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of Type 1 Diabetes
Adam L. Burrack, Tijana Martinov and Brian T. Fife*

Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States

Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the 
immune system. Despite improvements in insulin analogs and continuous blood glucose 
level monitoring, there is no cure for T1D, and some individuals develop life-threatening 
complications. Pancreas and islet transplantation have been attractive therapeutic 
approaches; however, transplants containing insulin-producing cells are vulnerable to 
both recurrent autoimmunity and conventional allograft rejection. Current immune sup-
pression treatments subdue the immune system, but not without complications. Ideally 
a successful approach would target only the destructive immune cells and leave the 
remaining immune system intact to fight foreign pathogens. This review discusses the 
autoimmune diabetes disease process, diabetic complications that warrant a transplant, 
and alloimmunity. First, we describe the current understanding of autoimmune destruc-
tion of beta cells including the roles of CD4 and CD8 T cells and several possibilities for 
antigen-specific tolerance induction. Second, we outline diabetic complications necessi-
tating beta cell replacement. Third, we discuss transplant recognition, potential sources 
for beta cell replacement, and tolerance-promoting therapies under development. We 
hypothesize that a better understanding of autoreactive T cell targets during disease 
pathogenesis and alloimmunity following transplant destruction could enhance attempts 
to re-establish tolerance to beta cells.

Keywords: type 1 diabetes, immunology, autoimmune diseases, transplantation immunology, tolerance induction, 
T cells, alloimmunity

iNTRODUCTiON

Pancreatic beta cells are destroyed by T cells of the immune system, precipitating type 1 diabetes 
(T1D). Unfortunately, preventing beta cell destruction in at-risk individuals has proven challeng-
ing. Despite a working knowledge of genetic risk factors associated with T1D (1), determining 
specific beta cell targets and preventing beta cell destruction by autoreactive T cells remains elusive. 
To develop a successful approach to protect beta cells, we must understand how and why T cells 
are directed to specifically destroy insulin-producing cells in the pancreas while sparing adjacent 
hormone-producing cells including alpha, delta, and epsilon cells. There may be at least two paths 
to protect beta cells from T cell-mediated death. The first approach is to control or regulate effector 
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T cell responses, and the second is to enhance beta cell survival 
or resistance to T cell-mediated death.

The first section of this review outlines our current understand-
ing of the pathogenesis of autoimmune diabetes. We describe the 
process by which insulin-producing beta cells are destroyed and 
contrast the roles of CD4+ and CD8 T cells during autoimmune 
pathogenesis. We compare T1D pathogenesis in the non-obese 
diabetic (NOD) mouse to our current understanding of human 
disease. We also discuss an exciting recent development in the 
field of autoreactive T  cell biology: recognition of neoantigens 
generated through hybrid peptide fusion or response to neoan-
tigens formed through defective protein translation. Finally, we 
describe immune tolerance in several forms, including thymic 
central tolerance, T cell ignorance in the periphery, anergy, and 
regulatory T cell induction.

The second section of this review briefly describes the neces-
sity for pancreas or islet transplantation to treat severe diabetic 
complications. With improving glycemic control through insulin 
injections and continuous glucose monitoring, many T1D indi-
viduals live with minimal complications (2, 3). However, some 
T1D individuals develop life-threatening complications includ-
ing hypoglycemia unawareness and end-stage renal disease. 
Unawareness of severe hypoglycemia is a primary indicator for 
pancreas or islet transplantation and is often combined with 
kidney transplantation to treat renal failure.

The third section of this review focuses on islet replacement 
strategies and briefly outlines beta cell regeneration. The two 
primary avenues for beta cell replacement are transplantation of 
cadaveric islets or induced pluripotent stem cell (iPS)-derived 
beta cells. While there has been considerable progress in both 
strategies, a cure for established T1D must also involve targeted 
immunotherapy. This approach must inhibit memory autoreac-
tive T  cells and naive allograft-reactive immune responses. In 
the third section of this review, we describe allorecognition, 
or how T  cells “see” transplants, focusing on pancreatic islet 
transplantation. We describe two categories of allorecognition by 
T cells in transplant recipients: direct recognition of donor major 
histocompatibility complex (MHC) molecules and indirect rec-
ognition of transplant-derived peptides through recipient MHC 
molecules. We also discuss the challenges of transplant tolerance 
in the NOD mouse and human T1D islet  allograft recipients. 
Recent evidence suggests that the presence of autoimmunity acts 
as an “adjuvant,” accelerating and strengthening the conventional 
alloimmune response.

