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ABSTRACT

Establishing the functional roles of genetic variants
remains a significant challenge in the post-genomic
era. Here, we present a method, allele-specific alter-
native mRNA processing (ASARP), to identify genet-
ically influenced mRNA processing events using
transcriptome sequencing (RNA-Seq) data. The
method examines RNA-Seq data at both single-
nucleotide and whole-gene/isoform levels to identify
allele-specific expression (ASE) and existence of
allele-specific regulation of mRNA processing. We
applied the methods to data obtained from the
human glioblastoma cell line U87MG and primary
breast cancer tissues and found that 26–45% of all
genes with sufficient read coverage demonstrated
ASE, with significant overlap between the two cell
types. Our methods predicted potential mechan-
isms underlying ASE due to regulations affecting
either whole-gene-level expression or alternative
mRNA processing, including alternative splicing, al-
ternative polyadenylation and alternative transcrip-
tional initiation. Allele-specific alternative splicing
and alternative polyadenylation may explain ASE in
hundreds of genes in each cell type. Reporter
studies following these predictions identified the
causal single nucleotide variants (SNVs) for several
allele-specific alternative splicing events. Finally,
many genes identified in our study were also
reported as disease/phenotype-associated genes
in genome-wide association studies. Future applica-
tions of our approach may provide ample insights
for a better understanding of the genetic basis of
gene regulation underlying phenotypic diversity
and disease mechanisms.

INTRODUCTION

Recent advances in sequencing technologies have enabled
an extraordinary expansion of the catalogs of genetic
variants in disease genomes or across populations.
However, significant challenges still exist in establishing
the functional roles of such variants. To date, only a
minority of genetic variants identified by genome-wide as-
sociation studies (GWASs) elicits protein-coding changes.
A large number of variants are expected to influence cis-
regulation of gene expression (1). Thus far, the most
common approach used to predict regulatory variants is
the method of expression quantitative trait loci (eQTL)
mapping (1). In this approach, massive-scale parallel ex-
pression assays are required to identify statistical associ-
ations between genotypes and gene expression in
populations with a diverse genetic background (2,3).
Such studies often focus on the association between
genetic variants and whole-gene expression levels,
without differentiating isoforms resulted from alternative
mRNA processing.
Allele-specific expression (ASE) is an attractive alter-

native method to infer the existence of cis-acting regu-
latory variants (4). In an ASE study, the relative
proportion of mRNA expression levels of two alleles of
a heterozygous variant is measured in the same cellu-
lar environment within the same subject (4,5). Thus, a
major advantage of the method is that the alternative
alleles serve as within-sample controls of each other,
eliminating environmental or trans-acting influences
that alter gene expression and making it optimal for
detecting cis-acting differences. If the regulatory variants
are located in intronic or untranscribed regions, those in
the mRNAs may serve as markers for the existence of
causal variants. Identification of autosomal ASE might
be the most direct method to identify functional cis-regu-
lation, which can be followed-up by detailed experimental
analyses.

*To whom correspondence should be addressed. Tel: +1 310 206 6522; Fax: +1 310 206 9184; Email: gxxiao@ucla.edu

Published online 29 March 2012 Nucleic Acids Research, 2012, Vol. 40, No. 13 e104
doi:10.1093/nar/gks280

� The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



However, observation of ASE in a gene does not
normally suggest which type of cis-regulatory mechanism
is responsible for ASE but rather that such mechanisms
exist. Cis-acting regulation by genetic variants may affect
different aspects of gene expression, e.g. transcription, al-
ternative mRNA processing or mRNA stability. Genetic
control of transcription often results in changes in
whole-gene expression levels, which have been the focus
of many eQTL studies. Other mechanisms, such as alter-
native mRNA processing, were much less often examined
despite their known importance in example genes (6–8).
Results from large-scale exon array studies showed that
genetic influence on alternative mRNA processing could
add remarkable complexity to molecular diversity (9).
However, investigations of such relationships using micro-
arrays normally require a large number of subjects and
arrays to ensure statistical power.
Here, we present methods to analyze transcriptome

sequencing (RNA-Seq) data and demonstrate that data
of a single subject enabled identification of many genes
and alternatively processed regions that are under
genetic influence. RNA-Seq provides concurrent allelic
and gene expression data. Thus, it allows expression
analyses at different levels including single-nucleotide,
alternatively processed mRNA isoforms and whole-gene
levels. Integrative analysis of the information at multiple
levels allows in-depth understanding of the transcriptome,
an advantage of RNA-Seq rarely exploited in previous
work. This advantage enabled us to develop pipelines to
first identify ASE patterns followed by inference of their
potential involvement in alternative mRNA processing
including alternative splicing, alternative 30 processing
and alternative 50 initiation. We applied this method to
two human cancer data sets, our in-house RNA-Seq
data obtained from the glioblastoma cell line U87MG
and a public RNA-Seq data set from a breast cancer
patient. Our study demonstrated that ASE analysis of
individual samples via RNA-Seq can provide substantial
insights about the genetic control of gene expression, a
potentially much more cost-effective approach than
existing methods relying on massive-scale parallel expres-
sion assays of a large number of samples.

