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Abstract
Background: Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of
genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The
ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system.
Arginase (RocF) hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to
carbon dioxide and ammonium, which can neutralize acid.

Results: The degree of variation in arginase was explored at the DNA sequence, enzyme activity
and protein expression levels. To this end, arginase activity was measured from 73 minimally-
passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of
the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase
activity was found to substantially vary (>100-fold) in both different H. pylori strains and in the E.
coli model. Western blot analysis revealed a positive correlation between activity and amount of
protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity
upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive
microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232,
which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity.

Conclusion: These studies demonstrated that H. pylori arginase exhibits extensive genotypic and
phenotypic variation which may be used to understand mechanisms of microheterogeneity in H.
pylori.
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Background
Helicobacter pylori, a Gram negative bacterium, is a highly
host-adapted gastric pathogen that has been implicated in
a wide spectrum of diseases ranging from gastritis to ade-
nocarcinoma [1-5]. Although this bacterium colonizes the
gastric mucosa of billions of people, only 20% of the
infected people become symptomatic. The disparities of
symptoms from one person to another are indicative of a
pathogen with significant genetic diversity. Two major
types of diversity have been described in H. pylori clinical
isolates: i) macrohetereogeneity, in which large chromo-
somal regions vary from strain to strain, and ii) micro-
heterogeneity, in which individual genes feature sequence
diversity. Examples of macroheterogeneity include the
presence or absence of the cag pathogenicity island, inser-
tion sequences, and a hypervariable region containing
about half of the strain-specific genes, called the plasticity
zone [6-14]. Furthermore, 22% of the organism's genes
are dispensable in one or more strains, leading to a core of
only about 1280 genes [13]. Macroheterogeneity can be
assessed by restriction fragment length polymorphisms,
multilocus enzyme electrophoresis, and microarrays.

Examples of microheterogeneity include extensive
sequence variation of the vacA, cagA, babA, hopQ, iceA
genes and other genes [9,15-20]. For example, the vacA
gene encoding the vacuolating cytotoxin (VacA) exhibits a
remarkable degree of genotypic and phenotypic variation
[9,21-23]. The vacuolating activity of VacA varies approx-
imately 30-fold across different isolates due to the pres-
ence of at least five different vacA alleles [24]. Two families
of the vacA alleles, type m1 and type m2, are only about
70% identical [25]. In addition, there is also evidence that
mixed strain infections can occur in a single patient [26],
and that a single strain can change in vivo over time
[16,27,28]. The extraordinary diversity of this pathogen
may explain why the acquired immune response cannot
clear the infection or prevent reinfection by a heterolo-
gous strain. The genetic variation among the bacterium's
virulence factors may relate to the diverse disease manifes-
tations in patients, although this is not well understood.

On the other hand, the urease structural proteins, UreA
and UreB, are very well conserved across heterologous
strains of H. pylori (97–100% amino acid identity, based
on BlastP analysis of GenBank sequences). These proteins
constitute a nickel-requiring, highly abundant metalloen-
zyme that is central to the pathogenesis of the bacterium
[29]. Urease hydrolyzes urea to carbon dioxide and
ammonia, the latter of which neutralizes gastric acid [30].
Local neutralization of gastric acid helps H. pylori to safely
traverse the gastric mucosal layer and colonize the gastric
epithelium [31]. Indeed, urease mutants are unable to col-
onize and establish a lasting infection in nude mice and
gnotobiotic piglets [32-34]. Considering that functional

urease is absolutely essential for virulence, numerous ran-
dom mutations in the functional core of the urease gene
could be detrimental, thus explaining why ureA and ureB
are highly conserved in heterologous strains. Without sta-
bility in these two structural genes, this species would be
ineffective as a pathogen.

The source of urea for H. pylori urease can either be
through host- or bacterial-derived arginase. H. pylori con-
tains the rocF gene encoding arginase, which catalyzes the
hydrolysis of L-arginine to L-ornithine and urea [35-37].
H. pylori is deficient in the enzymes for synthesizing
arginine de novo and is therefore dependent on host
arginine to help it maintain nitrogen balance [36-38].
Arginase consumes arginine, thereby removing this essen-
tial amino acid away from other cellular processes if the
enzyme activity is too high. The role of arginase in H.
pylori pathogenesis is beginning to be unraveled. Arginase
allows the bacterium to evade host immune response by
competing with macrophage inducible nitric oxide syn-
thase (iNOS) for L-arginine [39]. H. pylori arginase also
down-regulates expression of CD3ς on T-cells, preventing
their proliferation via consumption of arginine from the
extracellular milieu [40]. Moreover, arginase produces
endogenous urea that can be hydrolyzed by urease to pro-
duce ammonium that contributes to acid resistance [35].
Thus, arginase is involved in helping H. pylori evade both
the innate (acid, NO) and adaptive (T cells) immune sys-
tems. Arginase clearly plays a role in these pathogenic
processes, but surprisingly the rocF gene encoding argin-
ase is not essential for the establishment of infection [35],
suggesting that in vivo the enzyme plays a role down-
stream of the initial colonization step, perhaps modulat-
ing disease severity.