AUTOiMMUNe DiABeTeS PATHOGeNeSiS

Type 1 diabetes is a T cell-mediated autoimmune disease, whereas 
T2D is the result of peripheral cell resistance to endogenous insu-
lin. The best evidence supporting immune system involvement in 
T1D are studies reporting lymphocytic infiltrate in the islets of 
T1D cadaveric donors (4, 5), islet-specific autoantibody produc-
tion in individuals with T1D (6–8), and identical twin studies 
in which the twin with T1D rejected islet transplants from their 
non-diabetic twin (9). Analyses of pancreas sections harvested 
from individuals with T1D have shown fulminant immune 
infiltration within individual islets, corroborating a key role for 

CD4 and CD8 T cells in beta cell destruction (10–12). This is in 
sharp contrast to pancreas sections from individuals with T2D, 
who, despite having high levels of systemic inflammatory mark-
ers, do not have similar T cell infiltration within pancreatic islets 
(10–12). Virtually all individuals who develop T1D before the age 
of 5 years produce insulin-specific autoantibodies (IAAs), sug-
gesting an important role for peptides derived from the insulin 
molecule in disease pathogenesis (13, 14). Islet autoantibodies 
are a differential diagnosis marker for T1D versus T2D and arise 
from autoreactive B cell and autoreactive CD4 T cell interactions. 
Human leukocyte antigens (HLAs) class II alleles DR4, DQ8, and 
DQ2 confer the highest genetic risk for T1D in human patients 
(15). This strong HLA II allele association with T1D suggests that 
HLA II-restricted CD4 T cells play a key role in disease patho-
genesis. CD4 T cells can provide “help” to B cells and stimulate 
antibody production as noted above, as well as promote responses 
by effector CD8 T cells, and stimulate islet-resident macrophages 
(16, 17). With this in mind, autoreactive CD4 T cells represent 
an active area of research and clinical interest for therapies. 
Developing antigen-specific tolerance-promoting methods to 
inhibit autoreactive CD4 T cells is the focus of the first section 
of this review.

The NOD Mouse Model of T1D
The NOD mouse was first characterized at the Shionogi Research 
Laboratories in Aburahi, Japan, by Makino et al. (18). The NOD 
mouse was developed as a sub-strain of the JcI:ICR mouse 
strain, which was used to study cataract development (18). The 
NOD strain exhibited very high fasting blood sugar levels but 
not cataracts and has been an invaluable tool for T1D research. 
Depending on the colony, 50–90% of female NOD mice develop 
spontaneous autoimmune diabetes between 10 and 30 weeks of 
age (19). Generally, diabetes onset in male NOD mice is much less 
frequent (20% in the same age range); therefore the majority of 
studies of autoimmune diabetes utilizing this strain of mice use 
female diabetic mice (20). This review will focus on spontaneous 
autoimmune diabetes pathogenesis in NOD mice, although other 
models of beta cell destruction mediated by T cell receptor (TCR) 
transgenic T cells targeting ectopically expressed antigen such as 
in rat insulin promoter (RIP) driving lymphocytic choriomenin-
gitis virus (21) RIP-membrane-bound form of ovalbumin (22) or 
insulin hemagglutinin (23) have contributed extensively to our 
understanding of T1D and are discussed elsewhere (24). Studies in 
the NOD mouse demonstrate a strong dependence on MHC class 
II allele I-Ag7 and the requirement of CD4 T cells (25), CD8 T cells 
(26), and B cells (27, 28) for autoimmune diabetes. Interestingly, 
diabetes-associated MHC II, I-Ag7 does not precipitate diabetes 
when expressed in non-autoimmune-prone B6 mice (29), but 
NOD mice engineered to express MHC class II alleles other than 
I-Ag7 are protected from disease development (30). Collectively, 
these findings suggest that I-Ag7 is necessary, but not sufficient, for 
autoimmune diabetes. The roles of CD4 T cells, CD8 T cells, and 
B cells in diabetes pathogenesis are discussed below.

