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Background Two important challenges to the use of serological

assays for influenza surveillance include the substantial amount of

experimental effort involved and the inherent noisiness of

serological data.

Results I show that log-transformed serological data exist in an

effectively one-dimensional space. I use this result, together with

new mechanistic insights into serological assays, to develop

computational methods for accurately and efficiently recovering

unmeasured serological data from a sample of measured data, for

systematically minimizing noise and other types of non-antigenic

variation found in the data, and for quantifying and visualizing

antigenic variation. The methods can also be applied to data with

effective dimensionality greater than one, under certain

conditions.

Conclusion Careful application of the methods developed here

would enable the collection of better-quality serological data on a

greater number of circulating influenza viruses than is currently

possible and improve the ability to identify potential epidemic

and pandemic viruses before they become widespread. Although

the focus here is on influenza surveillance, the described methods

are more widely applicable.
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Introduction

Serological data on circulating influenza viruses generally

contain evolutionarily important information about func-

tional (antigenic) variation in the B-cell antigens of those

viruses.1,2 Because natural selection acts on antigenic varia-

tion, serological data can provide important insights into

patterns, causes, and epidemiological consequences of influ-

enza viral evolution.2–6 Nevertheless, there are important

challenges to the use of serological data. In particular, sero-

logical assays require considerable amounts of time and

effort to perform, and this limits the number of potential

epidemic and pandemic viruses on which serological data

can be routinely collected.7 In addition, serological data are

often contaminated by experimental noise (e.g. resulting

from the serial dilution of sera), which may cause indepen-

dently measured data for the same virus and serum sample

to vary greatly. Furthermore, the data depend on non-anti-

genic variables such as the red cell avidity and the anti-

body-inducing capacity of viruses,1,8 which can make it

difficult to obtain accurate information about the antigenic

variation of influenza viruses.

Smith et al.2 recently made great progress toward address-

ing the above challenges, focusing on data obtained from the

widely used hemagglutination-inhibition assay. Those data

are typically reported in a tabular format, with rows corre-

sponding to viruses and columns to sera. The entry found in

the i’th row and j’th column of the table (called the titer of

virus i relative to serum j) represents the reciprocal of the

maximum dilution of serum j that can effectively neutralize

virus i. Smith et al. used titers from multiple tables to con-

struct an ‘antigenic’ map of viruses and sera in which the

Euclidean distance between virus i and serum j was approxi-

mated by the negative log (base 2) of the titer of virus i rela-

tive to serum j normalized by the maximum titer obtained

for that serum. (Use of base 2 in the log-transformation of

titers reflects the fact that titers are typically measured using

twofold dilutions of sera. Base 2 is also used here when log-

transforming titers). The constructed antigenic map allowed

unavailable normalized titers to be accurately predicted from

distances measured on the map, increasing the amount of

available data. Because the map was constructed using data

from multiple tables, data recovered from it are, in principle,

less noisy than data obtained from individual tables.
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Here, I introduce computational methods that extend

the above antigenic-map approach into novel directions.

First, I show that on average, log-transformed titers

obtained in the same experiment (i.e. reported in the same

table) have only one effective dimension. Then, I introduce

a computationally efficient method that exploits this low

dimensionality to accurately recover a complete table of

titers using only a subset of those titers; various quantities

derived from titers (e.g. the normalized titers of Ref. 2) can

thus be recovered. I also show how ‘noise-free’ estimates

and 95% confidence intervals (CIs) can be computed for

titers and, hence, for related quantities. In addition, I

derive a mathematical relation that sheds light on the

mechanistic basis of titers and allows non-antigenic varia-

tion to be filtered out from these titers [Parts 1 and 2 of

Supporting Information (SI)]. I introduce a method for

quantifying and visualizing antigenic variation using such

filtered titers, and I illustrate this method using titers for

novel H1N1 viruses. The above methods were partly moti-

vated by remarkable recent work on the recoverability of

data that exist in a low-dimensional space.9

Methods

Computing the effective rank and the coherence of
a table of titers
Let H ¼ U � S � VT be the singular value decomposition

