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The intragenic mRNA-microRNA 
regulatory network during telogen-
anagen hair follicle transition in the 
cashmere goat
Zhihong Liu1,2,3, Feng Yang1,2, Meng Zhao1,4, Lina Ma1,2, Haijun Li5, Yuchun Xie1,2, Rile Nai1,3, 
Tianyu Che1,4, Rui Su1,2, Yanjun Zhang1,2, Ruijun Wang1,2, Zhiying Wang1,2 & Jinquan Li1,2,3

It is widely accepted that the periodic cycle of hair follicles is controlled by the biological clock, but 
the molecular regulatory mechanisms of the hair follicle cycle have not been thoroughly studied. The 
secondary hair follicle of the cashmere goat is characterized by seasonal periodic changes throughout 
life. In the hair follicle cycle, the initiation of hair follicles is of great significance for hair follicle 
regeneration. To provide a reference for hair follicle research, our study compared differences in mRNA 
expression and microRNA expression during the growth and repose stages of cashmere goat skin 
samples. Through microRNA and mRNA association analysis, we found microRNAs and target genes 
that play major regulatory roles in hair follicle initiation. We further constructed an mRNA-microRNA 
interaction network and found that hair follicle initiation and development were related to MiR-195 and 
the genes CHP1, SMAD2, FZD6 and SIAH1.

Cashmere goats generate wool and cashmere, which are produced in the primary hair follicles and secondary 
follicles in the skin1. The growth of hair follicles is cyclical throughout the cashmere goat’s life2, undergoing cyclic 
transformations from stages consisting of anagen (rapid growth) to catagen (apoptosis-driven regression) and 
back to anagen3. Paus R proposed that a biological “clock” drives hair follicle cycling4. If so, what are the key play-
ers, and how many key players are molecular controls? The transformation and growth of cashmere are regulated 
by various complex factors in the skin5–7, and each follicle growth period in the skin has a specific activated/
silenced gene expression pattern8,9.

MicroRNAs are a class of endogenous non-coding RNAs with lengths of approximately 20–24 nt10. These 
sequences combine with the sequences of mRNA-specific regions to complement target gene expression at the 
level of translation and play a role in the regulation of gene expression11–13. MicroRNAs play a role in regulating 
the cashmere growth cycle by targeting various signalling pathways and transcription factors14. MiR-203 regu-
lates the differentiation of epithelial keratinocytes and directly inhibits the expression of p6312,15. MiR-200b and 
MiR-196a are associated with hair follicle development16,17. MiR-31 is associated with hair matrix differentiation 
and hair stem formation18, and its expression increases significantly during villus growth and decreases during 
degenerative and regenerative periods19. Hence, changes in microRNA expression patterns in skin cells are closely 
related to the cashmere growth cycle20.

The regulation of gene expression in life is relatively complex. Through analysis of microRNA sequencing and 
gene transcriptome sequencing data21, we can study the molecular mechanisms of microRNA-regulated gene 
expression systematically and obtain a more accurate understanding of the regulation of gene expression. In 2012, 
Liu performed microRNA sequencing of cashmere goat skin at various stages to determine whether microRNA 
expression varies in the skin or hair. Differences in the expression of microRNAs may occur through key gene reg-
ulation signalling pathways that modulate hair follicle growth22, and microRNA-mRNA interactions may regulate 
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the development of hair follicles and their growth cycle23. In the present study, to clarify the regulatory mecha-
nism of the cashmere growth cycle and gain insight into the related gene regulatory network, we characterized 
the interactions between microRNAs and mRNAs in goat skin, aiming to identify the key microRNAs regulating 
the growth and development of hair follicles and targeted mRNAs. We also characterized the gene regulatory 
network of differentially expressed microRNAs and their target genes, performed an annotated analysis of target 
genes related to differentially expressed genes, and explored key genes associated with hair follicle initiation and 
the regulation of microRNAs.

Results
Quality control of RNA and sequencing.  Total RNA samples from six Inner Mongolian Arbas cashmere 
goats (Fig. 1a) were analysed. Total RNA was not degraded, and there were no stray DNA bands. The OD260/
OD280 ranged from 1.8 to 2.1, and the RNA integrity value exceeded 8.6. The RNA integrity met the sequenc-
ing requirements (Fig. 1b). The base distribution and mass fluctuation analysis of each circle sequence (Fig. 1c) 
showed that A, T, C, G, and N began to fluctuate at each location and then tended to stabilize. (The percentages 
of each base vary by species.) The base distribution of this study was uniform, the N% proportion was stable and 
low, and the base quality of the library was satisfactory (Fig. 1d).