CD4 T cells are thought to provide help to effector CD8 T cells, 
stimulate antibody production by B  cells, and activate islet-
resident M1 macrophages (Figure 1). CD4 T cells are required 
for diabetes development in NOD mice (31), and either depletion 
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FiGURe 1 | Type 1 diabetes pathogenesis and potential therapeutic avenues. Type 1 diabetes arises due to failure of several key checkpoints. Defective central 
tolerance (1 and 2) allows islet-reactive CD4 and CD8 T cells to escape the thymus as naive cells and reach the pancreatic lymph node. In the pancreatic lymph 
node, autoreactive CD4 T cells interact with dendritic cells presenting islet antigen (3) and can become T helper 1 (TH1), TFH, pTreg, or anergic cells. TFH cells help 
B cells produce high affinity islet-specific antibodies (4). TH1 cells activate dendritic cells and enhance antigen presentation to islet-specific CD8 T cells (5) to induce 
effector CD8 T cell skewing (6). TH1 cells traffic to the pancreas (7), secrete pro-inflammatory cytokines interferon gamma (IFNγ) and TNFα, and induce beta cell 
death (8). TH1-derived IFNγ and TNFα stimulate M1 macrophages in the islets to produce ROS, TNFα, and IL-1β (9), which in turn amplify beta cell death cycle (10). 
Resulting inflammation leads to increased CD8 T cell infiltration and direct beta cell killing via perforin and granzyme B (11) and attempts by nTregs and pTregs to 
dampen this response via TGFβ and IL-10 (12). Potential therapeutic strategies include (A) infusion of ex vivo expanded (broadly reactive or pancreas-specific) Tregs, 
(B) re-educating TH1 cells through approaches like peptide-linked apoptotic splenocytes, and (C) promoting beta cell-intrinsic expression of defense molecules in situ 
or engineering transplanted beta cells to be more resistant to T cell-mediated attack.
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of CD4 T cells (32) or treatment with non-depleting anti-CD4 
antibodies prevents diabetes (33). Early research in the NOD 
mouse model demonstrated that T helper 1 cells transferred to 
neonatal NOD recipient mice could precipitate diabetes (34). 
Recent studies in NOD mice and human T1D patients have 
characterized the diabetogenic CD4 T cells as pro-inflammatory, 
capable of secreting interferon gamma (IFN-γ) and/or inter-
leukin 17 (35–39). Interestingly, HLA-matched healthy donors 
may also have CD4 T cells with islet antigen specificity, but in 
their case, the cell phenotype and functional output is regulatory, 
with a cytokine profile consisting mainly of IL-10 (35, 36). CD4 
T cell targets are peptides restricted to HLA or MHC II and are 
discussed in further detail below. In human T1D, the available 
evidence from studies of individual islets from the Network for 
Pancreatic Organ Donors with Diabetes suggests that beta cell 
destruction is mediated in large part through direct CD8 T cell 
contact with beta cells and CD4 T  cell-mediated polarization 
of M1 macrophages (4, 10, 40). CD4 regulatory T cells will be 
addressed below.

Autoreactive CD8 T  cells are activated through interaction 
with peptides presented by MHC class I and can mediate beta 
cell death in a contact-dependent manner through perforin and 
granzyme molecules (Figure 1) (41). MHC class I is required for 
T1D, with some reports suggesting that CD8 T cell/MHC class I 
interactions are required only early in disease development (42), 
whereas others have concluded that MHC class I is required late 
in diabetes pathogenesis (43). Insulin-specific CD8 T cells are key 
for diabetes onset in both mouse (44, 45) and humans (46). Even 
though CD8 T cells are required for disease pathogenesis, due to 
space limitations, the bulk of this review will focus on the biology 
of CD4 T cells.