The importance of specific mutations in the phenotypic
variation of this species are largely unknown. The evolu-
tion of specific genes and proteins in this pathogen are of
paramount importance as the field strives to understand
the role of specific genes in virulence. In a previous study
involving laboratory-adapted strains, some variation in
arginase activity was found among three strains [35].
However, it was not determined whether this variation
occurred from spontaneous mutation from passaging the
strains repeatedly in the laboratory or from natural diver-
sity existing among H. pylori strains. To determine argin-
ase variability, phenotypic and genotypic analyses of rocF
in 73 minimally-passaged clinical isolates and six labora-
tory-adapted strains was investigated. While most previ-
ous studies on microheterogeneity focused on only a
small portion of a gene, we studied the entire arginase
coding region plus upstream region. This study demon-
strates that extensive microheterogeneity exists in the rocF
gene, with phenotypic manifestations, and provides evi-
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dence that this gene may serve as a model to study micro-
heterogeneity in H. pylori.

Results
Variation of arginase activity in clinical isolates of H. 
pylori
Previously, a modest 1.6-fold variability in arginase activ-
ity was reported in three laboratory-adapted strains of H.
pylori [35]. In this study, the potential variability of argin-
ase activity was examined in much more detail using 73
minimally-passaged clinical isolates of H. pylori from
patients with different disease manifestations and from
different geographical locations (Table S1, see additional
file 1). The clinical isolates have been passaged fewer than
five times on laboratory media and therefore their argin-
ase activity would be closer to that found in vivo. Six labo-
ratory-adapted strains (G27, J99, 26695, 43504, SS1, and
3401) were used as controls. Arginase activities of extracts
from H. pylori strains revealed dramatic variations exceed-
ing 100-fold among the isolates (Fig. 1A; Table S1 in addi-
tional file 1). Three different categories could be
arbitrarily assigned to the isolates: high activity (> 5000 U;
n = 2 isolates), intermediate activity (1000 U to 5000 U; n
= 38 isolates), and low activity (<1000 U; n = 39 isolates).
For nearly all strains, arginase activity remained constant
within experimental error for each strain following three
consecutive passages. However, repeated passaging of sev-
eral strains over the period of seven to nine days, changed
their arginase activity, with some increasing (J75, SS1)
and some decreasing (26695, J104) (see below; data not
shown). No clear correlation could be made between argi-
nase activity and disease status of the patient, although
the number of isolates available for certain diseases types
(e. g., cancer, duodenal ulcer, duodenitis) was too low to
determine significant correlations.

To determine whether an alternative growth medium also
resulted in variable arginase activity, H. pylori strains were
grown in Ham's F-12 broth and corresponding extracts
assayed for arginase activity. Arginase activity also varies
in broth, depending on the strain, but there was a strong
correlation (correlation coefficient= 0.9) between argin-
ase activity of a particular strain in broth versus agar (Fig.
1B). In other words, strains with low arginase activity on
agar also had low arginase activity in broth.

Although we previously determined that rocF mutants of
H. pylori have wild type levels of urease activity [35], we
sought to determine whether arginase and urease activi-
ties correlated, using a larger number of strains. Twelve
clinical isolates of H. pylori were measured for urease activ-
ity and compared with arginase activity. Notably, there
was more than 25-fold variation in urease activity among
clinical isolates examined (Fig. S1A, see additional file 2).
Variation in urease activity in fresh clinical isolates was 3–

10-fold in previous studies using less sensitive urease
activity methods [41,42]. There was no correlation what-
soever between urease and arginase activities (correlation
coefficient = 0.04) (Fig. S1B, see additional file 2). For
example, some strains had low arginase but high urease
activties while other strains had low activities of both
enzymes.

E. coli expressing the arginase gene from different H. 
pylori clinical isolates displays variable activity
The variation in arginase enzyme activity observed in H.
pylori could be due to sequence differences in the arginase
protein itself or in other loci which may affect the enzyme.
To eliminate the genetic variability of other H. pylori loci
as a compounding factor, arginase activity was assessed in
the genetically stable E. coli model developed previously
[43]. The arginase gene with its native promoter from 20
of the strains used in this study, representing low, inter-
mediate and high arginase activities, was cloned into
pBluescript and arginase activity measured in transformed
E. coli. (Although the rocF gene from strain G27 was
cloned and sequenced, arginase activity from E. coli carry-
ing this clone was not directly compared to the others,
because the rocF gene was in a different plasmid and strain
of E. coli from the rest of the clones. However, the G27
rocF did confer arginase activity to E. coli Top10 [14,200 U
versus 700 U in insert-free vector control strain pCR2.1).
Remarkably, arginase activity depended on the particular
arginase gene cloned into E. coli, with a greater than 100-
fold magnitude of variation (Fig. S2, see additional file 3).
Surprisingly, there was absolutely no correlation (r2 =
0.0749) between the arginase activity from E. coli contain-
ing a particular rocF gene and the arginase activity of the
H. pylori strain from which the rocF gene was cloned (data
not shown). For example, H. pylori strain A5 has almost
no detectable arginase activity, yet the rocF gene from this
strain conferred arginase activity to E. coli. H. pylori strain
A4 has one of the highest arginase activities among all the
clinical isolates (4431 U), yet its arginase gene conferred
among the lowest arginase activities to E. coli. Thus, the
data also raise the possibility that there are strain-specific
H. pylori loci that modulate arginase activity. We hesitate
to make other firm conclusions due to plasmid copy
number effects potentially having an influence on the
arginase activity levels observed.