MATERIALS AND METHODS

Cell culture, RNA purification and RNA-Seq data
acquisition

U87MG cells were purchased from American Type
Culture Collection (ATCC) and maintained in DMEM
high glucose medium supplemented with pyruvate,
L-glutamine and 10% fetal bovine serum (FBS)
(Hyclone). Total RNA was isolated using the mirVana
kit (Ambion), according to the manufacturer’s instruc-
tions. We used the standard Illumina protocol to
prepare libraries for RNA-Seq (http://www.illumina
.com/support/documentation.ilmn). Briefly, 10 mg total
RNA was first processed via poly-A selection and frag-
mentation. We generated first-strand cDNA using
random hexamer-primed reverse transcription and subse-
quently used it to generate second-strand cDNA using

RNase H and DNA polymerase. Sequencing adapters
were ligated using the Illumina Paired-End sample prep
kit. Fragments of �200 bp were isolated by gel electro-
phoresis, amplified by 15 cycles of PCR and sequenced
on the Illumina Genome Analyzer IIx (Cofactor
Genomics) in the paired-end sequencing mode (2� 60 nt
reads).

RNA-Seq reads mapping

The same mapping methods as in our previous work (10)
were used. Briefly, reads were mapped to the human
genome and Ensembl-defined transcriptome using
multiple tools including Bowtie (11), BLAT (12) and
Tophat (13). Two reads in a pair were mapped separately.
Alignments of a read with more than 12 mismatches were
discarded. Read pairs were then examined for uniqueness
and correct pairing. A uniquely mapped pair was required
to have less than six mismatches on each read and not to
map to anywhere else in the genome as a pair with less
than or equal to 12 mismatches each. Since the genomic
locations of heterozygous single nucleotide variants
(SNVs) were provided by whole-genome sequencing of
U87MG (14), we corrected the number of mismatches in
reads harboring the non-reference allele of an SNV such
that reads with SNVs were treated without a bias. Only
uniquely paired reads were used for subsequent analyses.
In addition, we removed all duplicate reads (those mapped
to the same genomic locations as a pair) except the one
with the best quality score in the mismatch positions
(if any).

Identification of ASE of SNVs

For each heterozygous SNV, we first obtained the number
of RNA-Seq reads mapped to its alleles. Since the first
read position was observed to have relatively large
sequencing errors in our data, we excluded reads whose
SNVs were located at the first nucleotide. We then
calculated the allelic ratio defined as the number of
reads mapped to the reference allele divided by the total
number of reads covering an SNV. To identify ASE
patterns, we used the Chi-square Goodness-of-Fit test to
determine if the allelic ratio deviates from the expected
ratio 0.5 (i.e. when the two alleles are equally expressed).
SNVs were excluded if they are potentially in regions with
copy number variants determined by the read depth of the
genome sequencing data (14,15). In this analysis, only
SNVs with at least 20 RNA-Seq reads were included to
reach adequate statistical power (see ‘Results’ section).
Significant ASE patterns were determined using a false
discovery rate (FDR) cutoff of 5% based on a modified
Benjamini–Hochberg method (16,17) to account for
possible correlations of ASE patterns in a gene. The
FDR was also estimated using biological replicates (see
‘Results’ section) or an explicit simulation procedure. In
this procedure, for each heterozygous SNV location, we
randomly assigned each mapped read in the data set to
either allele (with equal probability). Following this ran-
domization, the ASE patterns were identified as described
above and an FDR was calculated.
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Identification of allele-specific alternative
mRNA processing

To elucidate the type of cis-regulatory mechanisms po-
tentially involved in generating the ASE patterns, we
designed a pipeline, namely ASARP (allele-specific alter-
native mRNA processing), that synergistically ana-
lyzes expression profiles of genes, alternative exons,
alternative UTR regions and SNVs obtained from the
same RNA-Seq data set (Supplementary Figure S1 and
Supplementary Methods). This method allowed us to
determine if the cis-regulatory mechanisms influencing a
gene belonged to one of the following categories:
allele-specific whole-gene-level regulation, allele-specific
alternative splicing (ASAS), allele-specific alternative
polyadenylation (ASAP) and allele-specific transcriptional
initiation (ASTI). Whole-gene-level regulation can be
simply distinguished from the other categories because
such regulation affects expression of all SNVs in a gene.
In contrast, the latter three types of regulation act upon
local regions within mRNAs and thus only affect SNVs in
nearby regions. As a result, genes under whole-gene-level
regulation were defined as those in which SNVs with
enough power were all identified with ASE patterns. To
define genes belonging to one of the categories related to
ASARP, we required that (i) the SNV of interest (target
SNV) is located in a region (exon or UTR) that is alter-
natively processed as evidenced in the RNA-Seq data,
EST or mRNA data or public databases of gene defin-
itions; (ii) there exists in the same gene non-ASE SNVs
with adequate statistical power; (iii) the allelic ratio of the
target SNV is significantly different from that of the
non-ASE SNV. These criteria exclude the possibility that
ASE was resulted from more global regulation other than
the local mRNA processing events (alternative splicing or
alternative UTR generation). Note that the above filters
do not establish causality of the SNV in inducing the
observed ASE pattern. Details of this method are
described in Supplementary Methods.

To estimate the FDR among genes identified with
ASAS, ASAP, ASTI or gene-level regulation, we
generated randomized read counts for all SNVs (with N
reads � 1) in a gene, similarly as for the FDR estimation
of ASE. This procedure controls for the read coverage of
each gene and SNV and maintains the read distribution in
alternative and constitutively processed regions. Using the
randomized read counts, the same framework described
above was applied and an FDR was estimated for each
category of events.

