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Abstract: The pharmacological inhibition of the bacterial collagenases (BC) enzymes is considered a
promising strategy to block the virulence of the bacteria without targeting the selection mechanism
leading to drug resistance. The chemical structures of the Clostridium perfringens collagenase A (ColA)
inhibitors were analyzed using Bemis-Murcko skeletons, Murcko frameworks, the type of plain rings,
and docking studies. The inhibitors were classified based on their structural architecture and various
scoring methods were implemented to predict the probability of new compounds to inhibit ColA and
other BC. The analyses indicated that all compounds contain at least one aromatic ring, which is often a
nitrobenzene fragment. 2-Nitrobenzene based compounds are, on average, more potent BC inhibitors
compared to those derived from 4-nitrobenzene. The molecular descriptors MDEO-11, AATS0s, ASP-
0, and MAXDN were determined as filters to identify new BC inhibitors and highlighted the necessity
for a compound to contain at least three primary oxygen atoms. The DrugBank database was virtually
screened using the developed methods. A total of 100 compounds were identified as potential BC
inhibitors, of which, 10 are human approved drugs. Benzthiazide, entacapone, and lodoxamide were
chosen as the best candidates for in vitro testing based on their pharmaco-toxicological profile.

Keywords: metalloproteinase inhibitors; Bemis-Murcko skeletons; molecular docking; repurposing;
antimicrobial resistance; antibiotics; benzthiazide; entacapone; lodoxamide

1. Introduction

Antibiotic resistance is a major health issue and is spreading dangerously throughout
the world, threatening our ability to treat common infectious diseases. Moreover, pathogens
are resistant to more than one class of antimicrobial agents. Pseudomonas aeruginosa, Acine-
tobacter baumannii, Escherichia coli, and Klebsiella pneumoniae bearing extended-spectrum
β-lactamases (ESBL), vancomycin-resistant enterococci (VRE), methicillin-resistant Staphy-
lococcus aureus, Clostridium difficile are among these multidrug resistant (MDR) problematic
species, causing great morbidity and mortality, particularly in hospitals and other health-
care institutions [1].

Developing new antibiotics has become undoubtedly a race against time, as the
emergence of MDR pathogens is outpacing the development of these therapeutic agents [2].
Understanding bacterial pathogenesis and resistance mechanisms, such as antibiotic efflux,
antibiotic inactivation, biofilm formation, and target modification, as well as intercellular
communication has revealed many potential strategies to develop novel drugs to treat
bacteria-mediated diseases.

One of these new strategies include developing anti-virulence therapies—virulence
being defined as the relative capacity of a microbe to cause damage to a host [3]. As op-
posed to traditional antibiotics which that bacterial growth pathways, anti-virulence offers
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an alternative approach that focuses on interfering with bacterial virulence factors (e.g.,
exotoxins, biofilm, secreted enzymes), thus interrupting the infectious process rather than
bacterial growth [4–7].

Various research groups reported the existence of a promising number of anti-virulence
strategies: inhibition of pore-forming toxins that kill host cells, thereby combatting immune
responses and liberating nutrients from the host [8]; inhibition of microbial adhesion and
colonization (e.g., inhibition of pili formation by binding the PapD protein, a conserved
chaperone for pilus assembly in uropathogenic E. coli) [9]; inhibition of the secretion of cell
surface proteins (e.g., sortases) [7]; inhibition of regulatory bacterial function (e.g., targeting
quorum sensing, a complex regulatory network that governs the expression of a series of
bacterial virulence factors in response to cell density or environment changes) [10]; inhibi-
tion of the bacterial cell wall resistance to the innate immunity (e.g., inhibition of heptose
biosynthesis, heptose being the structural element within the conserved lipopolysaccharide
core—the major component of the outer membrane of Gram-negative bacteria and a major
determinant of their pathogenicity) [11].

Drugs targeting anti-virulence factors are intended to be used for the treatment of
bacterial infections with multi-resistant pathogens, as monotherapy or associated with
classical antibacterial substances. They are also expected to possess several advantages
over the latter, such as reduced selection pressure and minimal perturbation of the healthy
microbiota. Some have already been approved by the US Food and Drug Administration
and/or the European Medicines Agency for bacterial toxin-mediated diseases (e.g., rax-
ibacumab, obiltoxaximab), while others targeting antibiotic-resistant bacteria have entered
clinical trials (e.g., AR-301, MEDI4893) [12].

As mentioned above, inhibition of bacterial adhesion and colonization represents a
promising anti-virulence strategy. We focus on bacterial collagenases (BC) as important
virulence factors involved in the growth and proliferation of pathogenic bacteria on their
hosts. These proteolytic enzymes possess broad substrate specificity—they degrade both
water insoluble and water soluble collagens in their triple helical regions at X-Gly bonds [13].
Due to their ability to degrade specific cell-membrane or extracellular-matrix components,
they play key roles in host colonization. They contribute to the spread of the pathogen into
the host tissues, ensure the influx of proper nutrients for survival and growth, e.g., amino
acids into the bacterial cells, and facilitate toxins’ diffusion [14,15].

