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Observation of hybrid higher-order skin-topological
effect in non-Hermitian topolectrical circuits
Deyuan Zou 1,4, Tian Chen 1,4✉, Wenjing He2, Jiacheng Bao2, Ching Hua Lee 3, Houjun Sun 2✉ &

Xiangdong Zhang 1✉

Robust boundary states epitomize how deep physics can give rise to concrete experimental

signatures with technological promise. Of late, much attention has focused on two distinct

mechanisms for boundary robustness—topological protection, as well as the non-Hermitian

skin effect. In this work, we report the experimental realizations of hybrid higher-order skin-

topological effect, in which the skin effect selectively acts only on the topological boundary

modes, not the bulk modes. Our experiments, which are performed on specially designed

non-reciprocal 2D and 3D topolectrical circuit lattices, showcases how non-reciprocal

pumping and topological localization dynamically interplays to form various states like 2D

skin-topological, 3D skin-topological-topological hybrid states, as well as 2D and 3D higher-

order non-Hermitian skin states. Realized through our highly versatile and scalable circuit

platform, theses states have no Hermitian nor lower-dimensional analog, and pave the way

for applications in topological switching and sensing through the simultaneous non-trivial

interplay of skin and topological boundary localizations.
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Much of contemporary condensed matter physics has
been dominated by theoretical and experimental
investigations into robust boundary phenomena. Ori-

ginally formulated in the context of anomalies, they revolutio-
nized the field of condensed matter physics in the form
of topological insulators and semimetals1–3. More recently,
they aroused much attention again as non-Hermitian skin
states, which demonstrated how unbalanced non-Hermitian
gain/loss can challenge well-held tenets of bulk-boundary
correspondence4–19.

While skin and topological effects are already by themselves
conceptually deep, with contrasting implications on the bulk-
boundary correspondence, their simultaneous nontrivial interplay
has been particularly intriguing. Introduced in ref. 20, hybrid
skin-topological states represent a hierarchy of higher-
dimensional states without analogs in Hermitian or non-
topological settings. Characterized by scenarios where topologi-
cal localization dynamically allows the non-Hermitian skin effect
to act only on certain topological modes, they greatly augment the
richness of higher-dimensional robustness beyond higher-order
topological phenomena, and provokes the re-formulation of
higher-order topological bulk-boundary correspondence to
accommodate various avenues of higher-order skin and topolo-
gical interplay21,22. Their non-triviality and richness is also
apparent in the context of applications: this simultaneous inter-
play of the skin effect and higher-order topology has been pro-
posed to be used as a topological switch23.

In these advances, theory has always preceded experiments.
The reason is because most tight-binding models proposed are
rather artificial for realization in conventional materials or
metamaterials. While higher-order topological phenomena24–30

and the non-Hermitian skin effect12–16 have been separately
realized in several high-profile experiments, their combined
interplayed has so far remained a theoretical fantasy due to
concomitant challenges of high dimensionality, artificial sub-
lattice structure, and non-Hermitian instabilities.

In this work, we demonstrate the first experimental realization
of hybrid higher-order skin-topological states in 2D and 3D
through a topolectrical circuit platform. Electrical circuits are
ideally suited for transcending the abovementioned challenges,
since electronic components, which have benefitted from indus-
trial refinement over the decades, can accommodate almost any
desired features like arbitrary long-range connectivity, dimen-
sionality, non-Hermiticity gain/loss as well as non-reciprocity.
Recently, simulating topological states with electric circuits has
attracted lots of interests based on the similarity between circuit
Laplacian and lattice Hamiltonian31–37. Some topological states
have been observed in circuit networks38–43. Through a combi-
nation of z-direction non-Hermitian INICs and 2D topological
circuits, here we managed to achieve a 3D realization of not just
the non-Hermitian skin effect, but also a network of competing
such effects that conspire to result in higher-order hybrid states,
much beyond the scope of previous circuit demonstrations of 1D
skin or higher-order topological robustness individually13,25.

Results
Hybrid higher-order topological skin effect in 2D topolectrical
circuits. Hybrid skin-topological phenomena represent not just
the simultaneous presence of non-Hermitian skin as well as
topological localizations. They are special scenarios where topo-
logical localization in one direction dynamically “switches on” the
skin effect in another direction, thereby allowing the skin effect to
be felt only by topological modes. Given the wide variety of
possible types of topological modes, as well as various nontrivial

ways whereby the skin effect modifies topological properties, even
in 1 dimension, hybrid modes thus come in a vast array of
possibilities. This is especially interesting in 2 dimensions or
higher, which we also experimentally probe, because even topo-
logical localization per se is subject to higher-order topological
effects, which can be modified by skin localization even before
they interplay as hybrid phenomena.

We firstly provide the theoretical design of 2D electric circuits
to observe skin-topological (ST) and skin-skin (SS) modes, and
then give the experimental results to demonstrate such a design.
Voltage measurements are particularly sensitive to the spectrum
of the circuit Laplacian. In matrix form, Kirchhoff’s law is
expressed as I= JV, where J is the circuit Laplacian. The electrical
potentials V at each node can be obtained by inverting this
expression to obtain

V ¼ J�1I ¼ ∑
μ
ε�1
μ jψμihψμjI ð1Þ

Notably, the potentials V are most sensitive to small eigenvalues
εμ, especially if they are vanishing. In the case of skin-topological
hybrid modes, the hybrid mode with zero eigenvalue thus
dominates voltage measurements, leading the voltage profile V
proportional to the corresponding hybrid eigenmode. Indeed, we
experimentally observe that the voltage profile is topologically
localized in the y-direction, and skin-localized in the x-direction,
even though the bulk modes are not supposed to even experience
the skin effect.

