithm

was developed using participants from a research cohort

(CLIMB) and tested on patients within the same tertiary

academic hospital system (MGB). Given that routine

EHR data rarely capture recorded relapse events systemat-

ically, using research registry data to train models of

relapse prediction is a necessity. Additional validation in

other healthcare settings is warranted. If externally

validated, the relapse risk prediction model can be inte-

grated at the point of care to systematically identify MS

patients at high risk of relapse and alert clinicians in

selecting the appropriate DMTs.

In summary, our novel model predicts 1-year MS

relapse risk with accuracy comparable to other clinical

prediction algorithms and with potential applicability at

the point of care. Our EHR-based two-stage approach for

MS relapse imputation and temporal relapse prediction

may have application to other complex neurological out-

comes apart from MS.
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