Splicing reporter assays

Genomic regions surrounding candidate SNVs associated
with ASAS were amplified by PCR using Taq 2� Master
Mix (NEB) with 100 ng of U87MG genomic DNA accord-
ing to themanufacture’s instruction. Primers were designed
such that the amplification product spans the associated
exonic region and �250 nt intronic regions on either side.
The primers contained HindIII or SacII restriction site for
subcloning purposes. Genotypes of SNVs were confirmed
via Sanger sequencing of the PCR products (Genewiz) that
were sub-cloned into the pZW1 splicing reporter

containing cloning sites between two green fluorescent
protein (GFP) exons (18). Final constructs were sequenced
to ensure that a pair of plasmids containing the two alter-
native alleles of the SNV was obtained.
The splicing reporter constructs were transfected into

5� 104 U87MG cells per well in 6-well plates using
Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s instruction. The transfected cells were incubated
for 48 h before total RNAs were isolated using RNeasy
Plus mini kit (Qiagen). Reverse transcription was per-
formed using 500 ng of total RNA and the SuperScript
III first-strand synthesis kit (Invitrogen). PCR was then
carried out using 1/20th of the cDNA product, primers
targeting the two GFP exons in the splicing reporter,
and Taq 2� Master Mix (NEB) with 250 pmol of
Cy5-dCTP (GE Healthcare). Quarter amount of PCR
products was separated on 6% native polyacrylamide
gel. Fluorescence scanning was conducted using a
Typhoon 9400 imager (GE Healthcare). Expression
levels of splicing isoforms were estimated using the
ImageQuant software (GE Healthcare). Inclusion level
(% inclusion) of the studied exon was calculated as the
intensity ratio of upper/(upper+lower) bands. To visual-
ize the DNA size marker, the scanned gel was post-stained
with 1� SYBR Safe DNA gel stain in 1� TBE buffer
(Invitrogen).

RESULTS

Mapping of RNA-Seq reads

We obtained paired-end RNA-Seq data using the Illumina
Genome Analyzer IIx platform and standard RNA-Seq
protocols for four biological replicates of U87MG RNA.
A total of �108 million pairs of reads (2� 60 nt in length)
were acquired. We used a read-mapping strategy as de-
veloped in our previous work (10) to achieve unbiased
mapping of the reads expressing variant bases relative to
the reference genome. This method applied a
‘double-filtering’ scheme to examine mismatches in the
reads relative to the references to remove mapping
errors due to the existence of highly homologous regions
in the mammalian genome. Such errors may create false
positive predictions of allele-specifically expressed SNVs
and/or biased estimates of the allelic ratios.
About 53 million (�49%) were mapped uniquely and

their distributions in exons, introns and intergenic regions
are shown in Table 1. In addition, a small fraction of reads
(2%) were mapped to intronic regions where there is clear
evidence of a novel exon (Supplementary Methods).
Compared to traditional mapping where two mismatches
are allowed on each read, approximately 16 million pairs
of reads (15% of all) were discarded due to the stringent
filters for mismatches and uniqueness in mapping.
In the U87MG genome, we extracted a total of

1 116 235 heterozygous SNVs based on high-throughput
genome sequencing (14). Among these SNVs, 33 122
(3.0% of all) were located within Ensembl-annotated
exons (either coding or non-coding), of which 17 205
(51.9%) were covered by at least one RNA-Seq read in
our data. As expected, coverage of heterozygous SNVs
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was dependent on the total number of mapped reads
and the expression levels of corresponding genes
(Supplementary Figure S2). For genes with a minimum
expression level of 1 RPKM [reads per kilobase of exon
model per million mapped reads (19)], 13 292 (84.7%) of
all 15 686 heterozygous SNVs in these genes were covered
by at least one RNA-Seq read.

Evaluation of the mapping results

Since the U87MG cells were derived from a female
patient, we expected to observe patterns of X-inactivation
(as the cells are monoclonal). We identified 22 heterozy-
gous SNVs on the X chromosome that were associated
with at least two reads. Twenty of them had monoallelic
expression (i.e. all reads mapped exclusively to one of the
two alleles). If we assume that SNVs with reads mapped to
both alleles were associated with mapping errors, then 3
out of 2010 reads (0.15%) were mapped incorrectly.
In analyzing ASE of genetic variants in RNA-Seq reads,

previous work observed that significant bias exists in the
read-mapping results that favors reads harboring the ref-
erence allele of heterozygous SNVs (4,20–22). To evaluate
whether such bias exists in our mapping, we examined the
allelic ratios (defined as the number of reads with the ref-
erence allele divided by the total number of reads per
SNV) of heterozygous SNVs (Figure 1A). In the absence
of mapping bias, the average allelic ratio is expected to be
0.5 assuming ASE is only present in a small fraction of
SNVs. As shown in Figure 1A, our results confirmed an
average allelic ratio of 0.5, supporting the effectiveness of
the mapping strategy. In contrast, if read mapping were
carried out by allowing two mismatches on each read, as
in traditional methods, a statistically significant bias
toward the reference allele was detected (Supplementary
Figure S3A). Note that the local peaks in Figure 1A at
allelic ratios of about 0.33 and 0.66 were due to the preva-
lence of SNVs with low read coverage (specifically, with
1:2 or 2:1 read counts for the two alleles). The correspond-
ing peaks were not observed if SNVs with three reads in
total were excluded (Supplementary Figure S3B).
We next examined the allelic ratios of heterozygous

SNVs within the same constitutively spliced exon
(Figure 1B). This analysis only included SNVs with at

least 20 reads to ensure adequate statistical power (see
below). As expected, these values are highly correlated
despite the possible compromise of mapping accuracy
due to the closeness of multiple SNVs. This finding
further attests to the validity of our mapping approach.
In addition, the allelic ratios of all heterozygous SNVs
(with at least 20 reads) are highly correlated across biolo-
gical replicates (Figure 1C). This result supports the as-
sumption that expression bias associated with alternative
alleles of SNVs presented here represents a biological phe-
nomenon that is not influenced much by variations in cell
culture and other experimental techniques. Therefore, in
the subsequent analyses, we combined data from all bio-
logical replicates to maximize the statistical power.