The designed 2D electric circuit network is shown in Fig. 1a.
The sample contains 6 × 6 units and each unit cell contains four
sublattices (a, b, c, d). In the network, different circuit unit cells
can be used to construct systems with different functions. For
example, if we use the unit cell as shown in Fig. 1b, the hybrid
second-order ST modes appear. In contrast, if the unit cell as
shown in Fig. 1c is used, the SS modes can be observed. Two
kinds of unit cell are composed of capacitances, inductances, and
three different kinds of negative impedance converter through
current inversion (INIC). Operational amplifiers arranged as
INIC allow the type of nonreciprocity in the circuit to be precisely
tuned, where their detail structures are shown in Fig. 1d.

For the unit cell as shown in Fig. 1b, we make the directions of
INIC be opposite along x and y directions. This can result in
vanished net nonreciprocity since the nonreciprocities cancel
along x and y directions, but local nonreciprocity among four
sublattices in each unit cell still exists, which corresponds to the
2D hybrid lattice model revealed in ref. 20. If the directions of
INIC are the same along x and y directions as shown in Fig. 1c,
the nonreciprocities along both directions of the electric circuit do
not interfere destructively, which accomplishes 2D skin lattice
model. Details of the theoretical analysis for the lattice models are
provided in “Methods”. No matter what kind of circuit, we can
derive circuit Laplacian J2D(ω) in the moment space at the
resonance frequency based on Kirchhoff’s current law. It can be
written as

J2DðωÞ ¼ iω

0 0 C1 � C3 þ Ce�iqx C1 ±C2 þ Ce�iqy

0 0 �C1 þ C2 � Ceiqy C1 ±C3 þ Ceiqx

C1 þ C3 þ Ceiqx �C1 � C2 � Ce�iqy 0 0

C1 � C2 þ Ceiqy C1 � C3 þ Ce�iqx 0 0

2
6664

3
7775;

ð2Þ
where C= 2.2nF, C1= 1nF, C2= 820 pF and C3= 390 pF. If we
choose − in ± and+ in ∓ from the matrix above, Eq. (2)
represents the circuit Laplacian for the case where the hybrid
second-order ST effect can be shown. Otherwise, it corresponds
to the case that can show the SS effect. The detailed derivation of
Eq. (2) is given in “Methods”.
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As a concrete illustration, and to foreshadow our experimental
results, we firstly display the spectrum of our resonant circuit
Laplacian for the 2D ST case in Fig. 2a. While topological
localization only causes the appearance of special, non-extensively
scaling boundary modes when a boundary appears, the non-
Hermitian skin effect is characterized by a modification of the
entire spectrum upon opening up a boundary. In the ST case, a
small number of topological modes, arranged in the form of a
spectral loop (blue), appears when y-boundaries are implemen-
ted. When x-boundaries are further introduced, we manifest
observe that only these topological modes acquire very different
spectral values (green) i.e. undergo the skin effect; the other bulk
modes are unchanged by the introduction of either boundary.
These unchanged bulk spectra under different boundary condi-
tions are due to sublattice symmetry. But at the edge of system,
the spontaneous breaking of sublattice symmetry and hence non-
reciprocity is generated among topological modes, and gives rise
to a class of hybrid ST boundary modes. In particular, there is a
ST zero-mode that arises only when the skin effect selectively
applies to the topological modes in this manner. This zero mode
will contribute massively to the experimentally observed electrical
potentials, as further elaborated. By contrast, in Fig. 2b the entire
spectrum is dramatically altered whether the x-boundary or
y-boundary is introduced, indicative of the skin effect in both
directions.

We next perform numerical simulations using LTspice. In the
calculation, we take C= 2.2nF, C1= 1nF, C2= 820 pF, C3= 390 pF,
L= 1.5 uH, L1= 3.3 uH, L2= 3.9 uH and L3= 8.2 uH. By appro-
priate grounding design, the circuit has a same resonance angular
frequency ω0 ¼ 1=

ffiffiffiffiffiffi
LC

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L1C1

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L2C2

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L3C3

p
.

Here, we chose to excite the site on the line 11 for convenience.
Actually, other sites in the circuit can also be excited to obtain the
similar results. More measured results with different excitations are
provided in Supplementary Note 1 of Supplementary Materials.
The resulting voltage distribution at the resonance frequency

f0= 2.77MHz on this electric circuit is presented in Fig. 2c and d
for two cases, respectively. It can be seen clearly in Fig. 2c that the
large amplitude of voltages can be found at the top left corner and
lower right corner. Moreover, the amplitudes on sublattices in unit
cell plaquette are unequal. For example, at the top left corner of
circuit, only the sublattice d of plaquettes possess large amplitude,
and the neighboring sublattices a and b of plaquettes have very
small amplitudes. For comparison, at the lower right corner of
circuit, only the sublattice c of plaquettes displays large amplitude,
and the neighboring sublattices a and b of plaquettes also have very
small amplitudes. These unequal distributions at different sub-
lattices indicate that the corner modes stem from the nonreciprocal
skin effect on the 1D topological modes along x and y directions.
They are locally nonreciprocal from the lack of full destructive
interference. Such spontaneous breaking of sublattice symmetry and
hence nonreciprocity is generic among topological modes, which
gives rise to hybrid ST modes shown in ref. 20. In Fig. 2d, the corner
modes are indicated by large-amplitude voltages at the lower right
corner in the circuit. The voltages at different sublattices of the
lower right corner are nearly the same. This is typical of the second
order skin effect which has the similar feature with the 1D skin
mode shown in ref. 13. While both the ST and SS phases are second-
order phases, only the ST phase is a topological phase in the sense
of band topology. The ST phase exists when the skin effect in one
direction acts on topological modes of the other direction, but not
the bulk modes. But the SS phase is due to nontrivial skin effect in
both directions, and occurs when the spectral winding in the
complex eigenvalue plane is nontrivial. As such, it is not due to
topological in the bandstructure sense, but in the spectral
winding11. Moreover, when we change the edge of system to be
perpendicular to the one diagonal direction, the large amplitude of
the summed squared eigenmode amplitude still emerges at the
corner of SS model. But for the ST model, it appears at the edge.