Virulence of pathogenic bacteria was associated mostly with collagenases belonging to
the M9 family or with bacterial collagenolytic proteases [16], members of the U32 family in
the MEROPS database [17]. The MEROPS M9 peptidase family comprise metalloproteases
with a conserved zinc-binding motif, either (HEY/FTH) or (HEYT/VH), which functions
as a catalytic domain [18]. They act as true bacterial collagenases, cleaving helical regions of
fibrillar collagen molecules under physiological conditions [19]. They belong either to the
M9A or to M9B subfamilies, based on differences in their amino acid sequence and catalytic
function. Class I enzymes cannot digest collagen, class II enzymes cannot hydrolyze casein
but are able to digest collagen, while class III enzymes are able to digest caseins, gelatin,
and collagen [19]. Bacterial collagenolytic pathogenic bacteria and their collagenases are
presented in Table 1.



Pharmaceutics 2022, 14, 62 3 of 21

Table 1. Collagenases associate with pathogenic bacteria.

Pathogen Disease Collagenase MEROPS
ID Class Substrate Reference

Clostridium
histolyticum

Clostridial
myonecrosis

Collagenase H M09.003 Class II Type I, II, and III
collagens

[20,21]
Collagenase G/A M09.002 Class I Type I, II, and III

collagens

Clostridium
tetani Tetanus Collagenase col T M09.005 [22]

Clostridium
perfringens

Clostridial
myonecrosis

Collagenase G/A (or
collagenase A g.p.) M09.002 Class I Type I collagen, Pz

peptide, azocoll [23]

Vibrio
alginolyticus,
Vibrio para-

haemolyticus,
Vibrio vulnificus

Cellulitis,
septicemia Collagenase V M09.001 Class III

collagenases

Gelatin, casein,
collagen, synthetic

substrate
[24,25]

Vibrio mimicus,
Vibrio para-

haemolyticus,
Vibrio cholerae

Gastroenteritis VMC peptidase M09.004 Class II
collagenases

Type I, II, III
collagens, gelatin,

Cbz-GPLGP,
Cbz-GPGGPA

[14,24,25]

B. cereus
Periodontal

disease,
endophthalmitis

Collagenases Q1 M09.002/
M09.003

Class I
collagenases/

class II

Type I, II, III
collagens [26,27]

Porphyromonas
gingivalis

Periodontal
disease

Collagenase
(Porphyromonas type) U32.001 Not

applicable

Soluble and
reconstituted

fibrillar or
heat-denatured
type I collagen,

[28]

Helicobacter
pylori

Gastro-duodenal
ulcer

Collagenase
(Helicobacter type) U32.002 Not

characterized Not characterized [29]

Aeromonas
veronii

arthritis,
gastroenteritis,

meningitis,
septicemia

Collagenase
(Salmonella type)

U32.003 Not
characterized

Not characterized [30,31]

Salmonella sp.

Salmonellosis
(associated with

abomasitis,
peritonitis and
polyserositis)

Escherichia Coli

Urinary
infections,
digestive

infections, etc.

YhbV U32.A.01 Not
characterized Not characterized [17]

Collagenases are reported to be important in the pathogenic process of other bacteria,
such as Pseudomonas aeruginosa, Proteus mirabilis, B. anthracis, and Leptospira sp., although
their specificity needs further investigation [32–35]. Thus, targeting collagenases could
provide a suitable strategy for developing new anti-virulence agents [36–38]. We focused
on identifying inhibitors that could directly inactivate this specific virulence factor by
using drug repurposing—taking already approved drugs and using them outside of their
original designated medical indications. The computational drug repurposing strategy
was shown to greatly reduce time and costs generally associated with standard drug
discovery processes and to prevent any events related to unpredicted toxicity of a new
active substance [39–42].
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Using molecular docking and analyses of the chemical scaffolds related to biological
activity, we developed scoring functions as mathematical methods to predict the probability
of new compounds to inhibit the bacterial collagenases, and further employed them to assess
the suitability of repurposed non-antibiotic pharmacological agents as collagenase inhibitors.

2. Materials and Methods
2.1. Datasets Preparation

In order to determine the structural profile of bacterial collagenase inhibitors, we used
the Clostridium perfringens (strain 13/Type A) collagenase as a model and enzyme coded
CHEMBL2802 in the database of the European Institute of Bioinformatics (EMBL-EBI).
The chemical and bioinformatics data resource (ChEMBL) was investigated to identify
all compounds registered as inhibitors on the CHEMBL2802 target [43]. The obtained set
of molecules was made up of the chemical structures of bacterial collagenase A (ColA)
inhibitors (bacterial collagenase inhibitors set—BCI) and their corresponding Ki values (M).
The Ki values were converted to their negative logarithmic values (pKi). All the structures
were processed by removing charges and keeping the largest fragment.

DataWarrior 5.2.1. software [44] was used to calculate the compounds’ molecular
weight (MW), logarithm of the partition coefficient (logP), number of hydrogen bonds
donors (HBD), and number of hydrogen bonds acceptors (HBD). The intervals of dis-
tribution of these parameters were used to search the ChEMBL database. The resulting
compounds were randomly chosen to prepare a decoy set (DCY) with 20 folds more entries
than the BCI set. BCI and DCY sets were united into a single dataset, named ALL set.

The structures from the drug repository DrugBank 5.1.18 [45] were downloaded to
search for new potential bacterial collagenase inhibitors. The inorganic and organometallic
structures and the mixtures of compounds were removed from this set. The filters 250↔
750 (MW), 7↔ 15 (HBA), 0↔ 6 (HBD), and −2.5↔ 6 (logP) were applied, resulting in a
final database named DB.