Identification of ASE in RNA-Seq data

To identify ASE events, we tested the null hypothesis of
equal expression of the alternative alleles of a heterozy-
gous SNV. SNVs were excluded if they were potentially in
regions with copy number variants determined by the read
depth of the genome sequencing data (14,15). The power
to detect a significant ASE event is dependent on the
number of reads associated with an SNV, as shown in
Figure 2A. For example, if our goal is to identify an
allelic ratio of 0.8:0.2 (either reference/variant or
variant/reference allele, two-sided test) with �75%
power, then a minimum of 20 reads are needed for each
SNV at an FDR of 5% (Figure 2A). Thus, a deeper
RNA-Seq coverage can enable better power in detecting
ASE patterns. To illustrate the dependence of this power
requirement on the amount of available reads, we
randomly sampled (with replacement) all the mapped
reads and examined the read coverage of heterozygous
SNVs (Figure 2B). This simulation offers a reasonable
estimate of the requirement of sequencing depth since
the available mapped reads in this study enabled
coverage of most SNVs in expressed genes (�1 RPKM)
(Supplementary Figure S2B). As the number of reads in-
creases, the number of SNVs that meet the power require-
ment approaches a plateau (at �200 million mapped reads
for N� 20) as a result of the limited number of expressed
genes.

Table 1. RNA-Seq read-mapping results

Raw
reads

Total, N Unique pairs
n (%)

Multiple pairs
n (%)

Low-quality pairs
n (%)

No pairs
n (%)

Unmapped
reads

107 626 587 53 162 291 (49) 43 538 740 (40) 1 637 731 (2) 3 312 997 (3) 5 974 828 (6)

Unique
pairs

Total, N Exons
n (%)

Exon–exon junctions
n (%)

Introns
n (%)

Intergenic regions
n (%)

Novel exons
n (%)

53 162 291 34 295 289 (65) 11 221 489 (21) 5 336 129 (10) 1 213 980 (2) 1 095 404 (2)

Number of pairs of reads is shown in each category. Unique pairs: reads mapped uniquely as a pair; multiple pairs: read pairs mapped to multiple
genomic locations; low-quality pairs: best mapping results containing more than five mismatches on either read; no pairs: no valid pairing found for
the read pair; unmapped: one or both reads were unmappable. Only reads in the ‘Unique pairs’ category were used for further analyses. Distribution
of such reads in different genomic regions is shown. Known gene structures were defined by combining annotations in Ensembl, RefSeq, UCSC,
Gencode and Vega genes. Novel exons were identified using our in-house algorithms (Supplementary Methods).
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In our data, 7784 heterozygous SNVs (in 4553 genes)
had a minimum of 20 reads. Among these SNVs, 1494
(19.2%, in 1172 genes) were identified to have allele-
specific patterns using the Chi-square Goodness-of-Fit
test at an FDR cutoff of 5% (see ‘Materials and
Methods’ section, Supplementary Table S1). Similar
results were obtained with the requirement of a
minimum of 10 or 30 reads per SNV (Table 2).
Therefore, our analyses showed that �15–21% of SNVs
or 20–26% of genes are associated with ASE patterns in
U87MG cells, similar to the estimated percentage of cis-
regulatory SNVs in previous studies (23–25). Table 2
reports the distribution of SNVs with ASE patterns in
various types of genomic regions. The majority of these
SNVs are located in coding exons or 30-UTR regions and a
small number in introns, novel exons or intergenic regions,
consistent with the data acquisition protocol of RNA-Seq.

Quality of the ASE results

To evaluate the quality of the ASE events, we first
examined the locations and quality scores of the corres-
ponding SNVs in the reads. As shown in Supplementary
Figure S4A, the SNVs with ASE patterns are distributed
along the reads without significant positional bias. In
addition, no significant difference was observed between
the quality scores of the read bases corresponding to
SNVs with and without ASE patterns (Supplementary
Figure S4B). Thus, ASE identification was unlikely
affected by sequencing errors which are relatively
frequent near the ends of the reads and are often
associated with low quality scores.
As another estimate of the FDR of the identified ASE

events, we analyzed the difference in the allelic ratios of
SNVs in biological replicates shown in Figure 1C. We
found that 98 SNVs had significantly different allelic
ratios in the two samples at a relatively large P-value
cutoff (P< 0.05). Thus, the FDR among the identified

ASE events is up to 6.6% (which could be an overestimate
due to the relaxed P-value cutoff and the fact that biolo-
gical replicates may possess natural variations). A
read-randomization method was also applied to estimate
the FDR independently (see ‘Materials and Methods’
section). This procedure resulted in 100 ASE events out
of the 7784 SNVs with adequate power (N reads� 20).
Thus, the FDR of our results is �6.7% based on this
analysis.

In our previous project (10), the same mapping
approach was used to study RNA editing events
revealed by RNA-Seq data. We showed that the allelic
ratios of alternative bases of the RNA variants calculated
based on RNA-Seq are highly concordant with those
estimated by clonal sequencing. The correlation coefficient
was 0.88 if at least 20 reads were required to cover the
variant location. Without the knowledge of the genome
sequences, expressed SNVs and RNA editing events are
indistinguishable in the RNA-Seq reads. Thus, the result
in our previous study also serves as a validation of the
accuracy of the allelic ratios estimated in this study.