To experimentally test the theoretical analysis, we fabricate
two kinds of electric circuits as shown in Fig. 3a and b. The

Fig. 1 The circuit design for the hybrid second-order skin-topological (ST) and skin-skin (SS) effects. a Designed 2D electric circuit network with
different values of intra-cell and inter-cell couplings. Each unit cell contains four sublattices (a, b, c, d). The blue lines with arrows represent INICs which can
tune nonreciprocity in the circuit and the black lines denote inter-cell capacitive and inductive couplings. b, c Display the circuit unit for the realization of
hybrid second-order ST effect and SS effect with C= 2.2 nF and L= 1.5 uH, respectively. Different colors of INIC indicate different values of non-Hermitian
coupling. d Detail structures of different INICs. The components in the INIC(red): C1= 1nF, C2= 820 pF; INIC(green): C1= 1 nF, C3= 390 pF; INIC(blue):
L1= 3.3 uH, L2= 3.9 uH, Ra= 20Ω and Ca= 1 uF.
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Fig. 2 Simulated results for the hybrid second-order skin-topological (ST) and skin-skin (SS) effects. a, b Spectrum of our resonant circuit Laplacian for
the ST and SS effects. Red, blue and green dots represent the spectrum of the circuit Laplacian subject to double periodic boundary conditions, x-periodic,
y-open boundary conditions, and double open boundary conditions respectively. For hybrid ST effect in (a), when going from double periodic boundaries to
y-open boundaries (red to blue), only 1/Ly of the eigenvalues change drastically, signature of topological boundary modes. When next going from y-open
boundaries to double open boundaries (blue to green), only topological eigenvalues in the blue loop morph into the loop interior (undergo the skin effect),
but not the majority bulk modes. For SS effect in (b), the spectra in all these three boundary conditions differ completely, signify skin effects from both x
and y boundaries. c, d Show the voltage distributions at the resonance frequency for hybrid second-order ST effect and SS effect, respectively. Each unit cell
contains four sublattices (a, b, c, d). Big arrows in (c) show the directions of skin and topological pumping. Big arrows in (d) show the directions of skin
pumping. Red stars are the points of voltage excitation.

Fig. 3 The photograph of fabricated sample and experimental results for the hybrid second-order skin-topological (ST) and skin-skin (SS) effect.
a, b The photograph of the fabricated electric circuit for the hybrid second-order ST effect (a) and SS effect (b). The values of the capacitors and inductors
are the same as theoretical design. Arrows with different colors are the same as INICs labeled in Fig. 1d. The inset presents the enlarged view of the unit
cell. c, d The measured voltage distribution at the resonance frequency for the hybrid second-order ST effect and SS effect in (c) and (d), respectively. Each
unit cell contains four sublattices (a, b, c, d). Big arrows in (c) show the directions of skin and topological pumping. Big arrows in (d) show the directions of
skin pumping.
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insets in Fig. 3a and b display the circuit structure where INICs
and LC elements to achieve intra- and inter-cell couplings are
marked, which correspond exactly to the unit cells presented in
the above theory. Thus, the circuits in Fig. 3a and b also
correspond exactly to the designed structures in Fig. 1. The
sample contains 6 × 6 units and the parameters are the same to
the above theoretical designs. It is worthy to note that the
tolerance of the circuit elements is only 1% to avoid the
detuning of corner resonance. To ensure the effective excitation
of the circuit, NI PXle-8840 Quad-Core Embedded Controller is
used to tune the excitation amplitude and frequency. Details of
the sample fabrication and experimental measurements are
provided in “Methods”.

The measured voltage distributions at the resonance frequency
are shown in Fig. 3c and d. It is noted that, the dominant voltage
signals on sublattices in the unit cell plaquette are similar to the
theoretical results shown in Fig. 2c and d. The detailed
comparisons for theoretical and experimental results are provided
in Supplementary Note 2 of Supplementary Materials. We also
measured the spectra and the voltages (corner, edge, and bulk)
frequency dependence for the hybrid second-order ST and SS
scenarios. These results are shown in Fig. 4. Figure 4a and b
correspond to the spectra of the ST and SS effects. The detailed
derivations for spectra are provided in “Methods”. It is shown
that the distribution of experimental spectrum is similar to the
theoretical results. Figure 4c and d show the voltages with
frequency for the ST effect and SS effect, respectively. It is seen
clearly that the voltage is high for the corner mode at the
resonance frequency, which is different from the low voltage for

the bulk and edge modes. It is found that the experimental
phenomena correspond exactly to the theoretical results, which
indicates that the ST and SS modes have been observed
successfully in designed circuit systems.

3D hybrid skin-topological modes in topolectrical circuits. The
above discussions only focus on the 2D cases. In fact, more
plentiful hybridizations of topology and nonreciprocity can
appear in higher dimensions. In the following, we illustrate two
kinds of corner modes in 3D electric circuits. One is caused by the
z-directional nonreciprocal pumping (can show hybrid 3D skin-
topological-topological (STT) effect), and the other is obtained
from the nonreciprocities along x, y, and z three directions (can
show 3D skin-skin-skin (SSS) effect).