Evidence for strain-specific regulation of H. pylori 
arginase activity
Disruption of the rocF gene results in abolishment of argi-
nase activity [35,44]. A new chromosomal complementa-
tion system for H. pylori that targets the hp0203-204
intergenic region demonstrated that the arginase mutant
of strain 26695 could be complemented for arginase activ-
ity [44].
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Arginase activity variation in H. pylori clinical isolatesFigure 1
Arginase activity variation in H. pylori clinical isolates. Ornithine concentration was measured at 515 nm spectropho-
tometerically by the appearance of an orange color originating from the reaction of ornithine with acidified ninhydrin. A. Argi-
nase activity of extracts from 16 US H. pylori strains, 11 of which are minimally-passaged clinical H. pylori isolates. Strains were 
grown on Campylobacter blood agar plates for 48 h. The graphs show the average arginase activity (pmol L-Orn/min/mg pro-
tein) ± standard deviation of one experiment representative of at least three. A complete list of strains and average arginase 
activities is given in Table S1 (see Additional file 1). The variation from experiment to experiment is about 10–15%. B. Compar-
ison of arginase activity of H. pylori grown in broth versus grown on agar. H. pylori strains were grown in Ham's F-12 broth for 
16–18 h or on Campylobacter blood agar plates for 48 h as described in Materials and Methods. The data suggest a strong cor-
relation between the arginase activity from H. pylori grown in broth versus that on agar.
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Three plasmids, pMLB001, pMLB002, and pMLB003 carry
the wild type rocF genes from H. pylori strains 43504, SS1
and J63, respectively. These suicide plasmids were trans-
formed into the rocF mutant of 26695 and confirmed to
yield 26695 rocF-MLB001, -MLB002, and -MLB003 [44].
The arginase activity of these three complemented strains
was compared to that of the corresponding wild type H.
pylori strain from which the rocF gene was derived. When
the rocF genes from strains 43504 or SS1 were used to
complement the 26695 rocF mutant, arginase activity was
restored to levels similar to that of the corresponding
wild-type 43504 or SS1 strains (Fig. 2). In contrast, when
the rocF gene from strain J63 was used to complement the
26695 rocF mutant, arginase activity was about ten times
higher than that of the corresponding wild-type J63 strain
(Fig. 2). This finding raises the intriguing possibility that
there is strain-dependent regulation of arginase.

Additional evidence for strain-dependent arginase activity
was revealed from strains SS1, B5 and B1, which all have
identical rocF coding regions and upstream regions, yet
have different arginase activities (8100, 1900, 1400 U,
respectively) (Table S1 in additional file 1).

Evidence that H. pylori prefers low to moderate arginase 
activity
The arginase activity data from clinical isolates revealed
that most strains possess intermediate or low arginase
activities, while only a few strains have high activity, with
only one strain above 10,000 U (strain 3401). If H. pylori
did not control arginase activity, then a strain with two
functional chromosomal copies of the arginase gene
should have an enzyme activity significantly higher than
the wild type strain carrying only a single arginase gene.
To investigate this plasmid pMLB004, which confers argi-
nase activity to an arginase negative strain, was trans-
formed into the high arginase activity strain, SS1, to yield
two chromosomal copies of wild-type rocF (each with its
native promoter), designated SS1 MLB004 [44]. As an iso-
genic control, the same construct devoid of the arginase
gene (pIR203C04) was transformed into SS1 to yield SS1
203C04 [44]. Rather than the predicted 100% increase,
strain SS1 MLB004 had only about 25% more arginase
activity over that of the isogenic control SS1 203C04
strain (Fig. 3). This suggests that H. pylori has mechanisms
to prevent arginase activity from becoming too high.

Western Blot analysis of arginase in clinical isolates of H. 
pylori
Western blot analysis with RocF antiserum showed that
extracts from H. pylori strains with high arginase activity
(e. g., 3401, A4) had relatively higher amounts of arginase
protein (Fig. 4, only a subset shown), than most strains
with lower arginase activity (e. g., J188, A2). There were
occasional exceptions; strain J63, for example, had low

arginase activity, but high amounts of arginase protein
(Fig. 4). It was difficult to detect arginase protein in some
of the lowest arginase activity strains, such as strains A2,
A5, A6, A7 (Fig. 4). Two strains whose arginase activity
changed upon laboratory passage (J104 increased while
SS1 decreased), likewise showed corresponding changes
in the amount of arginase protein (Fig. 4). The arginase
protein size by SDS-PAGE was found to vary slightly
among the minimally-passaged clinical isolates; this size
variation did not correlate with arginase activity (e. g.,
3401 vs. B128A) (Fig. 4). Despite slight size variations, all
rocF genes were predicted to encode a 322 amino acid pro-
tein. The size variation was not considered significant
enough to study further.