Our ASE results have significant overlaps with those
reported in related studies. In a recent article, ASE
patterns in a human lymphoblast cell line were analyzed
using RNA-Seq (26). Among the SNVs reported with
ASE patterns, 181 had adequate statistical power
(N reads� 20) and 53 demonstrated ASE in our study
(overlap significance P=0.0006, hypergeometric test).
We also compared our results with those reported by
cis-eQTL studies (repository at http://eqtl.uchicago.edu/
cgi-bin/gbrowse/eqtl/). No significant overlap was
observed between the exact SNVs associated with cis-
eQTL and those with ASE. However, a relatively signifi-
cant overlap was found between the genes hosting these
two types of SNVs. Specifically, 973 genes with cis-eQTL
contained SNVs with adequate power in our study, of
which 271 genes harbored SNVs with ASE patterns
(P=0.05, hypergeometric test). These findings might be
explained by the fact that both types of studies identify
genes under cis-regulation, but not necessarily the exact
SNV causing such regulatory mechanisms.

Analysis of association of ASE with alternative
mRNA processing

ASE patterns identified above may be the results of
cis-regulation affecting different aspects of gene expres-
sion, e.g. transcription, mRNA processing or stability.
To elucidate the underlying regulatory mechanisms, we
examined the gene and isoform expression patterns in
the RNA-Seq data to relate them to the expression of
SNVs. We found distinct ASE patterns within genes that
may allow possible association with four types of cis-
regulation (Figure 3). The first category consists of genes
with global ASE demonstrated by all heterozygous SNVs.
For example, the gene L-RAP has six SNVs that passed
the power requirement (N reads� 20) and all of them
showed significant allelic expression bias (Figure 3A). In
this case, it is very likely that a mechanism (such as
allele-specific transcription factor binding) affecting
whole-gene-level expression exists that resulted in allelic

Table 2. ASE of SNVs and the associated genes

Read coverage of SNVs N� 10 N� 20 N� 30

SNVs, n 12 493 7784 6041
SNVs with ASE, n (%) 1831 (14.7) 1494 (19.2) 1268 (21.0)
Genes, n 5981 4553 3866
Genes with ASE, n (%) 1156 (19.3) 1172 (25.7) 961 (24.9)

Location of ASE SNVs, n (%)
Coding exons 542 (29.6) 504 (33.7) 454 (35.8)
Non-coding exons 130 (7.1) 83 (5.6) 58 (4.6)
Introns 194 (10.6) 88 (5.9) 46 (3.6)
30-UTR 663 (36.2) 627 (42.0) 571 (45.0)
50-UTR 93 (5.1) 74 (5.0) 58 (4.6)
Novel exons 103 (5.6) 60 (4.0) 39 (3.1)
Intergenic regions 106 (5.8) 58 (3.9) 42 (3.3)

Numbers of SNVs and associated genes satisfying different power re-
quirements and those identified with ASE patterns are shown. Power
requirements were specified in terms of the number of reads covering an
SNV (N� 10, N� 20 and N� 30). The distribution of SNVs with ASE
patterns was determined using known gene structures defined by
combining annotations in Ensembl, RefSeq, UCSC, Gencode and
Vega genes. Novel exons were identified using our in-house algorithms
(Supplementary Methods). Non-coding exons refer to exons in
non-coding genes or non-coding transcripts of coding genes.
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expression of the entire gene. The other three categories
pertain to allele-specific mRNA processing, specifically,
ASAS, ASAP and ASTI. In these cases, expression of
only a fraction of SNVs in a gene is altered in the

presence of allele-specific regulation that changes local
transcript isoform structures.
An example of a potential ASAS event in the gene

CAST is shown in Figure 3B. There are 12 SNVs in this
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gene that passed the power requirement for ASE analysis.
Only two of them demonstrated significant allelic expres-
sion bias, thus excluding the possibility that a regulatory
mechanism impinging on the whole-gene expression level
explains the observed ASE patterns. The most significant
ASE pattern occurs in the SNV rs7724759. We found that
at least one other exonic SNV (non-ASE) are located in
the same transcript isoforms as rs7724759 according to the
RefSeq annotation. Hence, it is unlikely that allele-specific
regulation of whole-isoform expression is the cause of its
ASE. An examination of the RNA-Seq read distribution
and annotated gene structure (Figure 3B) shows that this
SNV resides in an alternative cassette exon. Since reads
overlapping this SNV can only be obtained when the exon
is included in the mRNA, the ASE pattern means that
exon inclusion is significantly associated with only one
allele (the reference allele in this example). Thus, this is
a case of allele-specific exon inclusion most likely due to
cis-regulation of alternative splicing (i.e. ASAS). Of
course, it is not clear based on this data alone which
SNV is the causal one underlying this observation
(see below for related experimental studies).
Another category of possible allele-specific cis-regula-

tory mechanism is ASAP occurring in genes with alterna-
tive 30-UTRs. We found examples (Figure 3C) where an
SNV located in the extended UTR region has allelic bias
in its expression, whereas other SNVs in the same gene/
isoform do not have significant ASE. In this case, the most
likely mechanism accounting for the observed ASE
pattern is one that leads to ASAP. Similarly, in genes
with alternative 50-UTRs, we observed ASE patterns
that are possibly due to the ASTI mechanism (Figure 3D).
Based on the above observations, it is possible to dis-