The corresponding 3D circuit unit cells for two kinds of case
are shown in Fig. 5a and b, respectively. The unit cells consist of
capacitances, inductances and two different kinds of INICs. In the
first case (Case I) shown in Fig. 5a, the 2D layer on the x-y surface
corresponds to the 2D topological lattice. To yield the
nonreciprocity, the INICs are put along the positive direction of
z axis in sublattices a and b of plaquettes, and reversed along the z
axis in sublattices c and d. For the second case (Case II) shown in
Fig. 5b, the 2D layer on the x–y surface is the same to that in
Fig. 1c. The INICs are all put forward along the positive direction
of z axis which also yield the nonreciprocity. For the two kinds of
case above, we can derive circuit Laplacian J3D(ω) in the moment
space at the resonance frequency based on Kirchhoff’s current
law. It can be written as

Fig. 4 The experimentally measured spectra and the voltage (corner, edge, and bulk) dependence on AC driving frequency for the hybrid second-order
skin-topological (ST) and skin-skin (SS) effects. a, b The spectra of the fabricated electric circuit for the hybrid second-order ST effect (a) and SS effect
(b). ∈ is eigenvalue. Red, blue and green dots represent the spectra subject to double periodic boundary conditions, x-periodic, y-open boundary
conditions, and double open boundary conditions respectively. Comparison with Fig. 2 reveals very good agreement with theory. c, d The voltages (corner,
edge, and bulk) with the frequency for the hybrid second-order ST and SS effects. Red, blue and green lines represent the voltages of sites at the corner,
edge, and bulk, respectively, with the corner voltage peaking at the resonant frequency as expected from theory (Eq. 2).
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If we choose + in ± and – in ∓ from the matrix above, Eq. (3)
represents the circuit Laplacian for Case I. Otherwise, it
corresponds to Case II. The JTT2D (SS2D) represents circuit
Laplacian on x–y surface for Case I (Case II), and the remaining
term in JSTT3D (SSS3D) represents the coupling between different
layers along the z direction. The detailed derivation can be found
in “Methods”.

Similar to the 2D cases, we can simulate the circuit using
LTspice. The results are shown in Fig. 5c and d for Case I and
Case II, respectively. The parameters of components are the same
to those of the 2D sample. In Fig. 5c, at the top layer, the large-
amplitude voltages appear only at the sublattice a of lower left
corner and at the sublattice b of top right corner. At the bottom
layer, the large-amplitude voltages appear only at the sublattice d
of top left corner and at the sublattice c of lower right corner. The
unequal distributions at different sublattices indicate the
topological origin of these corner modes, which are realized by
stacking 2D layers of 2nd-order Hermitian topological mode. The
INICs along the z direction lead to the nonreciprocal skin mode.
So these corner modes at top and bottom layers come from the
interplay between the topological and nonreciprocal pumping,
which gives rise to STT modes described in ref. 20. In Fig. 5d, the

large-amplitude voltages emerge at the lower right corner of the
top layer. Moreover, nearly the same amplitudes of voltages on
different sublattices at the lower right corner of the top layer
indicate the nonreciprocal origin of these corner modes. In such
settings, nonreciprocal pumping leads to accumulation of
boundary skin modes along each direction, that is, the appearance
of 3D SSS modes. So no matter in 2D or 3D, the corner modes
(2D ST and 3D STT modes) induced by both topological and
nonreciprocal pumping lead to unequal distributions of voltages
on sublattices; for comparison, the corner modes caused by only
nonreciprocal pumping bring about the nearly same distributions
of voltages on sublattices.

To experimentally observe Case I and Case II, we fabricate two
kinds of electric circuits. The photograph image of the fabricated
sample is shown in Fig. 6a. Due to the size limit of the PCB
fabrication in the 3D sample, we cut the whole sample into eleven
pieces. Six of them are used to describe the interaction on x–y
surface of circuit designs, and the remaining five pieces contain
the couplings in the circuit designs along the z direction. Details
of the z-direction connections are given in Supplementary Note 3
of Supplementary Materials. The enlarged views of the unit cell
are shown in Fig. 6b and c for Case I and Case II, respectively. It

Fig. 5 The circuit design and results for the hybrid 3D skin-topological-topological (STT) effect and 3D skin-skin-skin (SSS) corner effect. a, b The
schematic diagrams for the unit cell of the total circuit with C1= 1 nF, L1= 3.3 uH, C2= 2.2 nF and L2= 1.5 uH. Arrows with different colors are the same as
INICs labeled in Fig. 1d. Each unit cell contains four sublattices (a, b, c, d). a is for hybrid 3D STT effect and b is for 3D SSS effect. The details of INICs are in
Fig.1d. c, d The voltage distributions at the resonance frequency for hybrid 3D STT effect and 3D SSS effect in (c) and (d), respectively. Big arrows in (c)
show the directions of skin and topological pumping. Big arrows in (d) show the directions of skin pumping.

JSTT3DðSSS3DÞðωÞ ¼ JTT2DðSS2DÞðωÞ þ iω

ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0 0 0

0 ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0 0

0 0 ðC1 ±C2Þeiqz þ ðC1 � C2Þe�iqz 0

0 0 0 ðC1 ±C2Þeiqz þ ðC1 � C2Þe�iqz

2
6664

3
7775: ð3Þ
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corresponds exactly to the unit cells presented in the theory
above. The parameters of electronic components are the same to
the theoretical design. Details of the sample fabrication and
experimental measurements are given in “Methods”.

In Fig. 6d and e, we plot the measured voltage distributions at
the resonance frequency for Case I and Case II, respectively.
The dominant voltage signals on sublattices in the unit cell
plaquette are similar to the simulation results shown in Fig. 5c
and d. The detailed comparisons for theoretical and experimental
results are provided in Supplementary Note 1 of Supplementary
Materials. It is seen clearly that the experimental results agree well
with the simulation results and the hybrid 3D STT and SSS effects
have also been confirmed in circuit experiments.

Discussion
In summary, we have theoretically designed and experimentally
constructed 2D and 3D nonreciprocal topolectric circuits for
observing hybrid higher-order topological skin effects. These
hybrid states are not just trivial combinations of skin states and
higher-order topological states put together, even though their
separate realizations are already achievements in themselves. By
direct circuit simulations and voltage measurements, the 2D ST
modes and 3D STT modes have not only been demonstrated
experimentally, but also the corresponding 2D SS and 3D SSS
effects have been found. The qualitative distinction across these
modes have been clearly observed from the distribution of vol-
tages in circuits. Our investigations show that the circuits can
offer feasible platforms to investigate the exciting interplay of
topology and nonreciprocity in high dimensions. Considering
that electric circuits have been used to realize topological phe-
nomena, and that the skin effect can lead to extreme sensing
capabilities, it is expected that higher-order circuits can be used to
realize topological switches23 which can control the energy
transfer within the circuit through using topology to switch on/off
the skin effect, or vice versa. Because electric circuits are easily
integrated into other applications or platforms, we believe such a

circuit functioning as a topological switch has the potential to
control the energy transport in open systems.