(SVD) of an m · n table H of log-transformed titers. (‘T’

denotes matrix transpose and ‘*’ denotes matrix multiplica-

tion). The columns (called eigenvectors) of U (V) are

orthonormal bases for the column (row) space of H,

whereas the diagonal entries of S are the n singular values

of H, ki; i ¼ 1; . . . ; n, sorted in decreasing order of magni-

tude. The square of the i’th singular value (i.e. the i’th

eigenvalue of HTH) quantifies the variation explained

by the i’th eigenvector;10 therefore, the fraction of the vari-

ation explained by the first r eigenvectors is given by:

Fr ¼
1Pn

i¼1 kið Þ2
Xr

i¼1

kið Þ2: ð1Þ

The rank of H is defined as the number of its non-zero

singular values. Because some eigenvectors associated with

non-zero singular values may explain negligible amounts of

the variation in titers (e.g. because they contain noise), the

rank of H may be greater than its effective rank, defined

here as the smallest value of r for which Fr = Fr+1,

r = 1,…,n-1 (the effective rank is set to n if this condition

is not satisfied for any r < n).

Alternatively, assuming that the noise found in log-trans-

formed titers obtained in the same experiment is normally

distributed, the eigenvectors containing noise would be

associated with eigenvalues that are significantly smaller

than the other eigenvalues.11 In this case, the effective rank

can be estimated by finding the smallest eigenvalue that is

significantly greater than all the eigenvalues smaller than it,

using Fisher’s variance ratio test. This is equivalent to find-

ing the maximum value of r for which10,11:

Fr � Fr�1

1� Fr
n� rð Þ>f1;n�r 1� að Þ; ð2Þ

where f1;n�r denotes the inverse cumulative function of the

F-distribution with 1 and n-r degrees of freedom, and a is

the level of statistical significance of the test. Here, I used

a ¼ 0:05= n� rð Þ, where the factor (n-r) represents a

Holm-Bonferroni correction for multiple comparisons.12

Both of the above methods for determining the effective

rank gave similar results.

Let PU (PV) be the orthogonal projection of H onto the

first r eigenvectors found in U (V). The coherence of H

(more precisely, the maximum coherence of U and V) with

respect to the standard bases in Rm and Rn is given by9:

coh Hð Þ ¼ max
m

r
max PU eik k2

1�i�m

;
n

r
max PV eik k

2

1�i�n

0
@

1
A: ð3Þ

The lower the coherence, the greater the probability that

measured titers, selected uniformly at random from H, will

contain enough information about the unmeasured titers

to enable their recovery by the method described elsewhere.

Recovering titers
Let H denote an m · n table of log-transformed titers of

rank r, m ‡ n, and let X denote a subset of �rm1Æ2log (m)

titers randomly selected from H with uniform probability.

(r = 1 is used in this study). The unselected (or ‘unmea-

sured’) titers are recovered by finding an m · n matrix X

that minimizes13:

l Xk k�þg
X

Hij2X
Hij � Xij
� �2

; ð4Þ

where l and g are Lagrange multipliers. Xk k� denotes the

nuclear norm of X, that is, the sum of the singular values

of X. When r is known (it is not approximated by the

effective rank of H), Xk k� is replaced by the sum of the r

largest singular values of X. Note that (Eqn. 4) was solved

using the fixed point continuation algorithm13; for the

experiments reported here, it took only a few seconds, on

average, to recover titers found in each analyzed table using

a Pentium IV machine running Windows XP.