tinguish the potential regulatory mechanisms of ASE
patterns using RNA-Seq data. We thus classified genes
into the aforementioned categories via an automatic
pipeline named ASARP (see ‘Materials and Methods’
section and Supplementary Figure S1). This analysis
compares the expression patterns of all heterozygous
SNVs of a gene and combines SNV expression with ex-
pression of alternatively processed mRNA regions as
illustrated by the examples in Figure 3. Note that the
specific SNVs associated with ASAS, ASAP or ASTI
events were not required to have statistically significant
ASE because, despite a large allelic bias, such SNVs
often fail to pass the power requirement due to the
fact that they reside in regions that by definition are
sometimes absent in the mRNA. Altogether, 488 genes
were classified into the aforementioned categories
(Supplementary Table S2). Specifically, 197 genes
showed ASE at the whole-gene-level and 291 genes
demonstrated allele-specific mRNA processing patterns.
As summarized in Figure 4, ASAS events constitute the
largest category (66%) among all allele-specific mRNA
processing events considered in this study, followed by
the ASAP events. It should be noted that some genes
identified with ASE difference at the whole-gene level
might also show allele-specific mRNA processing
patterns, which is not considered in the above results.
We estimated the FDR of the above analyses for each
type of event using read-randomization similarly as for

the ASE events (see ‘Materials and Methods’ section).
The numbers of genes identified with ASAS, ASAP and
ASTI in the randomized data were 34, 16 and 1, yielding
an FDR of 18, 12 and 1%, respectively.

Molecular analysis of the causal SNVs for ASAS events

In the above section, we identified genes or alternatively
processed regions that are possibly genetically regulated.
The causal SNVs responsible for these observations can be
obtained via detailed molecular analyses. Here, we use
four ASAS events as examples given the prevalence of
this type of event. For a putative ASAS event, we
sub-cloned the SNV-harboring exon (separately for each
allele) and the surrounding intronic regions from the
U87MG DNA into a minigene expression vector (18).
This minigene contains three exons with the middle exon
being the SNV-harboring one (Figure 5). Since it is known
that many splicing regulatory elements are located within
or close to the exons (27,28), we only included the �250 bp
intronic regions immediately flanking the exons. A pair of
constructs was made for each SNV carrying the two alter-
native alleles. We transiently transfected the constructs
into U87MG cells and examined the spliced isoforms
using RT-PCR with fluorescence-labeling followed by
gel electrophoresis (see ‘Materials and Methods’ section).

Figure 5 shows the differential splicing patterns as-
sociated with alternative alleles of the corresponding
SNV in each of the four genes we tested. In the CAST
gene, the SNV identified in our analysis (Figure 3B) is a
known single nucleotide polymorphism (SNP) (id:
rs7724759) located at the last base of the exon. The two
alleles of the SNV lead to a significant difference in the
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Figure 4. Number of genes with ASE patterns in the U87MG cells
classified into different categories. A total of 488 genes were included
that could be classified using our approach (see ‘Materials and
Methods’ section). The numbers shown outside the pie chart represent
the total number of genes in each category. The percentages for the
alternative mRNA processing events were calculated relative to the
union of all 291 genes with such events. ‘Gene Level’ events are not
included in the percentage calculation because they are not comparable
with the mRNA processing events (e.g. the latter only applies to genes
with alternative mRNA processing). Since some genes may be classified
into more than one category, the sum of the percentages of all types
may be larger than 100%.
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strength of the 50 ss (Figure 5A). Since this SNV is the only
sequence variant between the two minigene constructs
(confirmed by Sanger sequencing), we can conclude that
it is the causal genetic variant that is responsible for the
observed splicing difference (Figure 5B), most likely due
to the alteration in 50 ss strength. Our finding is consistent
with that reported in (29).

The POLR2B gene, which encodes the second largest
subunit of RNA polymerase II, has an exonic SNP
(rs1713982) identified with ASAS pattern and it is the
only sequence variant between the two constructs used in
our experiments. As shown in Figure 5B, the G allele of this
SNP is associated with an exon inclusion level higher than
that of the A allele. Interestingly, binding sites (exonic
splicing enhancers) of known splicing factors SRSF1,

SRSF2 and SRSF5 were predicted to overlap the G
allele, but not the A allele, according to ESEfinder (30),
possibly explaining the cause of enhanced exon inclusion
by the G allele. Similarly, the RIOK3 gene has an SNV
(genomic coordinate: chr18:21047415, not a known SNP)
located in an alternative cassette exon, which is the only
variant between the two constructs. Its G allele caused a
higher level of exon skipping than the C allele (Figure 5B).
However, no known exonic regulatory enhancers or silen-
cers can explain this splicing difference, which may indicate
that our current knowledge of splicing motifs is not yet
complete.
Different from the above examples, the constructs for

the ARHGAP12 gene contained two sequence variants
(rs41289019 in the exon and rs2799019 in the intron,
Figure 5A). Although the exonic SNP is the one associated
with an ASAS pattern, it is not clear which SNP(s) causes
the expression variation. We thus made four constructs to
encompass all allelic combinations of the two SNPs and
compared the splicing patterns associated with different
allelic combinations. As shown in Figure 5B, the exonic
SNP has a predominant effect in inducing the observed
splicing changes, thus most likely being the cause
underlying the ASE pattern. However, there is no known
splicing regulatory motif that can explain the allele-specific
behavior of splicing. Importantly, this observation reflects
the strength of our method, that is, it can detect existence
of a splicing-altering SNP which could not have been pre-
dicted by examination of known splicing signals.