Methods
The Hamiltonian for the lattice model
Hamiltonian for 2D lattice model. In order to present the correspondence between the
electric design in the main text and the lattice model, we provide the lattice Hamilto-
nian. The details of unit cell are shown in Supplementary Note 4(A) of Supplementary
Materials. The 2D lattice Hamiltonian can be expressed as

H2D ¼∑
x;y
ðtx � δ1Þax;yycx;y þ ðtx þ δ1Þcx;yyax;y þ ðtx þ δ2Þdx;yybx;y þ ðtx � δ2Þbx;yydx;y

þ ðty þ δ3Þax;yydx;y þ ðty � δ3Þdx;yyax;y þ ð�ty � δ4Þbx;yycx;y þ ð�ty þ δ4Þcx;yybx;y
þ t0ðaxþ1;y

ycx;y þ axþ1;ycx;y
y þ dxþ1;y

ybx;y þ dxþ1;ybx;y
yÞ

þ t0ðax;yþ1
ydx;y þ ax;yþ1dx;y

y � cx;yþ1
ybx;y � cx;yþ1bx;y

yÞ:

ð4Þ

Here, the annihilated operator Λx,y(Λ= a, b, c, d) denotes the elimination of one
excitation at the sublattice Λ of the position (x,y) in the lattice, and the generated
operator Λx,y

† (Λ= a, b, c, d) describes that one excitation at the sublattice Λ of the
position (x, y). The coupling strengths between different sublattices are governed by tx,
ty, t′ and δi=1,2,3,4. The nonreciprocity in this 2D system depends on the value of
δi= 1,2,3,4. We can derive the lattice Hamiltonian in the moment space

Ĥ2D ¼ ∑
k
η̂yk

0 0 tx � δ1 þ t0e�ikx ty þ δ3 þ t0e�iky

0 0 �ty � δ4 � t0eiky tx � δ2 þ t0eikx

tx þ δ1 þ t0eikx �ty þ δ4 � t0e�iky 0 0

ty � δ3 þ t0eiky tx þ δ2 þ t0e�ikx 0 0

2
666664

3
777775η̂k; ð5Þ

where η̂yk ¼ ðâyk ; b̂
y
k ; ĉ

y
k ; d̂

y
k ;Þ

T
. When nonreciprocities cancel in both directions (δ1= δ2,

δ3= δ4), no skin effect is observed in either direction. But, skin modes are still observed
when OBCs are taken in both directions. We thus obtain hybrid skin-topological
modes. Such lattice Hamiltonian shows the first-order topological modes when we take
open and periodic boundary condition at x and y directions, respectively. Each topo-
logical mode mainly locates at two of four sublattices along the boundary, and the local
nonreciprocity among these two sublattices can affect the distributions of boundary
modes when both directions are open. When nonreciprocities along both directions of
each plaquette do not destructively interfere (δ1≠ δ2, δ3≠ δ4), we obtain SS modes.

Hamiltonian for 3D lattice model. In our description of Fig. 5a and b, the 3D
electrical architectures are stacked by 2D electric boards. These 3D electric circuits
have the one-to-one correspondence to the lattices models. Here, we provide how
to realize these 3D lattices by stacking 2D layers of lattices. The details of unit cell
are shown in Supplementary Note 4(B) of Supplementary Materials. The

Fig. 6 The photograph of fabricated sample and experimental results for the hybrid 3D skin-topological-topological (STT) effect and 3D skin-skin-skin
(SSS) effect. a The photograph of the electric circuit of the 3D SSS corner effect. b, c The enlarged view of the unit cells for the hybrid 3D STT effect in (b)
and the 3D SSS effect in (c). Arrows with different colors are the same as INICs labeled in Fig. 1(d). The values of the capacitors and inductors are the same
as theoretical design. d, e The voltage distributions at the resonance frequency for hybrid 3D STT effect and 3D SSS effect in (d) and (e), respectively. Big
arrows in (c) show the directions of skin and topological pumping. Big arrows in (d) show the directions of skin pumping.
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Hamiltonians for each 2D layers can be attributed to Eq. (4) above. Since different
2D layers are connected, the total Hamiltonian for such 3D lattice is

H3D ¼ ∑
x;y;z

Hz
2D þ ðta þ δaÞax;y;zþ1

yax;y;z þ ðta � δaÞax;y;zþ1ax;y;z
y

þ ðtb þ δbÞbx;y;zþ1
ybx;y;z þ ðtb � δbÞbx;y;zþ1bx;y;z

y þ ðtc þ δcÞcx;y;zþ1
ycx;y;z

þ ðtc � δcÞcx;y;zþ1cx;y;z
y þ ðtd þ δdÞdx;y;zþ1

ydx;y;z þ ðtd � δdÞdx;y;zþ1dx;y;z
y:

ð6Þ

Here, the annihilated operator Λx,y,z (Λ= a, b, c, d) denotes the elimination of one
excitation at the sublattice Λ of the position (x, y, z) in the lattice, and the generated
operator Λx,y,z

† (Λ = a, b, c, d) describes that one excitation at the sublattice Λ of
the position (x, y, z).

We can derive the lattice Hamiltonian in the moment space. The lattice
Hamiltonian can be expressed as

The sublattices at the neighboring layers are connected by the coupling
strengths tj ± δj(j= a, b, c, d) where δj= a,b,c,d indicates the nonreciprocity along z-
direction of system.