2.2. Molecular Descriptors

An array of 1D and 2D molecular descriptors were calculated for all the structures
in the ALL set using the freely available PaDEL-Descriptor v2.21 software [46], using the
SMILES codes extracted from the ChEMBL as input. The zero variant variables were
removed. The cutoff values for the relevant descriptors were established by using a receiver
operating characteristic (ROC) curve analysis. The latter was performed using IBM SPSS
Statistics v20.0 software (IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY,
USA: IBM Corp.). A flag variable (BC) was introduced to indicate if the value of the target
descriptors is above the defined cutoff value and to indicate a potential BCI compound.

2.3. Bemis-Murcko Skeletons and Murcko Frameworks Analysis

Murcko frameworks (MF) and Bemis-Murcko (BM) skeletons, representing the struc-
tural molecular frameworks incorporating only the rings and their interconnecting chains, [47]
were generated for both BCI and DCY sets by using DataWarrior. Two arrays of perfor-
mance scores, noted as P-MF and P-BM, were calculated as the average value of the pKi
values registered for all the compounds in set ALL sharing the sub-structure of interest
(Equations (1) and (2)). The values of these scores are correlated with the odds for each
sub-structure to generate active compounds towards the pharmaceutical target [48].

P−MFx =
1
n ∑n

1 pKi, if MFx present (1)

P− BMx =
1
m ∑m

1 pKi, if BMx present (2)



Pharmaceutics 2022, 14, 62 5 of 21

2.4. Plain Ring Analysis

DataWarrior 5.2.1 software was used to generate all ring systems existing in each
compound from the ALL set. Each structure was divided in multiple fragments based on
each cycle structure. The single bonded substituents were erased, while the double bonded
heteroatoms connected directly to the ring system were kept. The P-PR performance
score was calculated using Equation (3)—as the average value of the pKi values of all the
compounds in set ALL sharing the respective plain ring (PR).

The odds variable (OD) was calculated for each PR fragment as the ratio of a PR
fragment frequency in the BCI set compared to the DCY set (Equation (4)) and represents
the likelihood of the scaffold to be associated with a BC inhibitor.

P− PRx =
1
n ∑n

1 pKi, if PRx present (3)

ODx =
counts in BCI

239
× 4780

counts in DCY
(4)

2.5. Repurposing Study

The structures of the compounds in the DB set were transformed in BM and PR
fragments. The S-PR score was defined as the average of the P-PR values of all PR fragments
found in a compound and was used to estimate the probability of that compound to inhibit
BC. A total performance score (TS) was used to take into account both the S-PR score and
the P-BM values, as shown in Equation (5).

TSi = P-BMi + S-PRi (5)

The repurposing candidates that exhibited high performance scores were thereafter
screened against the ColA structure using molecular docking simulations.

2.6. Homology Modeling

Since there is no readily available crystal structure of C. perfringens collagenase A, we
used homology modeling methods to build tridimensional models of the bacterial protease.
The sequence of the target protein was retrieved from the UniProt database (code P43153)
in FASTA format. SWISS-MODEL [49] web-server and YASARA Structure [50] software
are both fully automated resources that were used to search for templates and to build
the protein models. The resulting models were chosen for further studies considering
the sequence similarity, coverage, presence of Zn2+ cofactor in the active site, and quality
parameters. The quality assessment of generated models was performed with a SAVES
v6.0 server, using ERRAT, VERIFY3D, PROVE, and PROCHECK programs [51–54].

The top ranked models were further validated by docking three highly potent ColA
inhibitors into the active site using an induced fit approach, treating several key residues
(e.g., Glu503, Glu534, Trp518, Tyr577, Tyr583) as flexible. The model that generated the most
optimal conformations of the protein-ligand complexes was used for the virtual screening
of the repurposing candidates.

2.7. Molecular Docking

A molecular docking experiment was employed for the virtual screening of the repur-
posable candidates to select hit molecules with potential ColA inhibitory activity. The dock-
ing studies were performed using the AutoDock Vina v1.1.2 [55] algorithm built within the
YASARA Structure software. The docking grid box included only the active site within the
peptidase domain, which is formed between two half-domains (central helix and gluzincin
helix). The active site includes the catalytic Zn2+, which is complexed by two histidines
(His502 and His506) and two histidine-stabilizing glutamates (Glu503 and Glu534).

The predicted protein structure that yielded the best results after induced fit docking
of the selected strong inhibitors was used for further screening. The modelled protein
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and docking protocol were further validated by docking the BCI set into the active site
and testing the correlation between experimental and predicted parameters that describe
ligand efficiency.

Both protein structures and ligands were protonated according to the physiological pH
(7.4). Three-dimensional structures of both BCI and DB sets were generated and energeti-
cally minimized with OpenBabel v2.4.1 software [56], using the GAFF force field (general
AMBER force field) and 1500 steps with the steepest descent algorithm. The screening
algorithm used rigid side chains and performed 12 docking runs for each ligand and the
results were retrieved as the binding energy (∆G, kcal/mol), ligand efficiency (∆G\no.
of heavy atoms), and dissociation constant (Kd, pM) of the best binding pose. The bind-
ing poses of chosen hit repurposable candidates were rescored using the AutoDock Vina
local search algorithm and energy minimization with a NOVA forcefield. The analysis
of predicted conformations of the protein-ligand complexes and molecular interactions
was performed using the BIOVIA Discovery Studio Visualizer (BIOVIA, Discovery Studio
Visualizer, Version 17.2.0, Dassault Systèmes, 2016, San Diego, CA, USA).

3. Results
3.1. Datasets

A dataset of 253 structures belonging to Clostridium perfringens collagenase inhibitors,
was collected from the ChEMBL database together with their corresponding inhibitor
constants (Ki, M). The dataset (BCI) was filtered by removing the imprecise biological
values resulting in a final dataset that contains 239 compounds.