Transcriptome and MicroRNA data annotation.  The amounts of transcriptome data in the telo-
gen (T-1, T-2, and T-3) and anagen (A-1, A-2, and A-3) stages were 2.6 Gb, 2.3 Gb, 2.4 Gb, 2.4 Gb, 3.2 Gb and 
2.4 Gb, respectively. After filtering out the low-quality sequences, we used Trinity software for de novo splicing to 
obtain the following amounts of transcriptome data: 198,542 bp, 219,454 bp, 219,411 bp, 247,695 bp, 250,081 bp, 
247,695 bp and 203,451 bp. The total number of genes was 55,541, the number of alternative splices was 105,854, 
the average sequence length was 1965.15 bp, the length of the longest sequence was 23,311 bp, and the length of 
the shortest sequence was 351 bp.

The genes that control skin development differed significantly in the course of one year (Table 1). The first 
significant difference in gene number occurred from February to March, and the second occurred from March 
to April; thus, in March, there was a period of significant change for the genes in the skin, and these changes 
were relatively independent. The third significant change was from June to July, and the fourth significant change 
was October to November. After November and until February of the following year, changes in skin genes were 
almost absent.

From sRNA sequencing of skin tissue samples from the repose and growth stages, we obtained telogen (T-1, 
T-2, T-3) and anagen data (A-1, A-2, A-3) consisting of 12.2 Mb, 11.0 Mb, 10.4 Mb, 11.3 Mb, 10.2 Mb and 10.9 Mb 
reads, respectively. After the removal of low-quality reads, we obtained 12.1 Mb, 10.6 Mb, 9.8 Mb, 11.2 Mb, 9.7 Mb 
and 10.8 Mb reads (Table 2) that could be used for subsequent analysis.

We also performed statistical analysis of the length distribution of the high-quality sRNA reads (Fig. 2b), and 
the results showed that total reads were primarily 22 nt long, accounting for 31.46% of reads, and that the pro-
portions of reads that were 20, 21, 22, and 23 nt in length among distinct reads were 14.4%, 14.01%, 13.54% and 
12.43%, respectively.

Figure 1.  RNA quality inspection. (a) Agarose electrophoresis of total RNA from cashmere goat skin. (b) RNA 
electrophoretic and RIN values of the skin. (c) Base distribution of the original data; the abscissa is the reads 
base coordinate, and the ordinate is the percentage of A, T, C, G, and N bases among all reads. (d) Original data 
quality distribution; the abscissa coordinates are reads base coordinates, and the ordinate is the base mass of 
reads (Solexa scale: 40 = highest, −15 = lowest).
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Comparing our high-quality sequencing data to known data in the MiRbase database (Fig. 2c), we obtained 
437,517 known microRNA sequences, accounting for 47.41% of sequences, and 4,852,979 unknown microRNA 
sequences, accounting for 52.29% of sequences, which included rRNAs, tRNAs and snoRNAs, among others. 
There were 333 precursor microRNAs and 470 mature body microRNAs, which were classified into 150 fami-
lies. We carried out a forecast of these new miRNAs and found that there were 92 precursor microRNAs and 99 
mature body microRNAs.

Differential analysis of the transcriptome and miRNAs.  From a differential analysis of the differ-
entially expressed genes that were related to villus growth in March and July (Table 1), we obtained 12,865 dif-
ferentially expressed genes in the telogen and anagen stages, of which there were 7,664 upregulated and 5,201 
downregulated genes (Fig. 2a). A differential analysis of mature microRNAs expressed during the growth and 
rest periods revealed 35 microRNA genes that were upregulated in the telogen stage compared to their expression 
in the anagen stage, and there were 16 genes with more than 100-fold higher expression in the anagen stage. We 
also found 9 downregulated microRNA genes in the anagen stage relative to the telogen stage, and there were 6 
genes with more than 100-fold higher expression in the telogen stage: MiR-148a, MiR-34b, MiR-195, MiR-335, 
MiR-7g*-1, and MiR-101*-1. Thus, we successfully identified the major microRNAs and their target genes.

Analysis of microRNA-mRNA interactions related to the initiation of cashmere production.  
Using transcriptome data as the target gene database, we obtained 12,927 differentially expressed microRNAs, 
among which there were 6,965 positive regulatory relationships and 5,114 negative regulatory relationships 
between the miRNA and the transcriptome. The minimum number of mRNAs with a target relationship with a 
single microRNA was 51, and the maximum number of mRNAs was 1682. The average number of target genes 

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Jan. 0 19 3196 47 31 88 64 21 22 6 25 18

Feb. 19 0 1059 54 39 50 139 741 847 66 45 29

Mar. 3196 1059 0 731 2034 187 12865 8627 8820 5327 375 447

Apr. 47 54 731 0 13 17 68 1167 1234 228 100 84

May. 31 39 2034 13 0 1 9 102 141 50 105 74

Jun. 88 50 187 17 1 0 418 2844 2781 561 61 70

Jul. 64 139 12865 68 9 418 0 26 39 61 336 205

Aug. 21 741 8627 1167 102 2844 26 0 2 3 1469 897

Sep. 22 847 8820 1234 141 2781 39 2 0 1 1407 834

Oct. 6 66 5327 228 50 561 61 3 1 0 47 22

Nov. 25 45 375 100 105 61 336 1469 1407 47 0 8

Dec. 18 29 447 84 74 70 205 897 834 22 8 0

Table 1.  Statistical data for the differentially expressed genes between each pair of months.