Theoretical model of the designed electric circuits
Circuit Laplacian for 2D electric circuit. Here, we focus on the correspondence
between the non-Hermitian lattice model and our designed electric circuits.
According to the Kirchhoff’s law, the relation between the node alternating
current and voltage should satisfy the following equation:

Iα ¼ iω�1 �∑
β

ðVα � VβÞ
Lαβ

þ ω2VαCα þ∑
γ
Cαγω

2ðVα � VγÞ
" #

; ð8Þ

where Iα and Vα are the net current and voltage of node α with angular fre-
quency being ω. Between nodes α and β is the inductance Lαβ. At node α, the
ground capacitance is expressed as Cα. Between nodes α and γ is the capaci-
tance that is labeled as Cαγ. The summation is applied to all nodes that connect
to the node α.

As we can see in Fig. 1a–c, each unit cell possesses four nodes. In this case, the
voltage at the site α is expressed as Vα(α= a, b, c, d) and the current is labeled as

Iα(α= a, b, c, d). Additionally, each site is connected with other sites through three
kinds of coupling: intra-cell couplings (C1 or L1), inter-cell couplings (C or L), non-
Hermitian couplings (INIC). Also, each site is grounded through capacitances and
inductances to guarantee the resonance frequency. Details of the grounding part is
provided in Supplementary Note 5 of the Supplementary Materials. Here, based on
the Kirchhoff’s law, we give the details of realizing the electric design to observe the
SS mode in Fig. 1c. Consider the model shown in Supplementary Note 4(C)
of Supplementary Materials, there are voltages Va − Vd at the four nodes and
currents I1 − I8 at the circuit branches. Using the Kirchhoff’s current formula, we
have

I3 þ I8 ¼ I6e
�iqx þ I1e

�iqy þ Ga;

I2 þ I5 ¼ I4 þ I7 þ Gb;

I4 þ I6 ¼ I8 þ I2e
�iqy þ Gc;

I1 þ I7 ¼ I3 þ I5e
�iqx þ Gd ;

ð9Þ

where Gi(i= a, b, c, d) is grounding part, qx and qy denote the phase of Block wave
vector propagating in the x and y directions, respectively. So we can write the

currents that flow into each node as

Ia ¼ iω�1

�
�ω2Vx;y

a C3 �
2

ω2L1
� 1

ω2L2
� 2

ω2L

� �
þ ω2ðC1 � C3ÞðVx;y

c � Vx;y
a Þ

þ ω2ðC1 þ C2ÞðVx;y
d � Vx;y

a Þ þ ω2CðVx;yþ1
d � Vx;y

a Þ þ ω2CðVxþ1;y
c � Vx;y

a Þ
�
;

Ib ¼ iω�1 � ðVx;y
c � Vx;y

b Þ
L1

þ ðVx;y
c � Vx;y

b Þ
L2

� ðVx;y�1
c � Vx;y

b Þ
L

�

�ω2Vx;y
b � 1

ω2L3
� 1

ω2L2

� �
þ ðC1 þ C3Þω2ðVx;y

d � Vx;y
b Þ þ Cω2ðVx�1;y

d � Vx;y
b Þ

�
;

Ic ¼ iω�1 � ðVx;y
b � Vx;y

c Þ
L1

� ðVx;y
b � Vx;y

c Þ
L2

� ðVx;yþ1
b � Vx;y

c Þ
L

� ω2Vx;y
c � 1

ω2L3
� 1

ω2L2

� �"

þ ðC1 þ C3Þω2ðVx;y
a � Vx;y

c Þ þ Cω2ðVx�1;y
a � Vx;y

c Þ�;
Id ¼ iω�1

"
� ω2Vx;y

d � 2
ω2L1

� 2
ω2L

þ C2 þ C3

� �
þ ðC1 � C2Þω2ðVx;y

a � Vx;y
d Þ

þ Cω2ðVx;y�1
a � Vx;y

d Þ þ Cω2ðVxþ1;y
b � Vx;y

d Þ þ ðC1 � C3Þω2ðVx;y
b � Vx;y

d Þ
#
:

ð10Þ
According to the circuit Laplacian J(ω), we can write Eq. (10) in the form below:

Ia
Ib
Ic
Id

0
BBB@

1
CCCA ¼ J

Va

Vb

Vc

Vd

0
BBB@

1
CCCA ð11Þ

So the circuit Laplacian matrix J(ω) for SS mode can be expressed as

Besides, the circuit Laplacian of hybrid ST mode can also be derived in this way.
When ω ¼ ω0 ¼ ðLCÞ�1=2 ¼ ðL1C1Þ�1=2 ¼ ðL2C2Þ�1=2 ¼ ðL3C3Þ�1=2. The circuit
Laplacian matrix J2D(ω) can be expressed as

J2DðωÞ ¼ iω

0 0 C1 � C3 þ Ce�iqx C1 ±C2 þ Ce�iqy

0 0 �C1 þ C2 � Ceiqy C1 ±C3 þ Ceiqx

C1 þ C3 þ Ceiqx �C1 � C2 � Ce�iqy 0 0

C1 � C2 þ Ceiqy C1 � C3 þ Ce�iqx 0 0

2
6664

3
7775:

ð13Þ

If we choose – in ± and+ in ∓, Eq. (13) represents the circuit Laplacian for the case
where the hybrid second-order ST effect can be shown. Otherwise, it corresponds
to the case that can show the SS effect. Equation (13) is Eq. (2) in the main text of
the paper. It is similar to theoretical design shown in Eq. (5). Based on the
consistence for the mathematical formula, it is straightforward to infer that we can
implement the hybrid second-order ST effect and SS effect by using our designed
electric circuits.