The compounds of the BCI set had MW values in the 302.3↔ 731.4 g/mol range, HBA
between 8 and 14, HBD between 1 and 5, and the logP values situated in the −1.99 ↔
5.58 interval. Based on these values, the limit points for establishing the decoy set (DCY)
were: 250↔ 750 (MW), 7↔ 15 (HBA), 0↔ 6 (HBD), and −2.5↔ 6 (logP). The resulting
670,703 structures from ChEMBL were randomly selected to set up the DCY set. The DCY
set consists of 4780 compounds, 20-fold more than the BCI set. Thus, the ALL set consists
of 5019 structures).

From the 11,172 structures downloaded from DrugBank, after screening by employing
the above-mentioned filters, 2685 structures were included in the final database.

3.2. Murcko Frameworks Profile

The Murcko framework (MF) consist of all the ring systems of each compound’s
structure and the atoms uniting them. In a relationship with the original molecule, the
MF fragments don’t contain any single bonded side-chain atoms. The BCI set compounds
generated a number of 32 sub-structures (MF01-MF32), while the compounds in the DCY
set yielded 4421 sub-structures. The null MF was produced only by compounds from the
DCY set. The Shannon diversity index was calculated as 2.394 for the BCI set and 8.320 for
the DCY set. This significant difference indicates that the nature of MF is important for the
design of BC inhibitors.

A number of 27 MF are strictly specific to the BCI set, while MF01, MF03, MF04, and
MF10 are found almost exclusively in the inactive compounds set. The P-MF values ranged
between 1.91 and 8.10. The structures and P-MF values for the most frequent frameworks
observed in the BCI set are presented in Figure 1.
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Figure 1. The Murcko framework structures: (a) The architecture types (I-IV) of the MF skeletons;
(b) the performance score (P-MF) in relation with the frequency of distribution in the BCI set for
MF01-MF10.

The MF frameworks can be classified in four major types based on their structure.
The type I contains only one ring and is represented by the benzene (MF01) structure.
The architectural type II is represented by two cyclic structures linked by a linear bridge
of 4↔ 6 atoms. Type III is derived from type II, having an additional hexagonal ring (C3)
attached to the linear linker. The skeletons in the type IV category are cyclic homologues
of the type III template with 2 pentagonal rings inserted in a cycle of 15 up to 21 atoms.
A hexagonal ring is bound by a one atom branch to the main linker, in a similar manner to
the type III skeletons.

With the exception of MF02 (benzene ring), all MF sub-structures found in the set BCI
contain at least two rings and have a P-MF value over four. As an MF sub-structure, the
benzene ring is associated with a low potency of BC inhibition demonstrated by the P-MF
value of 1.91.

The dimension of the side-chain elements attached to the MF core was quantified
as the parameter SC. It was calculated by subtracting the MW of the MF sub-structure
from the MW of the whole molecule. For the BCI set, the SC value ranged between 14.03
and 643.23 with an average of 170.01, while in the DCY set the distribution was from 0
(no side-chain elements) to 598.76 with an average of 115.6. The difference is statistically
significant, indicating the importance of the presence of side-chain elements. The number
of heavy atoms is also statistically different: in the BCI set, the average is 30.0 atoms, while
in the DCY set, the average is 32.5.

3.3. Bemis-Murcko Skeletons Profile

Bemis-Murcko (BM) skeletons are derived from the molecules’ MF sub-structure by
the removal of side-chain elements and of atom labels, and the changing of all bond types
to single bonds. The 239 structures in the BCI set generated 21 distinct BM skeletons
(BM01-BM21), while the 4789 compounds of the DCY set yielded 3068 BM structures.
The null skeleton resulted from 0.46% of compounds in the set (22 structures). The Shannon
diversity index values were calculated as 0.896 for the BCI set and 3.300 for the DCY set.

The obtained P-BM values were in the range of 0.87–7.48 and seemed to increase with
the number of non-H atoms in each BM scaffold. The four major architectural types of BM
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skeletons resulted from the BCI set, their structures, and the corresponding P-BM values
are presented in Figure 2.
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originates from the MF01 framework. The architectural type II is represented by 7 BM
structures with P-MF values in the range of 0.87–5.75. Type III is derived from type II, while
the BM skeletons in the type IV category are cyclic homologues of type III.

3.4. Plain Ring Analysis

The transformation of the 5019 structures from the ALL set in PR generated 1312
individual sub-structures, while the compounds from the BCI set generated only 17 PR
fragments. All the ColA inhibitors from the BCI set contain at least one benzene ring (PR01).
The second most frequent ring was the 1,3,4-thiadiazole-2-thione (PR02) with a frequency
of 11.30%, followed by naphthalene (PR03) with a frequency of 7.95%, and thiophene
(PR04) and quinolone (PR05), both found in 2.09% of the compounds from set BCI (Table 2).
The pyrrolidine ring (PR06) was found in two BCI structures. The structure PR07-PR17 is
found only in the BCI set compounds, and not in the DCY set.

Table 2. The structures of the most frequent PR fragments generated in the BCI set and their P-PR
scores and odds values.

Code PR01 PR02 PR03 PR04 PR05 PR06

Structure
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benzene (PR01) presented OD values above one and fairly good P-PR values. Thiophene,
quinolone, and pyrrolidine had OD values below one, and therefore a low predictable
value in identifying new BC inhibitors.