Beta cell death can also be mediated through cytokine produc-
tion by both CD4 and CD8 T cells within pancreatic islets. Pro-
inflammatory cytokines such as TNF-α and IFN-γ are directly 
toxic to beta cells (Figure 1) (47, 48). These cytokines also activate 
macrophages to M1 phenotype and stimulate a positive feedback 
loop, further increasing cytokine production in situ and killing 
more beta cells (Figure  1) (49). In addition, data from mouse 
and human samples demonstrate that beta cells can express the 
IFN-γ-inducible chemokine CXCL10, which promotes T  cell 
infiltration and may accelerate beta cell destruction (50, 51). 
Data from adoptive CD4 T cell transfer model of diabetes in the 
NOD mouse model suggest that M1 macrophages are required 
for beta cell destruction in this setting (52). Indeed, it has been 
demonstrated in the NOD mouse that superoxide production 
by T cells or macrophages is critical to promote beta cell death 
and T1D (16) and that loss of superoxide production by mac-
rophages delays diabetes pathogenesis (53). Moreover, transient 
depletion of islet-infiltrating dendritic cells and macrophages 
using clodronate-loaded liposomes abrogated T cell infiltration 
and significantly delayed subsequent diabetes development in 
liposome-treated mice (54). More recent work has demonstrated 
a critical role for dendritic cells expressing the Batf3 transcription 
factor in autoimmune pathogenesis of NOD mice (55). Taken 
together, these results suggest that antigen presentation to CD4 
T cells by dendritic cells and macrophages within pancreatic islets 
plays a key role in promoting beta cell destruction.

Finally, our current understanding is that B  cells act as 
antigen-presenting cells to both CD4 and CD8 T cells and also 
produce IAAs (Figure 1) (56). Early studies established that NOD 
mouse production of IAA peaks between 8 and 12 weeks of age 
and gradually decreases afterward presumably as beta cell mass 
decreases (57, 58). In addition, >60% of mice which developed 
IAA at 3–5 weeks of age develop T1D by week 20, while >50% 
of IAA-positive mice at 8 weeks of age develop T1D by week 20 
(57–59). Translating these results to human patients, as pioneered 
by Eisenbarth (58), autoantibody responses against multiple 
different T cell antigens are highly predictive of diabetes onset 
within 12–36 months in human subjects (1, 8, 60). In addition, 
recent work from Finland has demonstrated that high propor-
tions of children with IAA and/or multiple autoantibodies against 
beta cell targets at ages younger than 5 years develop T1D (61). 
As shown by sibling studies (DAISY, TEDDY), the presence 
of one known autoantibody response confers a moderate risk 
level, with risk of imminent development of diabetes increasing 
exponentially with the detection of each additional autoantibody 
response.

While analogous experiments have not been performed using 
human autoreactive T cells and human beta cells in an in vitro 
setting or humanized mouse system, studies in the NOD mouse 
have elucidated potential mechanisms of beta cell destruction in 
human T1D, in particular key roles for CD4 and CD8 T  cells. 
However, there are important differences between NOD and 
human T1D. In particular, there is a gender bias in NOD mice, 
with higher incidence in female than male mice (19, 20). In 
contrast, human T1D does not show gender bias, unlike other 
autoimmune diseases. A full account of the physiology behind this 
discordance is outside the scope of this review, but may include 
(a) more synchronous T cell infiltration into pancreatic islets in 
NOD mice than in at-risk human subjects, (b) the potential for 
a greater dependence on CD8 T  cells in diabetes pathogenesis 
in human disease (10), and (c) confounding effects of multiple 
concurrent T  cell responses in human patients exposed to the 
“universe” of viral and bacterial pathogens as opposed to inbred 
specific pathogen-free NOD mouse colonies.