Nucleotide, amino acid and phylogenetic analyses of rocF/
RocF
To understand better the arginase nucleotide sequence
variations, strains representing low, intermediate and
high arginase activity were selected for further analysis.
PCR amplification was performed on 21 different arginase
genes, each giving a 1.1 kb fragment, which was cloned
and sequenced. Pairwise alignments of the nucleotide
sequences of 22 strains (including the J99 rocF sequence
already in the database, GenBank accession #AE001565;
strain AG1 excluded) revealed that the rocF coding
sequences (~1.0 kb) were 92.9% to 100% identical to that
of strain 26695 (data not shown). Within the region
encoding the arginase putative cobalt-binding site,
DAHAD (Fig. 5A), two corresponding nucleotide changes
were observed: GAC to GAT (strains SS1, J75, B1, B7, and
J166) and GCG to GCT (strain AG1). In both cases, the
mutations were silent, leading to no changes in the amino
acid sequence. Alignments also revealed a hypervariable
region in the upstream sequence proximal to the ATG start
codon (Fig. 5B). The region between nucleotides -37 to +3
ranged from only 67% to 100% identity with strain 26695
(Fig. 5C). Ten different sites showed mutations; insertions
and deletions also occurred in this hypervariable region
(Fig. 5B and 5C). Interestingly, some of the mutations,
insertions and deletions, occurred near or in the predicted
Shine-Dalgarno sequence (ribosome-binding site)
(26695 rocF SD sequence: AGGAGTTATA) (Fig. 5A and
5B). Intriguingly, the arginase upstream region from the
recently sequenced H. pylori strain AG1 [45] had no
homology with that of any of the arginase upstream
regions studied here (data not shown). Instead, the argin-
ase upstream region of strain AG1 showed striking resem-
blance (92% nucleotide identity) to that of the arginase
upstream region of H. acinonychis [46] (data not shown).
In contrast, the arginase upstream sequence from the
remaining 22 H. pylori strains studied here did not bear
any homology to any region in the H. acinonychis genome
(data not shown).
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Pairwise alignments of the translated RocF coding regions
showed that they were 92% to 100% identical, with most
variability located near the carboxy terminus (Fig. 5A).
There were 42 amino acid residues out of 322 (13%) that
were not 100% conserved across all the isolates. Of these
42, 28 of the variable residues are found in the last 100
amino acids, with nine of these variable sites being in the
final 16 amino acids at the C-terminal end. Three strains,
SS1, B5, and B1, were 100% identical at the nucleotide
and amino acid levels. Strains HPDJM17 and J188 had
five amino acid differences. All H. pylori RocF proteins
were predicted to have 322 amino acids.

A phylogenetic tree of the arginase proteins from 23 H.
pylori strains revealed four clades, with 16, 4, 2, or 1
strain(s) in the clades (Fig. 5D). A phylogenetic tree of the
nucleotide sequences of the arginase upstream region
from 22 H. pylori strains (strain AG1 excluded) showed
three major clades containing one, fifteen and six strains,
respectively (Fig. 5E). The two phylogenetic trees (Fig. 5D,
5E) showed little congruence with each other. For exam-
ple, the RocF protein from strains 43504 and A4 were
within the same clade, but the corresponding rocF

Strain-specific regulation of H. pylori arginase activityFigure 2
Strain-specific regulation of H. pylori arginase activity. Comparison of arginase activities of a native H. pylori strain and a 
rocF mutant strain of 26695 complemented with the corresponding rocF gene (coding region plus native rocF promoter). Strain 
rocF-26695-MLB001 is a rocF mutant of strain 26695 in which the wild type rocF gene from strain 43504 has been comple-
mented. The MLB002 strain carried wild type rocF from strain SS1 and the MLB003 strain carried wild type rocF from strain J63.
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upstream regions were in different clades. Two strains
showing 100% identity in the arginase upstream region
were strains G27 and B7, two of the highest arginase activ-
ity strains (3900 U and 4800 U, respectively) (Fig. 5C,
5E). These two strains did not have identical coding
regions, showing 96% identity at the amino acid level.
Three other strains were 100% identical in the upstream
region: B5, SS1, and B1 (Fig. 5C, D). These three strains
were also 100% identical at the amino acid level (Fig. 5D),
yet had different levels of arginase activity (Fig. 5C). This
provided additional evidence that a strain-specific locus
other than rocF plays a role in some of the variability

observed. No clear correlation could be made between
phylogenetic placement on either of the trees (Fig. 5D, E)
and the level of arginase activity (Table S1 in additional
file 1).

Serine 232 in RocF is required for arginase activity
No information is available regarding the amino acids in
H. pylori RocF that are responsible for catalytic activity.
The clinical isolate A2 had barely detectable arginase
activity (68 U) we designate as arginase null (Fig. 6A). The
arginase gene and protein sequences were directly com-
pared to that of a strain with much higher arginase activ-