Class

T1 T2 T3

Quantity % Quantity % Quantity %

Total Reads 12,269,110 100 11,034,263 100 10,433,558 100

Low Quality 30,829 0.25 33,284 0.3 42,878 0.41

adaptor3 null 28,448 0.23 110,453 1 139,022 1.33

insert null 46,229 0.38 132,781 1.2 214,081 2.05

5′ adaptor contaminants 1,077 0.01 2,468 0.02 8,713 0.08

size <18 nt 58,052 0.47 129,083 1.17 190,887 1.83

polyA 6 0 30 0 821 0.01

High Quality (size > = 18 nt) 12,104,469 98.66 10,626,164 96.3 9,837,156 94.28

Class
A1 A2 A3

Quantity % Quantity % Quantity %

Total Reads 11,305,511 100 10,262,585 100 10,943,292 100

Low Quality 28,265 0.25 45,949 0.45 27,071 0.25

adaptor3 null 20,273 0.18 121,601 1.18 25,327 0.23

insert null 37,755 0.33 131,464 1.28 35,990 0.33

5′ adaptor contaminants 840 0.01 8,354 0.08 1,239 0.01

size <18 nt 60,332 0.53 190,460 1.86 59,557 0.54

polyA 18 0 549 0.01 24 0

High Quality(size > = 18 nt) 11,158,028 98.7 9,764,208 95.14 10,794,084 98.64

Table 2.  Statistical results for sRNA sequencing data.
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for a single microRNA was 783 (Table 3). Therefore, microRNA-mRNA interactions in cashmere goat skin were 
complex, and regulatory relationships can be expressed as one-to-one, one-to-many and many-to-many.

Mutual analysis of microRNAs and mRNAs.  The relationship between microRNA and mRNA is com-
plex: one microRNA can target multiple mRNAs, and vice versa. A target gene can be regulated by multiple 
microRNAs simultaneously, and the relationship between microRNAs and mRNAs is not always limited to neg-
ative regulation. The mechanism by which microRNAs regulate mRNAs is not yet clear. This study explored the 
expression correlations between microRNAs and mRNAs through linear programming and determined the val-
ues of the differential multipliers for microRNAs and mRNAs (Fig. 3). For the first quadrant (upper right corner), 
there were 1,315 mRNAs and 43 microRNAs with higher expression in the anagen stage. For the second quadrant 
(upper left corner), there were 736 mRNAs with higher expression and 43 microRNAs with lower expression 
in the anagen stage. For the third quadrant (lower left corner), there were 449 mRNAs and 13 microRNAs with 
lower expression in the anagen stage. For the fourth quadrant (lower right corner), there were 890 mRNAs with 
lower expression and 13 microRNAs with higher expression in the anagen stage. Above all, the points in the sec-
ond quadrant and the fourth quadrant were negatively associated with miRNA and mRNA. These miRNAs that 
were negatively related to mRNA will be our next area of study.

Functional enrichment analysis of differentially expressed microRNA target genes.  We also 
performed GO annotation and KEGG pathway analysis. As the results show, the GO database (Fig. 4a) included 
8,409 differentially expressed mRNAs in the telogen relative to the anagen stage, of which there were 3,205 dif-
ferentially expressed mRNAs upregulating microRNAs, and the number of differentially expressed mRNAs 
downregulating microRNAs was 4,723. The number of microRNAs negatively regulating their target mRNAs 
was 2,025. The KEGG database (Fig. 4b) included 5,432 differentially expressed mRNAs between the telogen and 
anagen stage; among these, there were 1,322 differentially expressed mRNAs upregulated by microRNAs.

A collection of the most significant top 8 results for GO and KEGG enrichment is presented in Fig. 5.
The GO annotations of the most concentrated microRNA target genes were as follows, from high to low: 

integral component of the membrane, DNA binding, nucleus, catalytic activity, nucleotide binding, transcription 
factor activity, transmembrane transport and the oxidation-reduction process. These processes were related to 
cell development, indicating that a large number of cell proliferation processes occurred during the initiation of 
hair follicles.