Autoimmune Diabetes Antigens  
and Neoantigens
Diabetes-relevant antigen targets have been defined through 
the presence of serum autoantibodies, ELISpot assays, prolifera-
tion assays, and mouse studies [reviewed in Ref. (62)]. In mice 
and humans, some of the B  cell and T  cell antigen targets of 
T1D are overlapping, but not identical (63). The majority of 
autoantigens identified in the NOD mouse are peptides from 
the insulin secretory granules. At the Barbara Davis Center in 
the late 1980s, Haskins et al. (64, 65) and Wegmann et al. (66) 
utilized the NOD mouse to generate a series of pancreatic islet 
secretory granule-specific autoreactive CD4 T  cell lines (67). 
Chief among these, the BDC2.5 CD4 T cell line has been studied 
extensively (68). Two key transgenic mouse lines were generated 
including the BDC2.5 TCR transgenic mouse (69) and the islet-
specific glucose-6-phosphatase catalytic subunit-related protein 
(IGRP)-specific CD8.3 transgenic mouse (70). The NOD mouse 
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TABle 1 | Beta cell secretory granule-derived auto antigens.

Protein target NOD mouse 
and/or human 
T1D

CD4 and/or 
CD8 T cells

Reference

(Pre)proinsulin Mouse and 
human

CD4 and CD8 (36, 44, 46, 78)

Insulin Mouse and 
human

CD4 and CD8 (44, 45, 76, 83)

Defective ribosomal insulin 
gene product

Human CD8 (82)

Insulin hybrid peptides Mouse and 
human

CD4 (80, 81)

GAD65 Mouse and 
human

CD4 and CD8 (84–88)

ZnT8 Mouse and 
human

CD4 and CD8 (74, 75, 89–92)

Islet antigen-2 Human CD4 and CD8 (93–95)

Phogrin Mouse and 
human

CD4 (96–99)

Islet cell autoantigen 69 kDa Human CD4 (100–103)

Chromogranin A Mouse and 
human

CD4 and CD8 (71, 104, 105)

Islet amyloid polypeptide Mouse and 
human

CD4 and CD8 (72, 73, 106, 
107)

Islet-specific glucose-6-
phosphatase catalytic 
subunit-related protein

Mouse and 
human

CD4 and CD8 (70, 78, 108, 
109)
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has proven to be a useful “work horse” model system for study-
ing the pathogenesis and cellular immunology of spontaneous 
and adoptively transferred T1D. T cell-mediated destruction of 
beta cells represents an intricate coordination between innate 
and adaptive lymphocytes, with CD4 T  cells occupying a key 
node in this network, as described above. CD4 T  cell epitopes 
discovered to date include epitopes derived from the insulin B 
chain (45), chromogranin A (71), and islet amyloid polypeptide 
(Figure 1) (72, 73). CD8 T cell epitopes include peptides derived 
from preproinsulin (44, 46), IGRP (70), Zinc transporter 8 (74, 
75), and glutamic acid decarboxylase 65 (Figure  1) (76). Of 
particular importance in both the NOD mouse model system 
and for translation to the human disease is a peptide derived 
from amino acids 10–23 of the insulin B chain (InsB10:23). This 
peptide is required for the development of autoimmune diabetes 
in the NOD mouse (45). Nakayama et al. determined that a single 
amino acid substitution in a TCR contact site for both CD4 and 
CD8 T cells conferred complete protection by altering a domi-
nant immune target within the insulin protein (45). Similarly, we 
determined that insulin-specific T cell responses were critical in 
the spontaneous mouse model of diabetes (77). We demonstrated 
that blocking insulin-specific T cell responses could reverse and 
even cure diabetes in mice. In addition, re-establishing immune 
tolerance to proinsulin prevents diabetes onset in NOD mice, but 
re-establishing tolerance to IGRP206-214 does not prevent diabetes 
in NOD mice (78). Despite these fundamental discoveries, we still 
do not fully understand antigen hierarchy in T1D patients, likely 
because multiple different targets may be required for disease in 
different patients (79).