JSS2DðωÞ ¼ iω

2
ω2L1

þ 1
ω2L2

þ 2
ω2L � 2C1 � C2 � 2C 0 C1 � C3 þ Ce�iqx C1 þ C2 þ Ce�iqy

0 1
ω2L3

þ 1
ω2L1

þ 1
ω2L � C1 � C3 � C � 1

ω2L1
þ 1

ω2L2
� eiqy

ω2L C1 þ C3 þ Ceiqx

C1 þ C3 þ Ceiqx � 1
ω2L1

� 1
ω2L2

� e�iqy

ω2L
1

ω2L3
þ 1

ω2L1
þ 1

ω2L � C1 � C3 � C 0

C1 � C2 þ Ceiqy C1 � C3 þ Ce�iqx 0 2
ω2L1

þ 2
ω2L � 2C1 � 2C

2
6666664

3
7777775
: ð12Þ

Ĥ3D ¼ ∑
k
η̂yk

ðta � δaÞeiqz þ ðta þ δaÞe�iqz 0 tx � δ1 þ t0e�ikx ty þ δ3 þ t0e�iky

0 ðtb � δbÞeiqz þ ðtb þ δbÞe�iqz �ty � δ4 � t0eiky tx � δ2 þ t0eikx

tx þ δ1 þ t0eikx �ty þ δ4 � t0e�iky ðtc � δcÞeiqz þ ðtc þ δcÞe�iqz 0

ty � δ3 þ t0eiky tx þ δ2 þ t0e�ikx 0 ðtd � δdÞeiqz þ ðtd þ δdÞe�iqz

2
666664

3
777775η̂k: ð7Þ
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Circuit Laplacian for 3D electric circuit. As for our 3D circuit in Fig. 5, each unit cell also
possesses four nodes (a, b, c and d). We need to consider the coupling in z direction.
Here, based on the Kirchhoff’s law, we provide the details of electric design to observe
the SSS mode. In this case, the Kirchhoff equation on each site can be expressed as

Ia ¼ iω�1

"
� ω2Vx;y;z

a C3 �
4

ω2L1
� 1

ω2L2
� 2

ω2L

� �
þ ω2ðC1 � C3ÞðVx;y;z

c � Vx;y;z
a Þ

þ ω2ðC1 þ C2ÞðVx;y;z
d � Vx;y;z

a Þ þ ω2CðVx;yþ1;z
d � Vx;y;z

a Þ þ ω2CðVxþ1;y;z
c � Vx;y;z

a Þ

þ ω2ðC1 � C2ÞðVx;y;z�1
a � Vx;y;z

a Þ þ ω2ðC1 þ C2ÞðVx;y;zþ1
a � Vx;y;z

a Þ
#
;

Ib ¼ iω�1

"
� ðVx;y;z

c � Vx;y;z
b Þ

L1
� ðVx;y;z

c � Vx;y;z
b Þ

L2
� ðVx;y�1;z

c � Vx;y;z
b Þ

L

� ω2Vx;y;z
b � 2

ω2L1
� 1
ω2L3

� 1
ω2L2

� �
þ ðC1 þ C3Þω2ðVx;y;z

d � Vx;y;z
b Þ

þ Cω2ðVx�1;y;z
d � Vx;y;z

b Þ þ ω2ðC1 � C2ÞðVx;y;z�1
b � Vx;y;z

b Þ þ ω2ðC1 þ C2ÞðVx;y;zþ1
b � Vx;y;z

b Þ
#
;

Ic ¼ iω�1

"
� ðVx;y;z

b � Vx;y;z
c Þ

L1
þ ðVx;y;z

b � Vx;y;z
c Þ

L2
� ðVx;y�1;z

b � Vx;y;z
c Þ

L

� ω2Vx;y;z
c � 2

ω2L1
� 1

ω2L3
� 1

ω2L2

� �
þ ðC1 þ C3Þω2ðVx;y;z

a � Vx;y;z
c Þ

þ Cω2ðVx�1;y;z
a � Vx;y;z

c Þ þ ω2ðC1 � C2ÞðVx;y;z�1
c � Vx;y;z

c Þ þ ω2ðC1 � C2ÞðVx;y;z�1
c � Vx;y;z

c Þ
#
;

Id ¼ iω�1

�
� ω2Vx;y;z

d � 4
ω2L1

� 2
ω2L

þ C2 þ C3

� �
þ ðC1 � C2Þω2ðVx;y;z

a � Vx;y;z
d Þ

þ Cω2ðVx;y�1;z
a � Vx;y;z

d Þ þ Cω2ðVxþ1;y;z
b � Vx;y;z

d Þ þ ðC1 � C3Þω2ðVx;y;z
b � Vx;y;z

d Þ

þ ω2ðC1 þ C2ÞðVx;y;z�1
d � Vx;y;z

d Þ þ ω2ðC1 þ C2ÞðVx;y;z�1
d � Vx;y;z

d Þ
�
:

ð14Þ

So the circuit Laplacian matrix J(ω) for SSS mode can be expressed as

JSSS3DðωÞ ¼ iω

A1 0 C1 � C3 þ Ce�iqx C1 þ C2 þ Ce�iqy

0 A2 � 1
ω2L1

� 1
ω2L2

� eiqy
ω2L C1 þ C3 þ Ceiqx

C1 þ C3 þ Ceiqx � 1
ω2L1

þ 1
ω2L2

� e�iqy

ω2L A3 0

C1 � C2 þ Ceiqy C1 � C3 þ Ce�iqx 0 A4

2
666664

3
777775:

ð15Þ
The diagonal elements A1 ¼ 4

ω2L1
þ 1

ω2L2
þ 2

ω2L � 4C1 � C2 � 2C þ ðC1 �
C2Þeiqz þðC1 þ C2Þe�iqz , A2 ¼ A3 ¼ 1

ω2L3
þ 3

ω2L1
þ 1

ω2L � 3C1 � C3 � C þ ðC1 �
C2Þeiqz þ ðC1 þ C2Þe�iqz and A4 ¼ 4

ω2L1
þ 2

ω2L � 4C1 � 2C þ ðC1 � C2Þeiqz
þðC1 þ C2Þe�iqz . When the electrical components satisfy ω ¼ ω0 ¼ ðLCÞ�1=2 ¼
ðL1C1Þ�1=2 ¼ ðL2C2Þ�1=2 ¼ ðL3C3Þ�1=2, Eq. (15) becomes