The results of target gene KEGG annotation from high to low were as follows: insulin signalling pathway, focal 
adhesion, cancer pathways, Wnt signalling pathway, phagosome, bacterial invasion of epithelial cells, arrhythmo-
genic right ventricular cardiomyopathy and regulation of the actin cytoskeleton. Similar to the results obtained 
with KEGG pathway enrichment, we found that the concentration of insulin signalling pathways was the highest; 
there were 220 genes annotated to this pathway. Although there have been no reports of the role of insulin sig-
nalling in hair follicle development to date, the insulin signalling pathway is closely related to cell growth, and 
its potential involvement in hair follicle development will be further studied. We also analysed the signalling 
pathways related to hair follicles, including the Jak-STAT signalling pathway, Notch signalling pathway and Wnt 
signalling pathway, which were previously reported. The corresponding numbers of genes identified by anno-
tation were 123, 348 and 262, respectively. The function enrichment P value of the Wnt signalling pathway was 
7.29E-64, which indicated a closer relationship with villus development, as shown by the large number of genes in 
the signalling pathway in skin tissue exhibiting targeted regulatory relationships with the differentially expressed 
microRNAs. Therefore, Wnt signalling plays an important role in the development of hair follicles.

Figure 2.  Sequencing data processing and analysis of differences. (a) Gene differential expression statistics; the 
ordinate is the Log_fold_change, the abscissa is the absolute expression level, that is, logConc. (b) SRNA high-
quality reads length distribution statistics. (c) Comparison of sequence data with MiRbase database.
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mRNA-microRNA network analysis.  The telogen and anagen stages in cashmere goat skin showed dif-
ferential expression of microRNAs and their negatively regulated target genes according to the construction of a 
data relation network based on GO annotation and network construction based on KEGG relationships (Fig. 6). 
Genes differentially expressed in the telogen and anagen stages have many functions in cashmere goats (Fig. 6a), 
comprising a complex regulatory network with microRNAs. With GO annotation, there were 350 upregulated 
genes and 13 microRNAs clustered in the lower part of the network. Additionally, 233 downregulated genes and 

Item

All  
(miRNA 
 <−> 
mRNA)

Diff  
(miRNA 
 <−>  
mRNA)

diff&negative 
(miRNA  
<−>  
mRNA)

Diff  
(miRNA  
<−> Pr)

diff&negative 
(miRNA  
<−> Pr)

Diff (miRNA  
< mRNA > Pr)

diff&negative  
(miRNA  
< mRNA > Pr) Item

All  
(miRNA  
<−>  
mRNA)

Diff  
(miRNA  
<−> 
 mRNA)

diff&negative 
(miRNA  
<−> mRNA)

Targets (Transcript)_
Pr_edicted_by_
MicroRNAs

12,927 6,965 5,114 117 92 72 39
Targets (Transcript)_
Pr_edicted_by_
MicroRNAs

12,927 6,965 5,114

Targets_number 
(min)_for_ONE_
MicroRNA

51 24 4 1 1 1 1
Targets_
number(min)_for_
ONE_MicroRNA

51 24 4

Targets_
number(max)_for_
ONE_MicroRNA

1,682 997 559 17 10 10 6
Targets_
number(max)_for_
ONE_MicroRNA

1,682 997 559

Targets_
number(average)_for_
ONE_MicroRNA

782.73 424.45 175.79 6.89 3.4 3.28 2.07
Targets_
number(average)_for_
ONE_MicroRNA

782 424 175

MicroRNA_with_
Predicted_Targets 
(Transcript)

56 56 56 54 52 39 29
MicroRNA_with_
Predicted_Targets 
(Transcript)

56 56 56

MicroRNA_number 
(min)_for_ONE_
Transcript

1 1 1 1 1 1 1
MicroRNA_number 
(min)_for_ONE_
Transcript

1 1 1

MicroRNA_number 
(max)_for_ONE_
Transcript

21 21 11 13 8 5 4
MicroRNA_number 
(max)_for_ONE_
Transcript

21 21 11

MicroRNA_number 
(average)_for_ONE_
Transcript

3.39 3.41 1.92 3.18 1.92 1.78 1.54
MicroRNA_number 
(average)_for_ONE_
Transcript

3.39 3.41 1.92

Table 3.  MicroRNA and mRNA correlation analysis results.

Figure 3.  Correlation analysis of the positive and negative regulation of differential microRNA-mRNA 
expression. The abscissa is the log2 value of the multiple difference of target genes, and the longitudinal 
coordinate is the log2 value of the multiple difference of microRNAs. The red dashed line is 1.5 times the 
difference of the ascending line. The blue dashed line is 1.5 times the difference of the demarcation line.
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33 microRNAs were clustered above the network. Among GO network relationships, genes related to cashmere 
growth in the Wnt signalling pathway were FZD6, LEF1, FZD3, WNT5A and TCF7, and related microRNAs were 
MiR-195, MiR-148a, MiR-4206 and gamma.

The KEGG pathway network diagram was similar to the GO annotation network diagram (Fig. 6b). The genes 
were clearly divided into two groups, with 184 upregulated genes and 13 microRNAs clustered in the lower part of 
the network. Fourteen genes were annotated in the Wnt signalling pathway, including calcineurin B homologous 
protein 1 (CHP1), E3 ubiquitin-protein ligase (SIAH1), FZD6, WNT5A and mothers against decapentaplegic 
homolog 2 (SMAD2), as well as MiR-195, MiR-335star and other microRNA genes. One hundred twenty-eight 
downregulated genes and 31 microRNAs were clustered above the network. The genes and microRNAs annotated 
in the Wnt signalling pathway were 2A5G, CUL1, LRP5, FOSL1, MiR-17astar, MiR-2285m, MiR-136 and MiR-
34astar. Therefore, there is a complex signalling pathway between the genes expressed during rest and the genes 
downregulated during the growth stage.