Exciting recent work from several groups has demonstrated 
the presence of neoantigens for diabetogenic CD4 T  cells. 
These comprise hybrid peptides or combinations of amino acid 
sequences derived from two different secretory granule proteins 
or peptide sequences (80, 81). The frequency of T cell priming 
events against hybrid peptides during autoimmune pathogenesis 
is not clear in vivo; however, compelling evidence in vitro suggests 
that these cells may play an important role in T1D pathogenesis. 
It is thought that hybrid peptides are generated exclusively in beta 
cells and not in the thymus, thus representing “new” targets in 
the periphery. These targets could be viewed as foreign peptides 
eliciting a strong immune response. Recent reports also suggest 
that pancreatic neoantigens could arise from defective ribosomal 
insulin gene products (DRiPs), which are produced by metaboli-
cally stressed beta cells (82). Similarly to hybrid peptides, central 
tolerance to DRiPs generated by stressed beta cells would be 
lacking in the thymus. In the presence of inflammation and cell 
death, T cell responses to such neoantigens would develop in the 
periphery and could contribute to disease pathogenesis. Table 1 
summarizes known autoantigens in T1D development in human 
subjects and NOD mice and if they are recognized by CD4 or CD8 
T cells in the context of the appropriate HLA/MHC molecule.

Mechanisms of immune Tolerance
There are four broad categories of immune tolerance that could 
protect beta cells from destruction by autoreactive T cells. First, 
negative selection during thymic development culls self-reactive 
T  cells during T  cell development. Due to this mechanism, 

autoreactive T cells generally do not survive thymic development. 
However, diabetes-associated MHC class I and II alleles facilitate 
the escape of self-reactive lymphocytes from the negative selec-
tion process. This escape could be due to several non-mutually 
exclusive reasons: low thymic expression of islet antigens (110), 
poor binding of native (non-transcriptionally modified) islet 
autoantigens to MHC I/II [as suggested in Ref. (111)], and 
T cell-intrinsic resistance to apoptosis (112) (Figure 1). GWAS 
studies link allelic variation at the insulin variable number tan-
dem repeat (INS-VNTR) IDDM2 locus with the level of thymic 
insulin expression and disease development. Protective alleles of 
the IDDM2 diabetes susceptibility locus promote higher levels 
of insulin expression in the thymus, which would promote more 
robust negative selection of insulin-reactive T  cells (113). In 
addition, mice genetically engineered to express lower levels of 
insulin in the thymus demonstrate correspondingly higher levels 
of peripheral T and B  cell reactivity against insulin (110), and 
published work indicates that pancreatic lymph nodes of NOD 
mice contain higher than expected levels of insulin mRNA at 
3–5 weeks of age (114). These observations suggest a direct link 
between the level of extra-pancreatic insulin expression and 
peripheral lymphocyte reactivity to insulin and point to ineffec-
tive negative selection in NOD mice and human patients. Second, 
immune ignorance occurs if an autoreactive lymphocyte survives 
thymic development, but does not encounter its cognate antigen 
in the periphery. The ignorance pathway appears to be an impor-
tant method for maintenance of B cell tolerance (115). Additional 
evidence of autoantigen-specific T cell ignorance can be found 
in the MHC-matched T1D-resistant B6.g7 mouse model (116). 
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A third mechanism of tolerance is a state of antigen-specific 
unresponsiveness called anergy. CD4 T cell anergy is defined as 
expression of folate receptor 4 and CD73 and hyporesponsiveness 
to TCR stimulation (117). While the majority of insulin-specific 
CD4 T cells in NOD mice are anergic, this form of tolerance is 
not sufficient o halt diabetes (Figure  1) (116). A fourth mode 
of immune tolerance relies on thymic-derived and peripheral 
regulatory CD4 T  cells (Tregs) expressing the transcription 
factor Foxp3 (Figure  1). Foxp3 is the master regulator of Treg 
fate, stability, and suppressive capacity (118). Mutations in 
the Foxp3 locus (IPEX in humans and Scurfy in mice) lead to 
multiorgan autoimmunity and demonstrate a non-redundant 
role of Foxp3 in maintaining tolerance (118). Recent evidence 
demonstrates that the augmentation of Treg activity specifically 
within pancreatic islets may ameliorate diabetes pathogenesis in 
NOD mice (119). This result suggests that promoting Treg activ-
ity specifically within the pancreas may be beneficial in human 
T1D as well. In addition, Tregs can inhibit effector T cells specific 
for the same or “linked” peptides. “Linked suppression” refers to 
the ability of regulatory T cells to suppress activation of effector 
T cells interacting with the same antigen-presenting cell at the 
time of Treg-APC interaction. This concept was originally dem-
onstrated by Davies et al. (120) and reviewed in Ref. (121) and has 
been shown to apply to the murine model of multiple sclerosis, 
experimental autoimmunity encephalomyelitis, as well (122). In 
addition, this mechanism has recently been shown to apply to 
a heart transplant model in mice, in which immune tolerance 
was induced to multiple distinct foreign MHC molecules (123). 
As such, we speculate that determination of “linked” peptides to 
promote CD4 T cell tolerance to islet allografts in autoimmune 
recipients represents a powerful opportunity to prevent islet allo-
graft rejection in autoimmune recipients.