Anti-RocF Western on minimally-passaged wild type H. pyloriFigure 4
Anti-RocF Western on minimally-passaged wild type H. pylori. Proteins were separated by SDS-PAGE using a 12% 
resolving gel and 10 μg of protein loaded per lane and analyzed by anti-RocF antibodies. Only a subset of strains is shown. J104-
L, low arginase activity strain minimally passaged; J104-H, high arginase activity strain passaged for seven to nine days; SS1-L, 
low arginase activity strain passaged for seven to nine days; SS1-H, high arginase activity strain minimally-passaged. Numbers 
below the top two blots represent the arginase specific activity (rounded to nearest 100; pmol L-ornithine/min/mg protein ± 
standard deviation) of the extract used for the blot.
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Microheterogeneity in arginase sequences from clinical isolates of H. pyloriFigure 5
Microheterogeneity in arginase sequences from clinical isolates of H. pylori. The arginase coding region (~1.0 kb) 
plus ~130 bp of the upstream region encompassing the promoter and 18 bp downstream were amplified by PCR using Pfx and 
cloned into pBluescript. The constructs were sequenced using T3 and T7-1 primers (see Materials and Methods). A. Summary 
of microheterogeneity in the arginase coding region in H. pylori. Multi-sequence pairwise alignments were conducted with the 
rocF coding region using ClustalW. The alignment was converted to a graphical representation to show regions that are 100% 
conserved (white) and regions that vary (black). B. Hypervariablity in the ~133 bp rocF upstream region including the arginase 
promoter sequence preceding the ATG start codon. Multi-sequence pairwise alignments of the ~133 bp rocF upstream region 
from H. pylori strains were conducted using ClustalW. The alignments were converted to a graphical representation to show 
regions that are 100% conserved (white) and regions that vary (black). The alignments revealed a hypervariable region proximal 
to the ATG start codon. Numbering based on that of H. pylori strain 26695. Underlined is the Shine-Dalgarno (SD) sequence. 
Numbers in parentheses correspond to the number of strains featuring the insertion (ins) or deletion (del). Strain AG1 was 
omitted from this analysis because its arginase upstream region was completely different from the other 22 strains. C. Hyper-
variability in the ~35 bp upstream of the arginase ATG translation start codon in 21 H. pylori strains. Some of the sequence 
hypervariability occurred in the predicted SD region (underlined). The consensus sequence for the 3' end of the 16S rRNA for 
H. pylori is shown, as well as the consensus SD sequence for other H. pylori genes. Arginase activity is shown on the right hand 
side in units rounded to the nearest 100. Asterisks indicate nucleotides conserved in all strains. D. Phylogram of RocF protein 
sequence from 23 H. pylori strains. ClustalX and Treeview were used to construct the tree. E. Phylogram of the rocF upstream 
region from 22 H. pylori strains. ClustalX and Treeview were used to construct the tree. Strain AG1 was omitted from this 
analysis because its arginase upstream region was completely different from the other 22 strains.
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ity, 26695. Alignment of the ~70 bp rocF upstream
sequences of both strains revealed nine differences (Fig.
6B), but none of the changes in strain A2 could be corre-
lated to an arginase null phenotype, since these changes
were found in other arginase upstream regions in strains
with detectable arginase activity. An additional 60 bp fur-
ther upstream of these two strains was next analyzed and
shown to be 100% identical (data not shown). The
involvement of these upstream sequences in affecting the
arginase null phenotype of strain A2 could not be com-
pletely ruled out. Next, the RocF amino acid sequences of
strains A2 and 26695 were aligned, revealing 11 amino
acid differences (Fig. 6C). All but three of these amino
acid differences were found in arginase proteins from
other strains of H. pylori that had detectable arginase activ-
ity, suggesting the other eight residues were not involved
in the original arginase null phenotype of strain A2. The
roles of the remaining three amino acids (strain 26695:
I174, S232, D257; strain A2: M174, I232, N257) in argin-
ase activity were investigated in RocF from strain 26695
using site-directed mutagenesis. Each of these residues
was mutated from the wild type 26695 sequence to the A2
sequence in pQE30-rocF [43]: isoleucine 174 was mutated
to methionine (I174M), serine 232 was mutated to isoleu-
cine (S232I), and aspartate 257 was mutated to asparag-
ine (D257N). Arginase activity was measured from crude
extracts prepared from E. coli harboring these plasmid
derivatives. Plasmid pQE30 served as the negative control
and the original wild type pQE30-rocF (from strain
26695) [43] served as the positive control. Arginase activ-
ity data indicated that the I174M and D257N mutations
had no major effect on the activity of the enzyme. Strik-
ingly, arginase activity in extracts from the strain carrying
the S232I mutation strain was abolished, with no activity
above the negative control strain carrying pQE30 (Fig.
6D). Western blot analysis using anti-RocF antiserum
revealed that the amount of expressed arginase protein in
the S232I mutant was similar to that of wild type 26695
RocF expressed from pQE30-rocF (Fig. 6E), indicating that
the S232I mutated form of the protein was properly
expressed. However, a more pronounced degradation of
RocF (RocF frag in Fig. 6E) compared with the wild type
RocF was noted.

Discussion
In this study the phenotypic and genotypic heterogeneity
of arginase in 73 clinical isolates and six laboratory-
adapted strains of H. pylori was investigated. Phenotypi-
cally, arginase activity varied more than 100-fold in both
H. pylori (Fig. 1) and the E. coli model (Fig. S2 in addi-
tional file 3). Nearly all of the H. pylori strains featured
intermediate or low arginase activities (77 of 79 strains).
Of the five strains with the highest arginase activity, four
were laboratory strains that have been passaged heavily.
Notably, even the highest arginase activity strains (3401

and SS1 laboratory strains) have specific activities more
than 10-fold lower than those measured for other bacte-
rial and eukaryotic arginases (McGee, unpublished data).
Arginine is a critical amino acid for several cellular proc-
esses, such as protein synthesis, and H. pylori absolutely
requires arginine for growth [47-49]. The bacterium
would rapidly hydrolyze the arginine if it had a high spe-
cific activity arginase, potentially depleting intracellular
pools and starving itself of this essential amino acid. The
few high arginase activity H. pylori strains may have com-
pensatory mechanisms to overcome potential arginine
starvation from the higher level of arginine hydrolysis.
Two possible mechanisms are that the high arginase activ-
ity strains might have a higher affinity arginine transporter
that would allow higher intracellular accumulation of
arginine. Alternatively, the high arginase activity strains
could have decreased arginine decarboxylase activity,
another arginine-consuming enzyme that could also
cause arginine depletion in H. pylori.