The diagonal elements in the matrix (Eq. (16)) represent the coupling along z
direction, and the off-diagonal elements in the matrix denote the coupling on the
x–y surface. It is clearly visible that the nonreciprocities appear along x, y, and z
directions. Following the similar construction, we can get JSTT3D(ω) as

The circuit Laplacian matrix J3D(ω) can be expressed as

with

JTT2DðωÞ ¼ iω

0 0 C1 þ Ce�iqx C1 þ Ce�iqy

0 0 �C1 � Ceiqy C1 þ Ceiqx

C1 þ Ceiqx �C1 � Ce�iqy 0 0

C1 þ Ceiqy C1 þ Ce�iqx 0 0

2
6664

3
7775: ð19Þ

If we choose + in ± and – in ∓, Eq. (18) represents the circuit Laplacian for Case I.
Otherwise, it corresponds to Case II. It is Eq. (3) in the main text of the paper. It is
similar to theoretical design shown in Eq. (7). As revealed in this matrix (Eq. (18)),
for JSTT3D(ω), the nonreciprocity only emerges in the diagonal elements containing
qz. It will bring about the corner modes driven unbalanced along z direction (this is
shown in Figs. 5 and 6 of the main text). Based on the consistence for the
mathematical formula, it is straightforward to infer that we can implement the
hybrid 3D STT effect and 3D SSS effect by using our designed electric circuits.

Sample fabrications and circuit measurements. We exploit the electric circuits
by using PADs program software, where the PCB composition, stackup layout,
internal layer and grounding design are suitably engineered. Here, each well-
designed PCB possesses totally eight layers to arrange the complex conductor. It is
worthy to note that the ground layer should be placed in the gap between any two
layers to avoid their coupling. Moreover, all PCB traces have a relatively large width
(0.5 mm) to reduce the parasitic inductance and the spacing between electronic
devices is also large enough (1.0 mm) to avert spurious inductive coupling. On the
other hand, due to the size limit of the PCB fabrication in 3D sample, we cut the
whole sample into eleven pieces. Six pieces are used to display the couplings along x
and y directions and the remaining five pieces for the z direction. To ensure the
same grounding condition, we link the copper pillar of each sub-PCB together. As
for the circuit excitation, we use NI PXle-8840 Quad-Core Embedded Controller to
input 2.77MHz alternating current. SMP connectors are welded on the PCB for the
signal input and circuit measurement. In addition, we also change the frequency of
Embedded Controller to measure the voltage signal at the corner, edge, and
bulk sites.

Photo to show connections in the z direction is shown in Supplementary Note 3
of Supplementary Materials. Four sublattices (a, b, c, d) represent four INICs which
connect corresponding points between two x-y layers. DB9 connectors are used to
connect the INICs between each two x–y layers. Lots of external wires are used for
DB9 connectors. So we need to use wires with low impedance. Besides, we need to
disorganize the wires to avoid parallel interference between wires. What’s more, the
total 3D circuit is a large sample, we need to use enough voltage inputs to guarantee
the work of INICs.

Admittance band measurement. Here, we introduce the method to measure the
admittance band in experiments13,43. If we input a current at the node j, we can
compute the impedances:

Gi;j ¼ Vj
i=Ij ¼ J�1

i;j ; ð20Þ

where Vj
i is the voltage measured at the node i when the current is input on the

node j. Ij represents the input current on the node j. As the matrix G is the

JSSS3DðωÞ ¼ iω

ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0 C1 � C3 þ Ce�iqx C1 þ C2 þ Ce�iqy

0 ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz �C1 � C2 � Ceiqy C1 þ C3 þ Ceiqx

C1 þ C3 þ Ceiqx �C1 þ C2 � Ce�iqy ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0

C1 � C2 þ Ceiqy C1 � C3 þ Ce�iqx 0 ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz

2
6664

3
7775: ð16Þ

JSTT3DðSSS3DÞðωÞ ¼ JTT2DðSS2DÞðωÞ þ iω

ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0 0 0

0 ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0 0

0 0 ðC1 ±C2Þeiqz þ ðC1 � C2Þe�iqz 0

0 0 0 ðC1 ±C2Þeiqz þ ðC1 � C2Þe�iqz

2
6664

3
7775 ð18Þ

JSTT3DðωÞ ¼ iω

ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz 0 C1 þ Ce�iqx C1 þ Ce�iqy

0 ðC1 � C2Þeiqz þ ðC1 þ C2Þe�iqz �C1 � Ceiqy C1 þ Ceiqx

C1 þ Ceiqx �C1 � Ce�iqy ðC1 þ C2Þeiqz þ ðC1 � C2Þe�iqz 0

C1 þ Ceiqy C1 þ Ce�iqx 0 ðC1 þ C2Þeiqz þ ðC1 � C2Þe�iqz

2
6664

3
7775: ð17Þ
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inverse of the circuit Laplacian J, the complex valued admittance eigenvalues are
obtained by inverting the eigenvalues of G. We apply the input current at one
node of the circuit and measure the response of the circuit given by the complete
voltage vector with respect to the input current. For a system of N nodes, the
measurement procedure of exciting one node and measuring the whole voltage
profile needs to be repeated N times to recreate the matrix G, where each of the
N measurement processes features the input current at the different node. If we
are dealing with a fully periodic system that has M nodes in a unit cell. In this
case, we only need to repeat M times to recreate the matrix G.

Our circuit contains 144 nodes. For open boundary conditions, we measure the
whole voltage profile with one excited node. Then, we repeat 144 times with
different excited nodes to recreate the matrix G. Due to the symmetry of system, we
only need to repeat 24 times with different excited nodes to recreate the matrix G
with x-periodic and y-open boundary conditions. In the same way, we only need to
repeat 4 times with different excited nodes to recreate the matrix G for periodic
boundary conditions. Finally, we inverse the matrix G to get circuit Laplacian
which is used to calculate the admittance band.

Data availability
Any related experimental background information not mentioned in the text and other
findings of this study are available from the corresponding author upon reasonable
request. The data generated in our study are provided in the Source data file. Source data
are provided with this paper.
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