While several hundred protocols have prevented diabetes in 
NOD mice, very few of these have successfully reversed disease, 
and none have yet been translated to standard clinical practice 
(124, 125). Briefly, tolerance-promoting therapies have gener-
ally focused on inhibiting autoreactive T or B cells, decreasing 
inflammation prior to diabetes onset, or some combination of 
these approaches. In attempts to restore tolerance in the CD4 
T  cell compartment, we previously used whole insulin protein 
coupled to apoptotic cells through the chemical cross-linker 
ethylene carbodiimide, or ECDI (77). This approach reversed 
T1D in almost half of the treated mice. ECDI-coupled cells have 
been used in phase I safety trials for multiple sclerosis and have 
shown a desirable safety profile (Figure  1) (126). We predict 
that this approach could be tested for safety and efficacy in T1D. 
Adoptive transfer of regulatory CD4 T  cells can halt diabetes 
pathogenesis in mice through inhibition of IFN-γ production by 
islet-infiltrating CD4 and CD8 T cells and decreased islet infiltra-
tion by CD8 T cells (127). These findings were translated to the 
clinic, with encouraging results. Two separate research groups 
have demonstrated that deficiencies in IL-2 production (128) 
or the responsiveness of Treg cells to IL-2 (129) may be related 
to the development of autoimmune diabetes in NOD mice. Two 
separate groups have adoptively transferred autologous (self-
derived) Tregs into new-onset T1D patients to enhance function 
of endogenous Tregs (Figure 1). A European group isolated and 

expanded Tregs from T1D patients (130) and then went on to 
demonstrate preservations of C-peptide in 8 of 12 subjects and 
reversal of new-onset T1D in 2 patients (131). In addition, a group 
at UCSF led by Bluestone and colleagues developed a protocol to 
expand Tregs from T1D patients (132) and then proved safety 
in phase I clinical trials (133). Several groups have established 
that Tregs can be isolated, expanded ex vivo in the presence of 
CD3/CD28 stimulation and IL-2, and adoptively transferred into 
patients (132–134). Transferred Tregs were detectable in blood 
up to 12 months later, remained phenotypically stable, and had 
the potential to influence diabetes pathogenesis. Both of these 
Treg adoptive transfer clinical trials utilized in  vitro expanded 
Tregs, not Tregs specific for particular pancreatic target(s). It is 
not known if targeting particular autoantigens would provide 
additional protection compared to the current Treg transfer 
approach. Taken together, these recent clinical trials suggest that 
adoptive Treg therapy may help preserve residual beta cell mass 
in new-onset T1D patients. Whether this approach could prevent 
T1D onset in at-risk individuals is an open question and warrants 
future investigation.