Up- and downregulated target genes as well as the negative regulatory effects of microRNAs during the period 
of transition from the telogen to the anagen stage were clearly clustered into two groups. The brown dots in the 
network map indicate the functional annotation of target genes. Some functions in the map were annotated only 
for upregulated genes, some functions were annotated only for downregulated genes, and others had functions 
in both up- and downregulated transcription. This finding indicates that the thresholds for gene balance or gene 
expression and for differentially expressed genes were relatively important for a specific function. The interactions 
between microRNAs and their target genes played roles in the initiation and growth of cashmere. This finding 
further indicates that the initiation of hair follicle growth was controlled by multiple genes and that microRNAs 
play a role in the post-transcriptional negative regulation of target genes in hair follicle initiation.

Construction of a control network for the Wnt signalling pathway.  Multiple genes and microRNAs 
were involved in the Wnt signalling pathway during goat hair follicle development (Fig. 7a). In addition, the genes 
and microRNAs in the Wnt signalling pathway also played roles in other related pathways and interacted with 
other genes. In this study, we used a “biogrid” database to download the genes that interacted with target genes 
and then merged the genes from the Wnt signalling pathway to construct the Wnt signalling network (Fig. 7b).

Using the GO regulatory network, KEGG regulatory network and the Wnt signalling pathway regulatory gene 
interaction network in the goat hair follicle resting phase, we screened for genes with upregulated expression in 
the Wnt signalling pathway from the telogen to the anagen stage, including CHP1, FZD6, SIAH1 and other genes. 
Keratin and keratin-associated proteins were constitutive proteins during cashmere production. MiR-195 was 

Figure 4.  Enrichment analyses of GO orthology functions and KEGG pathways for differentially expressed 
microRNA target genes. (a) Function enrichment and analysis of target gene GO orthology for differentially 
expressed MicroRNAs. (b) Enrichment analysis of target gene KEGG pathways for differentially expressed 
MicroRNAs. The P value is the critical threshold for differential microRNA enrichment; the Rich factor is 
calculated for S/B, S is the mRNA with microRNA target relations annotated to a certain function or path, and 
B is used to annotate the mRNA of a function or path, based on the mRNA ratio. In other words, the Rich factor 
represents the ratio and is a percentage; the dot size represents the mRNA number, that is, S.
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predicted using target gene prediction and found to negatively regulate KAP24-1, KAP3-1, KAT8 and the impor-
tant regulatory factor EGFR, which constitute the main components of cashmere. The genes corresponding to 
KAP24-1, KAP3-1, KAT8 and EGFR were CHP1, FZD6, SIAH1 and SMAD2. Therefore, we chose CHP1, FZD6, 
SIAH1 and FZD6 as the regulatory genes during the initiation of villus growth for further verification.

Expression of CHP1, FZD6, SIAH1, and SMAD2.  The expression of CHP1, FZD6, SIAH, and SMAD2 
was verified via fluorescence quantitative PCR, using β-actin as a reference gene. As shown in Fig. 8, compared to 
the expression of microRNA-195 (Fig. 8a), the expression level of the CHP1 gene (Fig. 8d) was higher in the ana-
gen stage than in the telogen stage, and the difference was relatively significant (P < 0.01), with a descending trend 
from the early growth stage to the late growth stage that was not significant (P > 0.05). The expression level of the 
Frizzled-6 (FZD6) gene (Fig. 8e) increased from the early stage to the telogen stage, but the difference was not 
significant (P > 0.05). However, the expression level increased significantly from the early growth stage to the late 
growth stage (P < 0.01). The expression of the gene SIAH1 (Fig. 8c) increased significantly from the telogen to the 
early growth stage (P < 0.01), but there was no significant difference from the early growth stage to the late growth 
stage (P > 0.05). The SMAD2 gene (Fig. 8b) showed no significant difference from the telogen to the anagen stage 

Figure 5.  The first 8 results obtained for functional enrichment analysis of the differential expression of 
microRNA target genes. The length of the bar is the significantly enriched P value of the value (10 base); the 
smaller the P value, the more significant the enrichment, and the longer the length of the bar.

Figure 6.  Network analysis of mRNA-microRNA regulation. (a) Analysis results for the microRNA-mRNA 
enriched GO function network. (b) MicroRNA-mRNA KEGG pathway enrichment network. The dark dots are 
signalling pathways, the small green dots are differentially expressed genes, and the red dots are microRNAs 
with target regulation relationships.



www.nature.com/scientificreports/

8SCIEntIfIC REPOrTS |  (2018) 8:14227  | DOI:10.1038/s41598-018-31986-2

(P > 0.05), but its expression increased from the telogen to the late growth stage. In the Wnt signalling network, 
two of the three key genes were significantly expressed from the telogen to the anagen stage.