H. pylori is a heterogeneous species [23,50] that features
diversity at many levels. For example, there are many con-
tingency genes that undergo phase variation through DNA
slipped-strand mispairing of repeats, such as LPS biosyn-
thesis genes, and genes encoding outer-membrane pro-
teins [51]. As another example of diversity, adhesion of H.
pylori to fucosylated Lewis B antigens on the surface of the
gastric epithelium appears to be dependent on variability
of the babA gene. This gene shows much conservation in
the 5' and 3' regions but large variability in its midregions
[52]. The cagA gene, encoded by the cag pathogenicity
island, exhibits nucleotide sequences that are 92.8% con-
served, with much diversity at the 3' end where an EPIYA
amino acid repeat element is encoded [53,54]. RocF also
features diversity in its C-terminal region, although there
are no repeat elements. RocF appears to more divergent
than urease subunits A and B, but less divergent than
CagA or VacA. Since rocF participates in various aspects of
H. pylori pathogenesis [39,40] and the gene displays
remarkable heterogeneity shown in this study, it is possi-
ble that rocF heterogeneity may correlate with specific
aspects of the pathogenesis of the bacterium, such as inhi-
bition of nitric oxide production and T-cell proliferation.
The data obtained do not provide evidence for a correla-
tion between arginase activity and urease activity or
between arginase activity and the disease status of the
patient, although more isolates would need to be studied
since there were few isolates available for certain disease
categories. Moreover, a greater geographic distribution of
strains also would be necessary.

The data support the hypothesis that some H. pylori strains
may have strain-specific arginase gene regulation. For
example, strain A5 has minimal to no detectable arginase
activity in the native H. pylori strain, but significant activity
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Molecular basis of the arginase null phenotype of H. pylori clinical isolate A2Figure 6
Molecular basis of the arginase null phenotype of H. pylori clinical isolate A2. A. Arginase activity of H. pylori strain 
26695 and clinical isolate A2. B. Variation in the arginase upstream regions of H. pylori strains 26695 and A2. Nine nucleotide 
differences were noted between these two sequences. C. Variations in the arginase amino acid sequences between H. pylori 
strains 26695 and A2. Eleven amino acid differences are highlighted (311/322 identity [96% identity]; 316/322 similar [97% sim-
ilar]. Three amino acid differences (underlined) were found only in strain A2: I174M, S232I, and D257N. D. Arginase activity of 
E. coli transformed with pQE30-rocF (rocF from strain 26695) and of strains transformed with site-directed mutants of I174M, 
S232I, and D257N. E. Anti-RocF Western blot analysis of extracts of E. coli transformed with different plasmids including site-
directed mutants of RocF. RocF frag indicates degradation product from RocF.
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was detected in E. coli transformed with the A5 rocF gene,
suggesting that H. pylori strain A5 has an arginase repres-
sor. Such a repressor may be inoperative, inefficient, or
absent in high arginase activity strains such as 3401. Addi-
tionally, evidence for potential strain-specific arginase reg-
ulation was observed in H. pylori directly. Specifically,
arginase activity of H. pylori strain J63 is low, but when the
rocF gene from this strain was used to complement a rocF
mutant of strain 26695 in single copy on the chromo-
some, a surprisingly elevated arginase phenotype was
observed, suggesting that strain 26695 has an activator
protein absent in strain J63 or strain J63 has a repressor
protein absent from strain 26695. A possible molecular
basis for this potential variation may be due to the hyper-
variablity in the upstream region, which displays variation
in the Shine-Dalgarno (SD) region, as well as variation in
the region shown by DNAse footprinting experiments to
be bound by the ArsR regulator [55]. Mutations in the
upstream region could either affect transcriptional expres-
sion, or translational control through changes in strength
of the SD sequence. Evidence in the literature also sup-
ports the rocF gene being regulated at the transcriptional
level by acid [56] and by the two-component system ArsS/
R (Hp0165/0166) [55]. Strain-specific transcriptional and
translation regulation mechanisms are not mutually
exclusive.

Besides the hypothesized strain-specific arginase tran-
scriptional and translation regulation, evidence was
obtained that variations in the rocF sequence themselves
play a key role in arginase activity, using the genetically
stable E. coli model. E. coli is arginase negative, but when
the H. pylori arginase genes were cloned into E. coli, varia-
ble arginase activity occurs. Since enzyme activity varied
dramatically with the particular arginase gene cloned into
E. coli, variations in the rocF sequence would also be
responsible for at least some of the arginase phenotypic
variation. H. pylori strain-specific regulators that could
affect arginase transcription in native H. pylori strains most
likely would be absent in the E. coli model. Pairwise align-
ments of rocF nucleotide sequences revealed significant
microheterogeneity in the 3' end of the coding regions,
and translation of these regions showed that RocF varies
in the carboxy terminus. Variations near the C-terminus
could possibly affect the folding of the arginase active site,
thereby accounting for some of the arginase activity varia-
tion.