Application of the methods to breast cancer RNA-Seq

ASE and cis-regulation of mRNA processing can be
highly tissue-, cell type- or disease-specific (32,33). To
further demonstrate the usage of our methods, we
analyzed another set of RNA-Seq data obtained from
primary breast cancer tissues published in a previous
study (34). This study conducted high-coverage
sequencing of both the genome and the transcriptome of
a metastatic lobular breast cancer specimen. We analyzed
the genome sequencing data using the Short
Oligonucleotide Analysis Package (SOAP) (35) and
identified a total of 1 760 963 high-confidence heterozy-
gous SNVs. For the RNA-Seq data, the same read
mapping and analysis methods were used as presented
above. The mapping results are shown in Supplementary
Table S3 and the overall distribution of allelic ratios of
reads mapped to heterozygous SNVs revealed no signifi-
cant mapping bias (Supplementary Figure S5).
Among the 14 570 heterozygous SNVs (in 4433 genes)

that satisfy the power requirement (N reads� 20), 4052 (in
2001 genes) were identified with ASE patterns. Thus, the
proportions of SNVs and genes demonstrating ASE are
27.8 and 45.1%, respectively. We next classified the genes
according to the predicted cis-regulatory mechanisms,
using the same approach as for U87MG cells. As shown
in Figure 6, 225 genes demonstrated ASE due to whole-
gene-level regulation and 605 genes showed ASARP.
ASAS events again constitute the largest category (80%)
among all three types of alternative mRNA processing
events, followed by the ASAP events. This distribution
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Figure 5. Molecular analysis of the causal SNVs in predicted ASAS
events. (A) The three-exon minigene is shown that contains the tested
exon of each gene and its flanking intronic regions (�250 nt). For each
gene, the SNV associated with the ASAS pattern is shown, together
with the number of RNA-Seq reads corresponding to each allele of the
SNV (in red). The allelic ratios (as defined in Figure 1) are shown in
parentheses. For the CAST gene, the SNV is located in a 50 ss, the
sequences and MaxEnt scores (31) of the alternative versions of the
splice site are shown. (B) Semi-quantitative RT-PCR of total RNA
from U87MG cells transfected with the minigenes with primers
targeted to flanking exons [exons in green in (A)]. All transfections
were repeated four times. Levels of exon inclusion are shown below
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of ASE patterns in different mechanistic categories is
largely similar as that in the U87MG cells.

Comparison of allele-specific gene and alternative RNA
expression in U87MG and breast cancer

The prevalence of ASE in breast cancer cells (27.8% SNVs
and 45.1% genes) is higher than that in the U87MG cell
line (19.2 and 25.7% for SNVs and genes, respectively).
To determine if these differences were due to the difference
in sequencing depth in the two data sets, we randomly
sampled 4000 SNVs with adequate power in each data
set. The sampling was controlled such that the SNVs
had one-to-one match between the two data sets in
terms of read coverage and hence statistical power. A
total of 744 (17%) SNVs in the U87MG data were
identified with ASE patterns, whereas a much higher
number (1329, 32%) of ASE SNVs were resulted from
the breast cancer data. Thus, the more frequent occur-
rence of ASE in breast cancer was unlikely an artifact
related to the level of read coverage.
Genetic backgrounds and expression profiles of the

U87MG and breast cancer samples are vastly different.
Among all heterozygous SNVs, only 18 613 were
common to both samples, of which 753 (4%) satisfied
the power requirement (N reads� 20) in both. Among
the 753 SNVs, 144 and 176 were identified with ASE
patterns, respectively, in the U87MG and breast cancer
data. Thus, the proportions of ASE in the two data sets
are similar among the shared SNVs. More importantly, 43
SNVs had allelic expression bias common to both
samples, demonstrating a significant overlap (P=0.017,
hypergeometric test). This result suggests that there exists
cell type-independent ASE given common genetic back-
grounds (i.e. SNVs), which also serves as a support for
the validity and reproducibility of our methods in iden-
tifying ASE. Among the common SNVs in U87MG and
breast cancer data, only a small fraction could be

categorized into different types of events in both samples
(Supplementary Table S4) as a result of the stringent
criteria in our categorization scheme (Supplementary
Methods). Nevertheless, the categories that the SNVs
belong to are concordant between the two samples
(P=0.005 against the null hypothesis that the categories
of the shared SNVs are independent in the two samples,
Supplementary Table S4).

Allele-specific gene and alternative RNA expression
and GWASs

Recent GWASs reported a large number of SNPs
associated with phenotypes of various diseases.
However, the mechanisms underlying most SNP-disease
associations remain unknown. Here, we demonstrate
that our methods of RNA-Seq analysis may shed light
on the functional impacts of GWAS SNPs. We first
examined whether any GWAS SNPs (reported at http://
www.genome.gov/gwastudies/) were identified with ASE
patterns in our study. A total of 10 disease/phenotype-
associated SNPs were found in the U87MG and breast
cancer ASE results (Supplementary Table S5). For
example, a SNP rs4770433 in the gene SACS was
reported to be associated with the protein level of IL12
(36), a gene involved in the immune response and tumor
growth (37). Mutations in SACS are known to cause a
neurodegenerative disorder, autosomal recessive spastic
ataxis of Charlevoix–Saguenay (38). In the U87MG
data, this gene was identified to be under allele-specific
cis-regulation at the whole-gene level. Another example
is the SNP rs6749447 in the gene STK39, which was one
of the first SNPs identified in GWASs to be associated
with hypertension (39). STK39 encodes a serine/threonine
kinase that possibly functions in the cellular stress
response pathway. In our study, this gene was identified
to be under ASAS regulation in the breast cancer data.