Discussion
Farazi T A et al. showed that a computer-aided algorithm could be used to integrate miRNA and mRNA paired 
expression spectra to characterize miRNA-mRNA interactions and that this approach identified miRNA targets 
with high accuracy. This approach effectively avoids certain software predictions that do not consider specific 
cases of miRNA and mRNA expression24–26. Chen et al. published an article describing a model for predicting dis-
ease associations by mixing microRNAs into computations (HAMDA), which significantly reduced experimental 
time and cost27–29. With HAMDA, the functions of microRNAs can be correlated with disease characteristics, and 
the role of new microRNAs in disease can be revealed more clearly. Additionally, the authors proposed a method 
of using Laplacian Regularized Sparse Subspace Learning for MicroRNA-Disease Association (LRSSLMDA), 
which projects a microRNA and a disease into a common subspace to interpret the function of the microRNA 
subspace27,30–32. Based on these methods and on a joint analysis of miRNA-mRNA, we conducted a targeted 
prediction of miRNA-mRNA interactions and used reverse locations of mRNAs to predict miRNA target genes. 
After obtaining positive target genes, we used RT-qPCR to further verify the target genes and determine the inter-
actions between target genes regulated by miRNAs.

In this study, target genes of differentially expressed microRNAs were analysed using GO orthology enrich-
ment analysis and KEGG pathway enrichment33, as described in Chen L’s study. The most commonly annotated 
GO function was integral component of the membrane within cellular components, indicating that microRNAs 
can regulate villus initiation and the villus growth cycle by regulating cell membrane-associated gene expression. 
The KEGG pathway results showed significant enrichment of the Jak-STAT signalling pathway, Notch signalling 
pathway, p53 signalling pathway and Wnt signalling pathway. These cashmere growth-related pathways were 
found via analysis of differentially expressed microRNA target genes in the KEGG pathway map, and the Wnt 
signalling pathway was found to play a particularly important role. Therefore, this study constructed the Wnt 
signalling pathway regulatory network during hair follicle initiation.

The American sociologist Granovetter first posited the concept of relationship intensity and divided relation-
ships into strong and weak relationships34, with strong ties maintaining the relationships between groups and 
organizations and weak ties between groups and organizations. Information obtained from strong relationships 
is often highly repeatable, while weak relationships provide more information and other resources than strong 
relationships. Based on the ideas provided by social networks, we hypothesize that strong and weak relationships 
exist between genes. A gene associated with more genes in a network is probably an important gene or key node 
gene that controls or influences a trait35. Thus far, efforts such as pathway analysis have raised awareness of the 
functional contributions of gene mutations and DNA copy number variations to cancer development, progres-
sion and metastasis36. Wang E commented on the challenges associated with studying cancer omic data using an 
integrative network approach and suggested possible research directions. As a result, most current cancer genome 

Figure 7.  Wnt signal path annotation results and construction of the regulatory network. (a) Wnt signal 
pathway51–53 (http://www.kegg.jp/kegg/kegg1.html.). Rectangular nodes represent gene products (such as 
enzymes or some RNA regulator), gene products all belong to the KEGG ONTOLOGY classification system 
indicated with a blue background (KO) (some have highly similar sequences, and the same pathway proteins 
with similar functions were classified as a group KO), and gene products on the white background are not part 
of the KO classification system. Sequencing of the genes annotated in red revealed these non-KO gene products 
(nodes indicate gene products with the same or similar functions); circular nodes represent compounds (i.e., 
a substrate or product); a white background with a rounded rectangle indicates another pathway. The arrow 
shows the direction of the enzyme reaction or the direction of information transfer, the solid line indicates 
a direct solution, and the dotted line indicates an indirect solution. (b) Wnt signalling pathway regulation 
network.

http://www.kegg.jp/kegg/kegg1.html
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sequencing work has mapped mutations onto biological pathways, including signalling pathways37,38. Mcgee S 
R indicated that by studying the distributions of such network motifs, insight into cancer signalling regulatory 
molecular mechanisms of tumorigenesis can be gained, and the identification of these loops has practical implica-
tions for predicting prognosis and the clinical outcomes of cancer patients. Collectively, network motifs and mod-
ules are critical for cancer signalling and are associated with clinical outcomes39. Additionally, as stated by Han 
P, analysis of GRNs can identify regional subnetworks for certain biological processes; in-cloud regulatory struc-
tures between genes, key regulators, and cancer hallmark subnetworks; network dynamics for network rewiring; 
and network motifs. Furthermore, such results may reveal the molecular mechanisms of signalling pathways 
associated with cancer hallmarks and cancer patient outcomes38,40–42. We found a complex network between genes 
in the Wnt signalling pathway and other genes and signalling pathways during hair follicle development from 
rest to growth, indicating that hair follicle initiation is determined not by single genes but by differences in the 
number of interactions between genes. One or more key genes are present in this gene regulatory network. In the 
Wnt signalling pathway, gene interactions are centred on the CHP1, SIAH1, and SMAD2 genes; however, many 
inter-gene interactions and multiple signalling pathways are involved.