Because titers recovered by the above method are theo-

retically exactly equal to their ‘noise-free’ values when the

selected titers are free of noise,9 discrepancies between the

recovered and the noise-free titers are necessarily due to

noise found in the selected titers. If there is no systematic

bias in the way that noise found in the selected titers

induces variation in the recovered titers, then the recovered

titers would be randomly distributed about the correspond-
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ing noise-free titers. The distribution of the recovered titers

can therefore be used to compute CIs for the noise-free

titers. This is the rationale for the following procedure for

computing CIs for titers found in H: 1. Randomly select

m1Æ2log (m) titers from H. 2. Recover the unselected titers

(see above). 3. Repeat steps 1 and 2 until each titer found

in H is recovered at least N (=1000) times (on average it

will take nN ⁄ [n-m0Æ2log(m)] repetitions of steps 1 and 2 for

this to happen). Let Li be a list of the k ‡ N values recov-

ered for the ith titer, which are sorted in increasing order.

Then, the lower (upper) 95% CI for the ith titer is given

by the :025kb c‘th ( :975kd e‘th) element of Li, where xb c
( xd e) denotes the largest (smallest) integer smaller (larger)

than x. The mean of the recovered values for each titer is

used as a noise-free estimate for that titer. Note that if H is

incomplete, then 95% CIs can still be computed for titers

found in any m1 · n1 complete sub-table of H, provided

m1
1Æ2log(m1) < m1n1.

In practice, when designing an experiment to measure

titers for m viruses relative to n sera, the experimentalist

can measure only a random subset of at least m1Æ2log(m)

titers and subsequently recover the unmeasured titers as

well as missing titers. In addition, noise-free estimates and

95% CIs for all titers (respectively subsets of titers) found

in a complete (respectively incomplete) table can be com-

puted and used in place of the original titers, which may

be unreliable.

Quantifying and visualizing antigenic differences
between viruses
Let H ¼ U � S � VT be the SVD of a table H of log-trans-

formed titers. To quantify antigenic differences between

viruses found in H, H is projected onto an r-dimensional

subspace of its row space: WT ¼ VT
r �HT , where Vr

denotes the first r eigenvectors found in V. The antigenic

difference between viruses i and j is defined as the Euclid-

ean norm of the difference between the i’th and j’th rows

of W. If r £ 3, then antigenic differences can be visualized

by plotting the rows of W. Antigenic differences computed

using titers from different tables can be embedded in a

common r-dimensional space by means of probabilistic

multidimensional scaling (Part 2 of SI). Note that the

above SVD decomposition of H is only feasible when no

titers are missing from H. In practice, missing titers should

be recovered before H is subjected to SVD (see Part 2 of SI

for an SVD approach that is applicable to tables with miss-

ing titers).

Results and discussion

Let H denote an m · n table of titers, with m ‡ n. Because

it is tedious to measure all mn titers found in H, it will be

very helpful if fewer titers can be measured and used to

recover the unmeasured titers. Recent theoretical work9

suggests that if both the rank r and the coherence of H

(see Methods for definitions) are not much greater than

one, then unmeasured titers can be recovered exactly if

only �rm1Æ2log (m) titers (selected randomly with uniform

probability) are measured. I investigated the applicability of

this method for recovering unmeasured titers by comput-

ing both the rank and the coherence of published tables of

empirical titers14 for influenza A and B viruses (Methods).

(Because missing titers can artificially lower the rank of a

table, only complete tables were analyzed; see Table S1).