The PR analysis coupled with the BM architecture of the compounds from the BCI
set indicated a high chemical similarity and highlighted the importance of some cyclic
elements presented in Figure 3. The value I represents the average of the pKi values for
each sub-structure across the BCI set.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

quinolone, and pyrrolidine had OD values below one, and therefore a low predictable 
value in identifying new BC inhibitors. 

The PR analysis coupled with the BM architecture of the compounds from the BCI 
set indicated a high chemical similarity and highlighted the importance of some cyclic 
elements presented in Figure 3. The value I represents the average of the pKi values for 
each sub-structure across the BCI set. 

 
Figure 3. The plain rings (PR) as elements of each architectural type of BC inhibitor, together with 
their impact score (I) and number of occurrences (N) in the BCI set. 

The BCI compounds from types I and II contain ring A exclusively, a 2-nitrobenzene 
(A1) or a 4-nitrobenzene (A2) fragment. The value of I indicates a significantly higher po-
tency for the 2-nitro substituted compounds compared to the 4-nitro derivatives. In types 
III and IV, the ring A is represented by a benzene (A3) with no other substituent. In the 
structure of types II and III inhibitors, the ring A is bound by a linker to the ring B, which 
is very similar in both types. The ring B1 represents a benzene with various substitution 
patterns, while rings B2, B4, and B5 are not substituted. The score I is significantly higher 
for the rings B2–B5 found in type II inhibitors, compared to the type III structures, indi-
cating the importance of the overall geometry. 

Most of the type III compounds have, as a C ring, the 1,3,4-thiadiazole-2-thione (PR-
02), while only 2 compounds contain a 2-substituted pyrrolidine ring (PR06). The 12 com-
pounds sharing the type IV structural architecture have the same ring elements A3, B7, 
and C3, with the 2 pyrrolidine cycles bounded in a large cyclic structure that has branched 
a benzyl fragment. The differences in the potency of these compounds comes from the 
dimension and the elements of the cyclic structure linking rings B and C. 

3.5. Classification Model 
All the structures form the ALL set were introduced in the PaDEL software and a 

number of 1444 1D and 2D descriptors were computed. After removing those with 0 var-
iance, 1192 descriptors remained. A ROC analysis was executed for them, returning 8 de-
scriptors with values of the area under the curve (AUC) parameter over 0.9. A cutoff value 
was established for each descriptor, considering 100% sensitivity and the highest possible 
specificity (Table 3). 

  

Figure 3. The plain rings (PR) as elements of each architectural type of BC inhibitor, together with
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The BCI compounds from types I and II contain ring A exclusively, a 2-nitrobenzene
(A1) or a 4-nitrobenzene (A2) fragment. The value of I indicates a significantly higher
potency for the 2-nitro substituted compounds compared to the 4-nitro derivatives. In types
III and IV, the ring A is represented by a benzene (A3) with no other substituent. In the
structure of types II and III inhibitors, the ring A is bound by a linker to the ring B, which
is very similar in both types. The ring B1 represents a benzene with various substitution
patterns, while rings B2, B4, and B5 are not substituted. The score I is significantly higher for
the rings B2–B5 found in type II inhibitors, compared to the type III structures, indicating
the importance of the overall geometry.

Most of the type III compounds have, as a C ring, the 1,3,4-thiadiazole-2-thione (PR-
02), while only 2 compounds contain a 2-substituted pyrrolidine ring (PR06). The 12
compounds sharing the type IV structural architecture have the same ring elements A3, B7,
and C3, with the 2 pyrrolidine cycles bounded in a large cyclic structure that has branched
a benzyl fragment. The differences in the potency of these compounds comes from the
dimension and the elements of the cyclic structure linking rings B and C.

3.5. Classification Model

All the structures form the ALL set were introduced in the PaDEL software and
a number of 1444 1D and 2D descriptors were computed. After removing those with
0 variance, 1192 descriptors remained. A ROC analysis was executed for them, returning
8 descriptors with values of the area under the curve (AUC) parameter over 0.9. A cutoff
value was established for each descriptor, considering 100% sensitivity and the highest
possible specificity (Table 3).
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Table 3. List of molecular descriptors capable of identifying the BCI compounds against the DCY
structures and their cutoff value for 100% sensitivity.

Code Type Cutoff Descriptor’s Mathematical Representation

MDEO-11 MDE >1.194 Molecular distance edge between all primary oxygens
AATS5s Autocorrelation >3.315 Average Broto–Moreau autocorrelation—lag 5, weighted by I-state

AATSC0s Autocorrelation >2.008 Average centered Broto–Moreau autocorrelation—lag 0, weighted by I-state
AATS0s Autocorrelation >5.239 Average Broto–Moreau autocorrelation—lag 0/weighted by I-state
ASP-0 ChiPath >0.714 Average simple path, order 0

maxHBint5 Electrotopological
State Atom Type - Maximum E-State descriptors of strength for potential Hydrogen Bonds of

path length 5

meanI Electrotopological
State Atom Type >2.370 Mean intrinsic state values I

MAXDN Electrotopological
State Atom Type >2.490 Maximum negative intrinsic state difference in the molecule

The analysis of the descriptors and their cutoff values indicated the use of MDEO-11,
AATS0s, ASP-0, and MAXDN as the best way to filter potential BCI compounds. The flag
value BC was calculated using the following equations:

BC = 1, IF MDEO-11 > 1.194 AND AATS0s > 5.239 AND ASP-0 > 0.714 AND MAXDN > 2.490 (6)

BC = 0, IF MDEO-11 ≤ 1.194 OR AATS0s ≤ 5.239 OR ASP-0 ≤ 0.714 OR MAXDN ≤ 2.490 (7)

where, when the BC variable takes the value 1, it indicates a BCI compound. This method
of identification has a sensitivity of 100% and a specificity of 89.58%.