As indicated by previous studies, microRNAs have negative regulatory roles43–46. In this study, quantitative 
analysis of MiR-195 expression during each period of chorionic villus initiation was performed. MiR-195 showed 
a trend of declining expression during the periods of repose, prophase and growth. In our experimental results, 
we found that two genes, SMAD2 and FZD6, were negatively correlated during the periods of repose, prophase 
and growth. Therefore, we speculate that MiR-195 continues to inhibit the expression of SMAD2 and FZD6 dur-
ing the entire initiation process. At present, no information is available regarding the regulation of SMAD2 and 
FZD6 targeting in by-195. However, a study by Mo J showed that MiR-195 regulates cell proliferation (Mo J. 
et al.47). Zheng R., Du J. et al. showed that downregulated MiR-195 was targeted to promote the expression of 
SMAD7 in two-leaf aortic valve calcification48,49. MiR-195 may play an important role in the regulation of SMAD 
family genes. However, two genes, SIAH1 and CHP1, showed a trend that first increased and then decreased. 
Presumably, MiR-195-mediated inhibition of these two genes after the initiation of cashmere production is 
affected by other microRNAs and is relieved or reduced. A study by Zhang X showed that MiR-195 affects the 
proliferation of colon cancer cells and regulation of Wnt/β-catenin pathway protein-specific MiR-195 by target-
ing FGF2 and regulation of the Wnt/β-catenin signalling pathway, consistent with studies showing the effects of 
MicroRNA-195 on Wnt signalling47,50.

Materials and Methods
Animals.  The study samples were collected from an Inner Mongolian Arbas white cashmere goat breeding 
farm. All animal experiments were performed in accordance with the ‘Guidelines for Experimental Animals’ of 
the Ministry of Science and Technology (Beijing, China). All surgeries were performed according to recommen-
dations proposed by the European Commission (1997) and were approved by the experimental animal ethics 
committee of Inner Mongolia Agricultural University. Six cashmere goats were selected from the same growth 
environment and had equal body weights, unrelated relationships, were of the same sex, and had good growth 
conditions. The sampling times occurred during the telogen and anagen stages. The sampling position was the 
side body or the middle of the body at a distance of 10–15 cm from the scapula, and the sample size was 2 cm2. The 
samples were stored at −80 °C in a freezer.

Figure 8.  Fluorescence quantitative expression results. **Indicates the difference between representatives 
is very significant, and * indicates the difference is significant. (a) Relative expression of microRNA-195. (b) 
Relative expression of SMAD2. (c) Relative expression of SIAH1. (d) Relative expression of CHP1. (e) Relative 
expression of FZD6.
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Methods
Sequencing.  Extraction of total RNA with liquid nitrogen lapping and RNAiso Plus (Takara, China), with 
separation on a Bioanalyzer 2100 (Agilent, USA), was used to detect RNA and microRNA quality. A cDNA library 
was constructed for the transcriptional group using a TruSeqTM RNA sample preparation kit (Illumina, USA) 
according to the manufacturer’s instructions. A microRNA sequencing library was constructed according to the 
instructions of the Illumina (USA) reference kit (USA). The transcriptome was constructed, and Solexa sequenc-
ing of the microRNA library was performed by Shanghai M-image Biological Medicine Science and Technology 
Co., Ltd.

Original data processing and differential expression analysis.  Seqprep, sickle, and condetri_v2.0.pl 
software were used to evaluate the original data for transcriptional sequencing, and Trinity software was used for 
de novo splicing and open reading frame (ORF) prediction. We predicted ORF sequences using BLAST (BLAST 
Version 2.2.25, with an E-value parameter value setting of less than 10−5) in the NCBI NR database with BLASTP 
database identification of the string database and KEGG database without predicted sequences or NR, string, or 
gene library ORF BLASTX comparison notes. The expression of each gene in each sample was counted based on a 
comparison between the sequencing sample and the reference genome, and gene expression levels were calculated 
using the maximum likelihood method in RSEM software. EdgeR software was used to find significant differences 
in the expression of all transcripts in the sample at a threshold of P = 0.05.