The analyzed tables, which typically consist of viruses sam-

pled non-randomly from multiple influenza seasons, should

contain more variation on average than tables consisting of

viruses of the same subtype sampled randomly from only

one season. Nevertheless, when the titers found in each

table are log-transformed, on average �99% of the varia-

tion in those titers is explained by only one eigenvector,

which is associated with the largest singular value of the

table (Figure 1A). This suggests that the analyzed tables

have an average effective rank of �1. I obtained a similar

result by using a statistical F-test for the effective dimen-

sionality of each table (Methods). In addition, the tables

have an average coherence of 1Æ36 ± 0Æ12. Note that devia-

tions from an effective rank of 1 may be caused by noise

and other factors, including the normalization of titers

(Part 3 of SI). Also, based on well-known results on the

ranks of partitioned matrices,15 when multiple tables of

titers are combined the effective rank of the resulting com-

posite table can be >1, especially if the rank of any one of

the original tables is also >1 (Part 3 of SI). The above fac-

tors may partly explain the higher dimensionality of nor-

malized titers reported previously.2

The fact that both the effective rank and the coherence

of the analyzed tables are not much greater than one sug-

gests unmeasured titers can be recovered exactly by the

above-mentioned method. Note, however, that because

measured titers are likely to contain noise, exact recovery

of unmeasured titers may not be possible. Also, recovery is

not possible for rows ⁄ columns of H that do not contain

any measured titer. Furthermore, accurate (not necessarily

exact) recovery is only possible if the number of measured

titers is not smaller than the number of degrees of freedom

of H, which is given by r (m + n ) r),9 a condition that is

satisfied by all the tables analyzed earlier. In practice, each

row ⁄ column must contain more than r titers in order for

titers missing from that row ⁄ column to be accurately

recovered. It is important to keep in mind that exact recov-

ery of unmeasured titers is still theoretically possible if the

effective rank of H is >1, provided conditions (i) and (ii)

above are satisfied. In addition to unmeasured titers, the

above conditions are also applicable to the recovery of

‘missing’ titers – titers that are presumed to be either too

Ndifon
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high or too low to be measured experimentally. (Note that

some missing titers may actually be within the limits of

experimental resolution, but they could not be measured

because of noise).

I applied the above method for recovering unmeasured

titers to tables of empirical titers for influenza A and B

viruses (Table S1). The titers found in each table were log-

transformed, and 90% of those titers were randomly

selected and used to recover the unselected (‘unmeasured’)

titers (Methods). This procedure was repeated 100 times

for each table. [Note that it was necessary to limit this

analysis to m · n tables for which 0Æ9mn ‡ m1Æ2log (m).]

Both the mean absolute difference (0Æ66 ± 0Æ68) and the

relative mean absolute difference (0Æ08 ± 0Æ10) between the

recovered and the unmeasured titers were small, suggesting

that the recovery of unmeasured titers was accurate, albeit

not exact. A closer look at the above results reveals that the

mean absolute difference varies across the analyzed tables,

ranging from 0Æ15 to 2Æ50. This may reflect the differing

amounts of noise found in titers from different tables.

To minimize noise found in empirical titers, I developed

a novel method for computing noise-free estimates and

95% CIs for titers (Methods). The method was tested using

20 · 10 rank-1 tables consisting of simulated, log-trans-

formed titers. Each table was constructed as the product of

two matrices (of dimensions 20 · 1 and 1 · 10, respec-

tively), the entries of which were independently drawn

from a truncated normal distribution with support (1Æ5, 4);

this support was chosen to simulate the dynamic range of

log-transformed, empirical titers (3Æ32, 13Æ32). (Note that

because empirical titers are measured on a geometric scale,

it is reasonable to approximate their distribution by a log-

normal distribution.16) To simulate noise found in empiri-

cal titers, for each constructed table M, another table M*

was obtained by adding a perturbation (independently

drawn from a normal distribution with mean 0 and stan-

dard deviation d) to each entry of M. M* was then used to

compute estimates of and 95% CIs for the noise-free titers

in M (Methods), for d = 0, 0Æ1, 0Æ2,…, 1. [Note that when

d = 1 there is a 32% chance that, on a geometric scale, a

titer will be either multiplied or divided by at least 2 (the

dilution factor often used in serological assays), represent-

ing a high amount of noise.] Representative results

obtained using one of the constructed tables are shown in

Figure 1.