The MDEO-11 descriptor is based on the molecular graph and accounts only for
oxygen atoms bonded to only one non-hydrogen atom, irrespective of bond types (primary
oxygen atoms) [57]. The MDEO-11 value represents the number of primary oxygen atoms
divided by the geometrical average of the graph distances between each pair of primary
oxygen atoms. In the BCI set, this type of oxygen atom can be found in groups like: -OH,
>C=O, -NO2, and -SO2-. For a compound to have a value above the cutoff of 1.194, it needs
at least 3 such oxygen atoms. The distance between these atoms is also very important, as
the descriptor value decreases as the distance increases. Considering type I inhibitors, they
need at least an oxygen atom in the chain close to the nitro group.

The ASP-0 descriptor represents the SP-0 descriptor divided by the number of atoms
in the compound’s structure. SP-0 is based on the molecular graph and takes account
of the number of edges for each node. It is calculated as a sum of the reciprocal square
root for each number of edges in a node. In the class of n-alkanes, the highest possible
value of ASP-0 is 1, found in the case of methane and ethane, and decreases as the carbon
chain is longer. The branched derivatives have higher ASP-0 values compared to their
unbranched isomers.

Both AATS0s and MAXDN use the Kier–Hall intrinsic state values (Is). AATS0s is
calculated as the sum of each atom squared Is value, divided then by the number of all
atoms. For a compound to have an AATS0s value above 5.239, it needs atoms like fluorine,
chlorine, oxygen, nitrogen, or multiple bonded carbon atoms. The MAXDN represents the
maximum negative value registered in a compound for the sum of the ratio of differences
of Is values and the corresponding topological distances. It is considered a measure of the
molecule’s nucleophilicity [58].

3.6. Homology Modeling and Molecular Docking of ColA Inhibitors

A molecular docking study was performed for ColA inhibitors to validate a virtual
screening protocol for repurposing DB candidates. The 3D structure of C. perfringens
ColA has not been solved yet; therefore, several models of the protein were built using
two structure prediction tools. The first four templates identified by SWISS-MODEL and
YASARA ranked by sequence coverage were used for model generation. The quality
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parameters of the built models are shown in Table 4. Both tools found crystal structures
2Y3U, 4ARE, and 4AR9 as potential templates, while 5O7E was identified only by SWISS-
MODEL, and 5IKU by YASARA, respectively. The best overall quality factor calculated with
ERRAT was found for the model built using 2Y3U with YASARA. However, this structure
lacks the catalytic Zn2+ and could not be used for further studies. On the other hand, the
worst overall quality factor was calculated for the model generated using 5IKU structure
(76.9874), which has only 21% coverage of the ColA sequence and shares only 35.37%
sequence identity. The structure built using the 5IKU template corresponds to the ColA
collagen-binding domain and is not suitable for the aim of this study. The models generated
using 2Y3U and 4ARE (69 and 60% coverage, 49.27 and 49.78% sequence identity) crystal
structures included the metalloprotease S1 domain, consisting of an activator domain, a
catalytic subdomain, and a helper subdomain. Models built using 4AR9 and 5O7E included
only the catalytic and helper subdomains (35% coverage, 55.55%, and 58.44% sequence
identity), which were sufficient for the molecular docking simulations.

Table 4. Quality parameters of the generated models of C. perfringens ColA.

Method Model Template ERRAT (Overall
Quality Factor)

VERIFY3D
(3D-1D Score

>0.2% Residues)

PROVE (Buried
Outlier Protein
Atoms Total, %)

Residues in
Most Favored
Regions (%)

Residues in
Disallowed
Regions (%)

SWISS-
MODEL

S1 2Y3U 96.7016 97.93 4.7 93.2 0.2
S2 4ARE 97.1299 98.51 4.2 92.9 0.5
S3 4AR9 96.5517 96.12 4.1 91.9 0.0
S4 5O7E 95.0954 92.80 4.6 92.5 0.0

YASARA

Y1 4ARE 98.3824 98.41 3.1 93.4 0.3
Y2 2Y3U 99.1098 97.41 3.3 94.2 0.3
Y3 4AR9 98.7310 99.02 4.5 92.6 0.0
Y4 5IKU 76.9874 90.44 3.5 86.9 0.0
Y5 hybrid 97.3529 99.42 2.5 93.6 0.5

2Y3U—collagenase G (ColG) from Clostridium histolyticum; 4ARE—ColG from C. histolyticum; 4AR9—collagenase
T (ColT) from C. tetani; 5O7E—collagenase H (ColH) from C. histolyticum; 5IKU—ColG from C. histolyticum.

Three potent ColA inhibitors from different chemical classes were docked into the
catalytic site using an induced fit approach to select the most suitable target protein for
further screening. The molecular docking experiment was performed for models Y1, Y3,
S4, and Y5 using an oxime derivative (CHEMBL306726, pKi = 8.3 M), a 1,3,4-thiadiazole-2-
thione derivative (CHEMBL3142607, pKi = 6.7), and a peptide analogue inhibitor with a
phosphonyl group (CHEMBL2115242, pKi = 8.1). Only docking with model S4 (Figure 4)
yielded satisfying results regarding the binding poses of all three inhibitors.