Evidence for the direct involvement of the rocF coding
region in arginase activity variation was obtained from
site-directed mutagenesis results. Specifically, mutation of
serine 232 to isoleucine in RocF from strain 26695 com-
pletely abolished arginase activity, helping to explain why
H. pylori strain A2, which has isoleucine in position 232 in
its native arginase, showed barely detectable arginase

activity. Thus, amino acid 232 appears to play a crucial
role in arginase activity. Notably, the rocF gene from strain
A2 conferred the lowest arginase activity to E. coli among
the 20 rocF genes examined (Fig. S2 in Additional file 3).
The possibility that other amino acid residues, or nucle-
otides in the rocF upstream region also play a role in the
arginase null phenotype of strain A2 cannot be ruled out.
Future experiments will endeavor to elucidate the mecha-
nism of why serine 232 is so critical for arginase activity,
as there is no prior precedent for a serine being required
for arginase activity.

Evidence was also obtained that arginase activity could
vary upon in vitro passage of some strains; the mechanism
of this variation remains undefined. That the phylogenetic
trees of the arginase promoter and the arginase protein
bore little resemblance to each other suggested that each
region is evolving via independent selective pressures. The
greater nucleotide variability among arginase upstream
regions compared with the coding regions suggests that
the former has a higher mutation rate and more tolerance
to nucleotide changes during selection of those muta-
tions.

Conclusion
It was established that arginase varies genotypically and
phenotypically among minimally-passaged clinical H.
pylori isolates. Future work could center on understanding
in greater detail the molecular basis of arginase activity
variation, and identifying strain-specific arginase regula-
tors. This would lead to improved understanding of the
mechanisms by which H. pylori genes undergo changes
leading to microheterogeneity as the organism strives to
survive in its seemingly inhospitable gastric niche.

Methods
Bacterial strains, growth conditions, and plasmids
All H. pylori strains were cultured on Campylobacter agar
containing 10% defibrinated sheep blood (CBA) at 37°C
for 48 h in a microaerobic environment (5% O2/
10%CO2/85% N2) in humidified air. For broth condi-
tions, H. pylori strains were inoculated at 4 × 106 CFU/ml
as determined by ATP assay [48] into 25 ml Ham's F-12
[49] with 2% fetal bovine serum and grown without aera-
tion for 16–18 h in a microaerobic environment. The
minimally-passaged clinical isolates were obtained from
Richard Peek (Vanderbilt University, 15 isolates), George
Mendz (University of Sydney, Australia, 40 isolates), Bar-
bara Schneider (Louisiana State University, New Orleans,
17 Colombian isolates) and one previously described
clinical isolate (HPDJM17) [57] (Table S1 in additional
file 1). The laboratory-adapted strains were SS1, 43504,
26695, J99, G27 and 3401. All isolates were passaged
fewer than five times from the frozen stock, except in cases
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in which the effects of in vitro passage on arginase activity
were studied.

E. coli strain DH5α was used for cloning and transforma-
tion procedures and XL1-Blue MRF' was utilized for the
pQE30-based plasmids used in this study. E. coli was
grown on Luria (L) agar and L broth plus appropriate anti-
biotics (ampicillin, 100 μg/ml; tetracycline, 15 μg/ml) at
37°C. Plasmid pBS [pBluescript II SK (+); Stratagene] was
used for cloning rocF genes.

Preparation of arginase or urease-containing cell extracts
H. pylori and E. coli were harvested in 0.9% NaCl and son-
icated in an ice-bath (two pulses at 25% intensity, 30 sec
each with 30 sec rest between pulses). Following centrifu-
gation (12,000 × g, two min, 4°C), the supernatants were
retained on ice until measurement of arginase activity.
Protein concentrations were determined by the bicin-
choninic acid method using bovine serum albumin as a
standard (Pierce, Rockford, IL).

Arginase activity assay
Arginase activity was measured using a colorimetric argin-
ase assay developed and validated previously [43]. The
extracts were heat-activated (50°C, 30 min) in the pres-
ence of 5 mM cobaltous chloride to provide the enzyme
with its required metal cofactor, followed by incubation
in the presence of 15 mM MES-10 mM arginine buffer
(pH 6.0) for 1 h at 37°C. The ornithine produced was
detected spectrophotometrically at 515 nm in the pres-
ence of acidified ninhydrin (4 mg/ml). Data are presented
as mean arginase specific activity (1 Unit (U) = 1 pmol L-
ornithine produced per minute per milligram protein).

Urease activity assay
Urease activities were measured using the phenol-
hypochlorite method as described previously [58].