The results show that the computed 95% CIs have excel-

lent coverage properties; they contain their corresponding

noise-free titers in >99% of cases and they also have small
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Figure 1. Dimensionality and recoverability of noise-free titers. (A) The dimensionality of each of 23 tables of empirical titers (Table S1) was

investigated by log-transforming the titers found in each table and subsequently determining the fraction of the variation in titers (denoted Fr) that is

explained by the eigenvectors associated with the r largest singular values of each table (Methods). Fr (averaged over all 23 tables) is plotted against

r, for r = 1,…,5. (B) A table consisting of simulated titers was contaminated by noise (independently drawn from a normal distribution with mean 0

and standard deviation d), and the resulting noisy titers were used to compute estimates of and 95% CIs for the uncontaminated (or noise-free)

titers (Methods). The fraction of noise-free titers that occurred within their corresponding CIs is plotted against d. (C) The mean ratio of the width of

the 95% CI for a particular noise-free titer to the absolute value of that titer is plotted against d. (D) The mean absolute difference between the

estimated and noise-free titers, between the estimated and noisy titers, and between the noisy and noise-free titers, is plotted against d. Bars denote

standard deviations.
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relative widths (Figure 1B,C). Remarkably, although esti-

mates for the noise-free titers were computed using noisy

titers, the mean absolute difference between those estimates

and the noise-free titers is much smaller than between the

estimated and noisy titers and between the noisy and

noise-free titers (Figure 1D). Indeed, the mean absolute dif-

ference between the estimated and noise-free titers grows

much more slowly with d than does the mean absolute dif-

ference between the estimated and noisy titers (Figure 1D).

These results suggest that the developed method can, in

principle, be used to systematically minimize noise found

in tables of empirical titers. As an illustration, I computed

noise-free estimates and 95% CIs for the empirical titers

analyzed earlier. The average absolute difference between

each titer and its noise-free estimate is small (0Æ66 ± 0Æ67).

However, 60% of the titers do not occur in their associated

95% CI, suggesting that those titers may be unreliable. This

is consistent with the high variation in independently mea-

sured normalized titers for the same virus and antiserum

that is observed in many cases (Table S1).

In addition to noise, it is also important to minimize

other types of non-antigenic variation found in titers. This

is currently not possible because of limited understanding

of the fundamental nature of titers. To shed light on the

nature of titers, I developed and used a mechanistic model

of hemagglutination inhibition to derive the first explicit

mathematical equation for the titer of virus i relative to

serum j [Eqn. (S23) of SI]:

Hij ¼ AjKijJi; ð5Þ

where Aj denotes the concentration of antibodies found in

serum j, Kij the average affinity of those antibodies for

virus i, and Ji a dimensionless quantity that depends on

such non-antigenic variables as the avidity of virus i for

red cell, the concentration of virus i, etc. (see Part 1 of SI

for additional details). Aj depends on non-antigenic vari-

ables, including the antibody-inducing capacity of the virus

against which serum j was raised and the immune status of

the organisms in which that serum was raised.8 The derived

equation predicts that the normalized titer H jj ⁄ H ij, a com-

monly used measure of antigenic difference,7 is approxi-

mately independent of Aj, but it depends on both Ji and Jj.

In contrast, a measure of antigenic difference introduced by

Archetti and Horsfall17 – [H iiH jj ⁄ (H ijH ji)]1 ⁄ 2 – is predicted

to be approximately independent of the non-antigenic vari-

ables Aj, J i, and J j, suggesting that it may be more accurate.

This is consistent with previous empirical results.14

Importantly, the derived equation predicts that by mean-

centering each row (resp. each row and column) of a table

of log-transformed, un-normalized (resp. normalized) titers

the dependence of those titers on non-antigenic variables

would be minimized. I developed a method for quantifying

and visualizing antigenic differences between viruses using

such mean-centered tables (Methods). As an illustration, I

used the method to construct a one-dimensional map

showing the serological relationships among 123 H1N1

viruses, 118 of which are novel H1N1 viruses (Figure 2).

The map shows that the serological responses of novel

H1N1 viruses are on average much more similar to each

other than to the corresponding responses of earlier H1N1

viruses, particularly a virus isolated in 1930 and another

isolated in 1976 (Figure 2). In addition, the map suggests

the existence of a well-defined direction of antigenic evolu-

tion of the viruses. Because ‘serological’ maps, such as the

one described here, have only one dimension, they may

facilitate computational prediction of short-term changes

in the serological attributes of epidemic viruses.