This model had a 95.0954 overall quality factor. In general, proteins with high res-
olution structures have overall quality factors around 95 or higher. The Z-score of the
model was 0.291. Moreover, the analysis of the Ramachandran plot showed that the phi-psi
torsion angle for 92.5% of residues are in the most favored regions, 23 residues (6.9%) are
in additional allowed regions, 2 residues (Gln433 and Glu440) are in generously allowed
regions, while 0 residues fall into disallowed regions (Figure 5).
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The binding poses of the three inhibitors in the active site are shown in Figure 6A.
All three inhibitors interact with the catalytic zinc. The docking protocol was further
validated by docking the BCI set and calculating the determination coefficient between
experimental and predicted values of ligand efficiencies. Good correlations were obtained
between experimental and predicted surface-binding efficiency index values (SEI), after
splitting the BCI set into strong (pKi > 7, R2 = 0.8281) and weak (pKi < 7, R2 = 0.6724)
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inhibitors (Figure 6B,C). SEI is calculated as the activity value divided by polar surface
area/100 Å).
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The docking scores (∆G) of the compounds from the BCI set ranged from −11.14 to
−6.23 kcal/mol with a mean value of−8.35 kcal/mol. Forty-seven amino acids are involved
in overall interactions with the compounds from the BCI set, the most frequent being Asn471
(100%), Tyr583 (95.78%), Gly473 (75.53%), Glu534 (68.78%), and Ile474 (67.93%). On average
a compound from the BCI set interacts with of 15.63 amino acid residues (values ranging
between 11 and 26).

3.7. Repurposing Study

The compounds from the DB set were transformed in their corresponding BM and
PR fragments. A total of 194 structures were found to generate one of the active types of
BM structures (BM01–BM21). Among these molecules, 24 are classified as approved, 137 as
experimental, and 40 as investigational drugs. A total number of 112 compounds share the
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BM03 sub-structure, belonging to type I architecture, while 82 compounds have a type II
BM sub-structure.

The DB set was searched to find the compounds that generate one of the PR01–PR17
structures, thus identifying 1806 compounds. For each compound the average of the P-PR
values (S-PR) was calculated to estimate the probability to inhibit BC. A number of 1806
compounds produced at least one of the target PR fragments and their calculated S-PR
value ranged from 0.065 to 2.669.

The DB compounds were used to calculate the BC flag value based on the chemical
descriptors computed by PaDEL software. The value 1 that indicates a potential BC
inhibitor was obtained for 664 compounds.

The sum of S-PR and P-BM values were added to obtain the TS score to select the
DB compounds with the best chances to inhibit ColA. Of all the 2685 compounds of
the DB set, only 194 presented TS values over 1, and 100 of them also had BC values
equal to 1. These compounds were chosen as candidates for molecular docking screening.
The compounds with the best 10 TS values are presented in Table 5 along with their main
target of action as registered in DrugBank.

Table 5. The top DrugBank candidates based on their TS value and their known pharmacological targets.

Code Name TS Target

DB08498
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Table 5. Cont.

Code Name TS Target

DB06989
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The compound DB08498 is the chloro-derivative of DB08497, both compounds being
under development as caspase-3 inhibitors. DB03124 and DB08229 are also caspase-3
inhibitors. Caspase-3 is a cysteine protease that cleaves several proteins after aspartic acid
residues in specific sequences [59]. The results indicate a possible similarity between the
structures of the catalytic domain of both enzymes. The compound DB07556 targets both
the macrophage metalloelastase and the interstitial collagenase, metalloproteases that are
similar with ColA. DB07290 inhibits the Bacillus anthracis lethal toxin, a zinc-dependent
peptidase presenting the consensus sequence HEXXH [60], similar with ColA.

The binding energy, ligand efficiency, and dissociation constant obtained from docking
simulations for compounds with the best TS values are shown in Table 6.

Of the 100 candidates, only 10 are approved for human use: benzthiazide, bortezomib,
ioxitalamic acid, entacapone, technetium tc-99 m disofenin, chloramphenicol succinate,
mebrofenin, lodoxamide, betiatide, and nafcillin. The ioxitalamic acid, technetium tc-99
m disofenin, mebrofenin, and betiatide are all used for diagnostic purposes and have a
low druglike character because of their toxicity risks [61,62]. Chloramphenicol succinate
and nafcillin are antimicrobial drugs [63] and their effects on bacterial growth can promote
resistant strains limiting their development as BCI. Benzthiazide (thiazide diuretic), en-
tacapone (catechol-O-methyltransferase inhibitor, Parkinson’s disease) and lodoxamide
(mast cell stabilizer, antiallergic) emerged as the best candidates for development as anti-
virulence agents in infections with pathogens form the Clostridium, Pseudomonas, Vibrio,
and Streptomyces genuses.
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Table 6. Molecular docking simulations results for the top ranking DrugBank candidates.

Code LE (kcal/mol Per
Heavy Atom) ∆G (kcal/mol) pKd (M) No. of Contacts

DB08498 0.3483 −9.751 7.148 18
DB08497 0.3476 −9.386 6.880 18
DB01689 0.3545 −9.572 7.016 18
DB07030 0.3472 −8.68 6.363 17
DB07556 0.2664 −7.192 5.272 16
DB06989 0.2938 −8.226 6.030 15
DB07290 0.3643 −8.379 6.142 16
DB03124 0.3114 −9.965 7.304 21
DB04659 0.3082 −8.013 5.874 16
DB08229 0.3352 −9.386 6.880 19

LE—ligand efficiency; ∆G—binding energy; pKd—negative logarithmic value of predicted dissociation constant.