Short oligonucleotide alignment program (SOAP) software was used to locate sRNAs in the genome. 
“Tag2repeat” software was used for repeated sRNA comparisons. Using overlap software, sRNAs were compared 
to the exons and introns of mRNAs, and sRNAs derived from mRNA degradation were found. The GenBank and 
Rfam (9.1) databases (database link) were used to annotate the data and remove rRNAs, scRNAs, snoRNAs, snR-
NAs, and tRNAs from the sRNAs as much as possible. The sequences were compared to microRNA precursors 
and the mature bodies of cattle and sheep in MiRBase21 (http://www.MiRbase.org/) to obtain known microR-
NAs. We analysed whether there were significant differences in the expression of known microRNAs (P = 0.05) 
and compared microRNA expression patterns using a log 2-ratio and scatter plot.

Association analysis.  Target gene prediction for the initiation of related microRNAs.  Targetscan (parame-
ter: context score percentile of ≥90) and MiRanda (parameter: max energy of ≤−20) software were used to pre-
dict the differentially expressed microRNA target genes in the telogen and anagen stages, and the target regulatory 
relationships between microRNAs and mRNAs were determined based on sequence complementarity, sequence 
conservatism, thermo-kinetic factors, site-binding ability and UTR base distribution. The relationships between 
microRNAs and mRNAs are complex. A microRNA can target multiple mRNAs simultaneously. In contrast, a 
target gene mRNA can be regulated by multiple microRNAs simultaneously. We used ACGT101-CORR (1.1 ver-
sion) software to extract and perform statistical analysis for data describing target regulation relationships, specif-
ically positive and negative relationships between the expression of microRNAs and their target genes expressed 
as the difference multiplier of microRNA and the difference multiplier of mRNA (R correlation analysis).

Analysis of genes related to chorionic cycle initiation.  This study used GO enrichment and KEGG functions for 
gene analysis. The target functions of all genes or annotations among the differentially expressed miRNAs were 
counted, and hypergeometric tests were used to determine the functions or pathways that were significantly 
enriched among differentially expressed miRNA-mRNA relationships. The formula for calculating P value sig-
nificance was

∑= − .=
−

−
−( )( )

( )
P 1 i 0

S 1
B
i

TB B
TS i

TB
TS

If the microRNA target gene of the functional annotation satisfied this condition, we defined the result as 
distinct, significant expression. In the formula, TB is the total number of mRNAs with functional annotations or 
path annotations, TS is the number of mRNAs corresponding to the differential expression of miRNA in the TB, 

Gene name Primer sequence Product size

β-actin
Forward: GGCAGGTCATCACCATCGG

158 bp
Reverse: CGTGTTGGCGTAAGAGTCTTT

CHP1
Forward: GCTCTTTGGCTGGATGTGA

122 bp
Reverse: GAGTGGTAGGTTGGGCAGAA

FZD6
Forward: GGCAGACGAGAAACTGGAAC

126 bp
Reverse: GTAAGCATCACCCACCACAC

SIAH
Forward: GAGCCTTGCCATTTACAGGA

122 bp
Reverse: TACGCCTCTTCTGGATGTGA

SMAD2
Forward: TAAAAGTCCCAGGCATCACC

109 bp
Reverse: ACCCCAGACAAGGAGCAGTA

MiR-195 Forward: TGGTAGCAGCACAGAAATGTTGG 23 bp

Table 4.  Primers used for PCR validation.

http://www.MiRbase.org/
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B is the number of mRNAs annotated for a particular single function or a particular path, and S is the number of 
mRNAs annotated for a specific single function or a specific miRNA in a particular path. According to the first 8 
GO functions and KEGG pathways with the smallest P values, we sorted the results and performed an enrichment 
analysis.

Among KEGG pathways, the pathway that is most closely related to hair follicle development is the Wnt sig-
nalling pathway. We separated microRNAs from their target genes in the Wnt pathway using the biogrid database 
and downloaded the network interaction, microRNAs, target genes, Wnt genes and signalling pathway interac-
tions, which were distinguished by various colours, characteristics and attributes such as size, using Cytoscape 
software to obtain the functions in the Wnt pathway network analysis chart.

Analysis of main genes and the expression of microRNAs acting on the chorionic cycle.  Real-time fluorescent 
quantitative PCR was performed using the FAST SYBR Green Master Mix Kit (Applied Biosystems, USA). 
Fluorescent quantitative primers were designed with primer5 (Table 4). PCR reactions were performed using 
an Agilent 3000XP Real Time PCR amplification instrument; the PCR reaction program was 95 °C for 20 sec, 1 
cycle; 95 °C for 5 sec; 60 °C for 30 sec, 40 cycles; 95 °C for 1 min, 55 °C for 30 sec; and 95 °C for 30 sec, 1 cycle. Each 
sample was tested 3 times, and 3 blank controls were used for each primer. We used the 2−ΔΔCt method for relative 
quantitation between samples, and the reference gene was β-actin. Using the statistical analysis software SPSS 
17.0, we tested differences in the relative expression of keratin-associated protein genes in Arbas cashmere goat 
skin in different months using two methods: LSD and Duncan’s test. The results were expressed as the average 
value ± standard deviation.
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