In summary, the computational methods presented in

this paper suggest new possibilities for improving the use

of hemagglutination-inhibition titers (and serological data

in general) for influenza surveillance. In particular, the

SW30 W198NJ76

TX08

IL07
CA09

Serological difference

Figure 2. One-dimensional serological map of 123 H1N1 viruses. Four

tables of titers (Supplementary Data S1) that were recently collected by

the US. Centers for Disease Control and Prevention were analyzed. The

tables had dimensions 26 by 10, 36 by 10, 40 by 12, and 41 by 11,

respectively. Between 10% and 26% of titers were missing from each

table. Measured titers found in each table were log-transformed and

used to recover the missing titers, except for titers missing from

rows ⁄ columns in which fewer than two titers were measured. (In

particular, titers for the Brisbane ⁄ 59 ⁄ 07 virus were not recovered). Each

completed table was row-centered and used to quantify differences

between the serological responses of pairs of viruses (Methods). These

serological (or ‘antigenic’) differences were subsequently mapped onto

a one-dimensional space by means of probabilistic multidimensional

scaling (Part 2 of SI). The viral coordinates thus obtained are shown in

the plot. The width of each displayed rectangle represents a unit of

serological difference. The novel H1N1 vaccine virus (CA09) is labeled,

as are five other viruses that were isolated before 2009. The arrow

indicates the apparent direction of temporal changes in the serological

properties of the analyzed viruses. Virus labels: CA09 California

07 ⁄ 2009, IL07 Illinois ⁄ 9(33304) ⁄ 2007, NJ76 New Jersey ⁄ 8 ⁄ 1976,

SW30 Swine ⁄ Iowa ⁄ 1930, TX08 Texas ⁄ 14 ⁄ 2008, WI98

Wisconsin ⁄ 10 ⁄ 1998.
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method for computing estimates and 95% CIs for

noise-free titers would allow uncertainties associated with

titers to be taken into account, for example, when select-

ing viruses for use in influenza vaccines. Also, the

method for minimizing non-antigenic variation found in

titers may help to improve the estimation of antigenic

differences between viruses. In addition, the method for

recovering unmeasured titers may help to reduce the

experimental effort required to collect titers; for example,

only 201Æ2log(20) = 109 titers may need to be measured

in order to accurately determine all 200 possible titers

for 20 viruses relative to 10 sera. This method can be

applied to other types of serological data, especially when

the number of viruses under consideration is greater

than or equal to the fifth power of the dimensionality of

the data. The additional experimental capacity made

available by the method would increase the number of

viruses, circulating in humans and other organisms, for

which serological data can be routinely collected and

thereby improve the likelihood that potential epidemic

and pandemic viruses will be identified before they

become widespread.7 This is important in light of the

recent pandemic spread of an influenza virus whose ini-

tial circulation in humans may have gone undetected for

several months.18

Note that the observation, reported here, that tables of

empirical titers have an average effective rank of �1 –

titers exist in a space that has only one effective dimen-

sion – suggests that the effective number of independent

variables that determine titers is very small. In other

words, while titers depend on many variables [see Equa-

tion (5) and Part 1 of SI] some of which may be mutu-

ally independent, variation in titers may be dominated

by one or more co-dependent variables. In so far as

titers are determined by and contain information about

viral phenotypes, the demonstrated low dimensionality of

the space of titers and the consequent high recoverability

of unknown titers suggests that it may be possible to

predict biophysically accessible viral phenotypes from

limited information about extant viral phenotypes. Well-

designed theoretical and experimental tests of this idea

may yield important new insights and also shed light on

questions concerning the evolutionary accessibility of epi-

demic variants of influenza viruses.19 In addition to

influenza surveillance, the new methods presented in this

paper can be used in the surveillance of other pathogens

and in the investigation of basic questions concerning

pathogen evolution and dynamics. As should be the case

for existing methods (e.g. recently developed methods for

elucidating the antigenic structure2,20 and the adaptation

potential21 of pathogen populations), continued empiri-

cal ⁄ experimental assessment of the new methods is neces-

sary to ensure that they will remain useful.
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