Instead of being the causal genetic basis, GWAS SNPs
may only serve as markers of disease-genotype associ-
ations. We next investigated whether the genes identified
in our study were reported in GWASs, regardless of the
specific SNPs involved. A total of 64 and 129 genes in the
U87MG and breast cancer data, respectively, overlap
those resulted from GWASs (Supplementary Table S6).
Among these genes, 52, 107, 44 and 5 demonstrated
allele-specific gene-level expression, ASAS, ASAP and
ASTI, respectively, in at least one data set. As an
example, the gene LITAF was identified with ASAS
patterns in both samples. It contains a locus associated
with the QT interval duration of the heart (40) and was
reported to exert inhibitory effects on tumor growth (41).
The above results suggest that our methods may poten-
tially enable a better understanding of various disease
mechanisms.

DISCUSSION

Recent genotyping, exome and genome sequencing
projects generated an extraordinary list of genetic
variants across human populations and diseases. Most
of these variants may not have a significant function.
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Figure 6. Number of genes with ASE patterns in the breast cancer
data classified into different categories. Similar as Figure 4; a total of
830 genes were included that could be classified using our approach
(see ‘Materials and Methods’ section).
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Thus far, identification of the functional variants remains
a significant challenge. Ultimately, the biological impact
and functionality of these variants need to be examined
and validated experimentally. Nevertheless, bioinformatic
predictions that can narrow down the search for causal/
functional variants are in high demand to guide experi-
mental studies effectively. Here, we presented methods
to analyze RNA-Seq data that enabled identification of
genes and alternatively processed regions whose expres-
sion is under the regulation of genetic variants.
Compared to previous methods (e.g. eQTL analysis),
our approach utilizes RNA-Seq data of a single subject
to provide insights that were only possible using
massive-scale parallel expression assays of a large
number of subjects. In addition, different from eQTL
and other recent ASE studies, our approach not only
identifies ASE patterns, but also predicts the functional
mechanisms of genetic variants in specific categories of
cis-regulation of gene expression, which provides essential
information to facilitate discovery of causal variants as
shown by our experimental studies.

The strength of our methods rooted from the unique
advantages of RNA-Seq. First, RNA-Seq provides
mRNA sequence information at single-nucleotide reso-
lution. With enough read coverage, RNA-Seq can poten-
tially interrogate all expressed SNVs of a gene, thereby
providing a powerful tool for ASE studies. The simultan-
eous quantification of single-nucleotide expression and
exon/gene expression is another advantage of RNA-Seq
because a single data set can provide not only allelic ex-
pression of SNVs, but also whole-gene and alternative
isoform expression. In this sense, RNA-Seq is a
cost-effective approach for studies of genetic controls of
gene expression.

To demonstrate the utilities of the methods, we analyzed
RNA-Seq data of two different types of cancer samples.
Read-mapping bias of the alternative alleles of SNVs (20–
22) was removed using our previously developed mapping
strategy (10). Our results suggest that 26–45% of genes
demonstrated ASE patterns in the studied cancer cells at
an FDR of �5%. We also demonstrated that the cis-regu-
latory mechanisms underlying ASE may be inferred from
RNA-Seq data for hundreds of genes in each sample at
FDRs <20%. We chose parameters in this analysis such
that a relatively relaxed FDR was reached since these pre-
dictions provide candidate events that can be further
examined for disease relevance (such as in GWAS
results) and molecular validations. Thus, a relatively
large repository of candidates to start with may be bene-
ficial. Nevertheless, the parameters can be adjusted (e.g. a
smaller P-value cutoff of the Fisher’s exact test,
Supplementary Methods) if a lower FDR is desired. In
addition, approaches other than FDR analysis (e.g.
Bonferroni correction) may be used to account for
multiple hypothesis testing, which may change the
number and statistical stringency of the final results.

The ASE profiles of shared SNVs of the two data sets
overlap significantly, despite their substantial difference in
the types of cells and diseases involved. This observation
confirms that genetic factors play an important role in
gene regulation. On the other hand, the prevalence of

ASE differs between the two samples, with the breast
cancer data showing a much higher percentage of genes
with ASE. This difference may be explained by the con-
siderable difference in their genetic backgrounds or,
possibly, expression or functional difference of trans-
acting factors regulating the ASE patterns. For the small
number of SNVs predicted to be under allele-specific regu-
lation at the levels of whole gene or mRNA processing in
both samples, their associated categories of potential cis-
regulatory mechanisms are highly concordant in the two
samples (Supplementary Table S4). This finding indicates
that studies of ASE in a specific cell type may be
extrapolated to infer functional roles of disease-associated
SNPs or mutations even if the cell type is not directly
related to the disease. Indeed, we found many common
genes between those with allele-specific regulation and
those reported in recent GWASs. Combining the two
samples, 182 such genes were involved in GWAS disease
association, confirming that cis-regulation is an essential
aspect in the function of genetic variants.
Although RNA-Seq allows de novo identification of

biallelically expressed SNVs, we utilized known SNVs in
the respective samples to avoid the complication by RNA
editing events (10). Although whole-genome sequencing
data are not yet available for many samples, knowledge
of heterozygous SNVs can be readily obtained from
exome sequencing or microarray analysis. With the extra-
ordinary improvement in high-throughput technologies in
recent years, an unprecedented amount of transcriptome
sequencing data is becoming available. Bioinformatic
analyses that can examine and integrate such data sets
to address a wide variety of biological questions are
highly desirable. In this study, we demonstrated that
analyses of RNA-Seq data revealed a large number of
allele-specific events potentially associated with different
types of cis-regulatory mechanisms of gene expression.
Such studies may provide a solid foundation to facilitate
further investigations of the genetic basis of human
diseases.
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