SDS-PAGE and Western blot analysis of arginase extracts
Bacterial proteins were separated by sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis (SDS-PAGE)
using a 12% resolving gel and 10 μg of protein loaded per
lane. These electrophoresed proteins were then trans-
ferred to methanol-treated polyvinylidene difluoride
membrane using the Trans-blot cell transfer system (Bio-
Rad). The blots were subsequently blocked in 5% (w/v)
nonfat dry milk in Tris-buffered saline containing 0.5%
(v/v) Tween-20 (TBST-1), and incubated with the primary
RocF antiserum (1:2,500) for 2 h [43]. After three washes
with TBS containing 0.05% (v/v) Tween-20 (TBST-2), goat
anti-rabbit IgG-conjugated alkaline phosphatase (Sigma
Immunochemical Co.; 1:5,000 to 1:7,500) was added and
incubated for 90 min. Following a triple wash with TBST-
2, the blot was equilibrated with glycine buffer (100 mM
glycine, 1 mM ZnCl2, 0.05% (w/v) sodium azide, and 1

mM MgCl2, pH 10.4). To develop the blot, 3-indoxyl
phosphate (10 μg/ml) and nitroblue tetrazolium (100 μg/
ml) in glycine buffer were used.

Molecular biology techniques
Plasmid DNA was extracted by column chromatography
(Qiagen) or by alkaline lysis [59]. Restriction endonucle-
ase and ligation reactions were conducted according to
the manufacturer's guidelines (Promega). PCR reactions
(50 μl) contained 50–250 ng of DNA, 1–2 mM MgSO4,
0.20–0.25 mM dNTPs, 200 pmol of each primer, 2.5 U of
Pfx polymerase (Invitrogen) and 10× Pfx polymerase
buffer (Invitrogen). E. coli was transformed by the heat
shock CaCl2 method.

Cloning of rocF into pBS
The rocF gene from clinical isolates and laboratory-
adapted strains was PCR-amplified using the primers
RocF-F27 (gcctgcagTCAAAAACTTGAATGGTTT-
TACTCTTT; PstI site underlined; non-rocF sequence in
lower case) and RocF-R28 (ggatcgatGTTTGGTTT-
GAAAAGCGATCA; ClaI site underlined; non-rocF
sequence in lower case). The conditions for PCR amplifi-
cation were set at 94°C for 5 minutes; [94°C, 15 seconds;
52°C, 30 seconds; 68°C, 1 minute 30 seconds] × 30;
68°C for 5 minutes; 4°C overnight. After amplification,
the PCR products (1118 bp) were analyzed by gel electro-
phoresis and purified via Qiaquick DNA extraction (Qia-
gen), and then cloned into pBS predigested with EcoRV.
Following an overnight ligation, E. coli DH5α was trans-
formed by the calcium chloride method and the colonies
screened via the blue-white method using X-gal [59].

Cloning of rocF from strain G27 into pBS
The rocF gene was PCR-amplified as described above and
cloned directly into pCR2.1 in E. coli strain Top10 by elec-
troporation, according to manufacturer's guidelines (Inv-
itrogen).

Sequencing of rocF genes
Plasmid DNA from white transformants was purified by
Qiagen column chromatography and was digested with
ClaI and PstI restriction endonucleases to confirm pres-
ence of the insert. The rocF inserts were sequenced using
T3 (forward primer; AATTAACCCTCACTAAAGGG) and
T7-1 (reverse primer; GTAATACGACTCACTATAGGGC)
by the Sanger dideoxynucleotide method at Iowa State
University DNA Sequencing and Synthesis Facility. The
sequence data have been deposited into the GenBank
database as accession numbers EF126010 to EF126032.

Sequence and phylogenetic analysis
The sequences of the rocF gene of clinical isolates and lab-
oratory-adapted strains were analyzed by BLAST searches,
sequence alignments, and sequence translations at the
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National Center for Biotechnology Information website
[60]. Amino acid analyses of arginase proteins were car-
ried out at the Expert Protein Analysis System Server [61].
Multi-sequence analysis comparisons were conducted
using CLUSTALW version 1.82 [62,63] and files saved as
*.aln, followed by importation into ClustalX [64]. The
neighbor-joining bootstrap algorithm with 111 generator
seeds and 1000 trials was used to create a Phylip output
file. The Phylip output file was used to draw the phyloge-
netic tree in TreeView version 1.6.6 [65,66].

Site-directed mutagenesis of 26695 rocF
Plasmid pQE30-rocF, harboring the wild-type rocF gene
from H. pylori strain 26695, was mutated using the Quik
Change kit following the manufacturer's instructions
(Stratagene, La Jolla, CA). The primer sequences were as
follows: 1) I174M: DM141-RocFI174M-F1
5'GGAGGGTTAGAAATGGATCCTAAATGTTTG3';
DM142-RocFI174M-R1
5'CAAACATTTAGGATCCATTTCTAACCCTCC3' (Intro-
duces extra BamHI site, underlined); 2) S232I: DM143-
RocFS232I-F1
5'GATATTATTTATCTCATTTTGGATTTGGAC3'; DM144-
RocFS232I-R1
5'GTCCAAATCCAAAATGAGATAAATAATATC3';

3) D257N: DM266-D257NrocF-F1
5'GGCTGAGTTTTAATGAACTCAAGCAATTACTGG3';
DM267-D257NrocF-R1
5'CCAGTAATTGCTTGAGTTCATTAAAACTCAGCC3';

4) RocF-F6: gcggatccATGATTTTAGTAGGATTAGAAGCA-
GAG; BamHI site underlined; non-rocF sequence in lower
case); 5) RocF-R8: gcctgcagAGTAACTCCTTGCAAAAGA
GTGCTTC; PstI site underlined; non-rocF sequence in
lower case). All constructs were confirmed by sequence
analyses.
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