The predicted binding affinities, ligand efficiencies, and the residues involved in
H-bonding are presented in Table 7. All three hit compounds showed ligand efficiency
values above 0.35, which indicates good binding to the target protein. Among these
molecules, benzthiazide exhibited the highest binding affinity, with−9.54 kcal/mol binding
energy and 6.99 M pKd. Entacapone and lodoxamide had lower affinities and pKd values,
correlated with the smaller TS score.

Table 7. Molecular docking simulations results and TS performance score for the best repurpos-
ing candidates.

Name Code TS LE (kcal/mol Per
Heavy Atom)

∆G
(kcal/mol) pKd (M) H-Bonding

Residues
H-Bond

Length (Å)

Benzthiazide DB00562 2.85 0.3669 −9.539 6.992 Gly578 2.155
Tyr583 2.246
Asp470 1.839
Asp470 2.328
Glu503 2.095

Entacapone DB00494 1.96 0.3521 −7.746 5.678 Trp518 2.987
Tyr577 2.891
Tyr583 2.690
Tyr475 1.908
Tyr475 2.592

Lodoxamide DB06794 1.96 0.3744 −7.862 5.763 Asn471 2.647
Gly472 2.720
Gly473 2.844
Gly473 1.732
Tyr583 1.753
Glu503 2.870

The molecular docking simulations showed that benzthiazide forms a direct metal-
acceptor interaction with the catalytic zinc via the sulfone moiety within the thiazide
scaffold (Figure 7). It forms five hydrogen bonds with Gly578, Tyr583, Asp470 and the cat-
alytic Glu503. The protein-ligand complex is further stabilized by forming several nonpolar
interactions, such as pi-sulfur, pi-pi stacked, pi-alkyl and van der Waals interactions.
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diagram for benzthiazide-ColA complex.

In the docking experiment, entacapone binds into the ColA active site via five hy-
drogen bonds with four residues (Tyr475, Trp518, Tyr577, Tyr583). A carbon-hydrogen
bond, pi-alkyl, and pi-pi stacked interactions are also present (Figure 8). Although en-
tacapone does not interact directly with Zn2+, it interacts with metal-binding residues
Glu533, Glu534, and His506 through van der Waals weak forces. Moreover, the substituted
nitrobenzene moiety interacts with the binding pocket in a similar fashion with the docked
ColA inhibitors from the BCI set (Figure 6A).
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The predicted binding pose of lodoxamide into the ColA active site showed an at-
tractive interaction between the negatively charged carboxyl moiety and the catalytic
zinc. Lodoxamide binds to the enzyme via six hydrogen bonds formed with five residues
(Asn471, Gly472, Gly473, Tyr583 and catalytic Glu503). Moreover, several nonpolar interac-



Pharmaceutics 2022, 14, 62 18 of 21

tions are formed with the binding pocket, such as van der Waals, pi-sulfur, pi-sigma, and
pi-lakyl interactions (Figure 9).
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4. Discussion

The results of the structural analysis indicated the importance of the molecular geome-
try for the biological activity, as a limited array of scaffolds and cyclic structures were found
to be connected with the capacity to inhibit ColA. The descriptors observed as relevant in
discriminating active and inactive compounds are based also on the molecular geometry,
highlighting its importance. The presence of certain types of atoms or groups of atoms
seems to be essential as well. A quantitative structure-activity relationship (QSAR) study
on 5-amino-2-mercapto-1,3,4-thiadiazole derivatives that inhibit the related Clostridium his-
tolyticum collagenase indicated the importance of an amide function close to a sulfonamide
group and the branching of the molecule [64]. Our research confirms these results and
generalizes them using the number of primary oxygen atoms and their relative distances.

The use of scoring methods coupled with the selected molecular descriptors proved
to be useful in identifying several metalloproteases inhibitors. The method was initially
implemented to prioritize the compounds in the docking studies but proved to render good
results on its own. It can be easily used for any database of compounds but needs their
transformation to their corresponding Bemis-Murcko skeletons, plain rings, and molecular
descriptors. The identified architectural types are a simple method to prepare analogs of
the obtained candidates in the process of lead optimization.

A total of 100 repurposable candidates were subjected to molecular docking simula-
tions to identify potential ColA inhibitors. The docking results revealed that benzthiazide
and lodoxamide can interact directly with the Zn cofactor, while entacapone interacted
with the amino acid residues within the active site. These results are similar with the phar-
macological profile of benzthiazide. Contrary to other thiazide class compounds, it binds
strongly to all human carbonic anhydrases isoforms coordinating the zinc ion through the
sulfonamide group [65].

The major limitation of the study is the small number of known inhibitors and their
low structural diversity. The chances of finding new lead compounds are hindered by
these problems and the methods we used prioritized sensitivity over specificity as a mean
to overcome this drawback. This approach may have yielded a higher number of false
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positives. The candidates need to be confirmed by in intro assays to be further developed
as repurposed agents.

5. Conclusions

A virtual screening algorithm was implemented using both ligand-based and structure-
based drug discovery approaches to identify novel potential inhibitors of C. perfringens
collagenase A. Benzthiazide, entacapone, and lodoxamide are three approved drugs that we
propose as potential repurposable anti-virulence agents, based on the predicted probability
of inhibiting the bacterial collagenase and the favorable simulated interactions with the
enzyme. Further studies are needed for the selected molecules to confirm the predicted
biological activity and to assess the efficacy in treating C. perfringens infections.
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