DiABeTiC COMPliCATiONS iNDiCATiNG 
iSleT Cell RePlACeMeNT

Type 1 diabetes often results in large swings in blood glucose 
levels outside the normal physiologic range of 70–110  mg/dl. 
Studies of 50-year Joslin Medalists indicate that individuals with 
T1D can live for many decades with minimal or no diabetic 
complications (2, 3). In addition, recent advances in fast-acting 
synthetic insulin analogs, continuous glucose level monitoring 
technology, and early attempts at developing pump-like systems 
to deliver glucagon suggest that individuals with T1D would con-
tinue to see improvements in diabetes management and therefore 
in quality of life. However, even with adequate clinical control of 
blood sugar levels, long-term diabetic complications can develop 
in individuals with T1D. In addition, despite the technical and 
clinical advances noted above, some individuals with T1D none-
theless have labile blood glucose level control and are susceptible 
to severe and life-threatening disease-related complications. 
These chronic complications can affect essentially every organ 
system and are particularly pronounced in the microvasculature. 
Diabetes, T1D and T2D combined, is the leading cause of adult 
blindness [diabetic retinopathy (135)] and end-stage renal failure 
[diabetic nephropathy (136)], as well as a leading cause of lower-
leg amputations [diabetic peripheral neuropathy (137)] and heart 
disease [diabetic cardiomyopathy (138, 139)]. Perhaps the most 
debilitating diabetic complication is hypoglycemic unawareness. 
This occurs when an individual with T1D is not aware their blood 
glucose levels are dangerously low (<50 mg/dl). This condition 
can result in seizures, diabetic coma, and, in the most severe cases, 
death. The development of hypoglycemia unawareness is thought 
to result from frequent, severe swings in blood glucose levels in 
some long-term T1D patients. Why hypoglycemia unawareness 
develops in some individuals but not others with long-term T1D 
is an open question. One possibility is that, over time, some 
T1D patients develop autoreactivity against glucagon-producing 
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alpha cells. Glucagon-reactive CD8 T cells have been identified 
in NOD mice (140); therefore we speculate that some individuals 
with T1D may develop autoimmunity against alpha cells over 
time. Glucagon acts in opposition to insulin, promoting glyco-
gen breakdown in the liver and therefore promoting increased 
blood glucose levels. If glucagon-derived peptides are associated 
with inflammation and cell death within the pancreas, existing 
autoreactive T cells could become primed in pancreas-draining 
lymph nodes, proliferate, and mediate destruction of glucagon-
producing cells. In fact, there is emerging evidence that a small 
proportion of T1D patients develop antiglucagon antibodies (140). 
Another possibility is that destruction of autonomic innervation 
within pancreatic islets (141) leads to impaired communication 
with the hypothalamus, so that glucagon is not produced when 
signals are present based on blood glucose levels. If autonomic 
innervation of pancreatic islets is perturbed in individuals with 
T1D, the consequence could be a breakdown in communication 
with the hypothalamus. Interestingly, some T1D but not T2D 
subjects develop autoantibodies against the neuroendocrine 
protein tetraspanin7 from sympthatheic nerves within islets 
(142). In some patients with severe hypoglycemia, both of these 
scenarios, and others, could lead to impaired glucagon responses 
to hypoglycemia. Whole pancreas and isolated pancreatic 
islet transplantation are options to restore blood glucose level 
homeostasis for individuals with hypoglycemia unawareness. 
There are two potential sources of pancreatic beta cells for islet 
replacement, cadaveric (deceased) donors and iPS-derived beta 
cells (143), both of which are discussed below.

iSleT GRAFT AllOiMMUNiTY

islet Replacement Strategies
The current clinical strategy to replace the lost beta cell function 
is through whole pancreas or isolated pancreatic islet transplanta-
tion from genetically unrelated cadaveric donors. Because donors 
are limited, currently only T1D patients with hypoglycemia 
unawareness are considered for transplantation. This has created 
great interest in cell culture methods to produce large quantities 
of insulin-producing cells for transplantation. After more than 
10 years of development, the Melton laboratory became the first 
group to develop a reproducible protocol for iPS conversion to 
insulin-producing beta cells (143), quickly followed by several 
other groups (144–146). However, these methods are not yet 
suitable for large-scale production of patient-specific iPS-beta 
cells for transplantation studies since individuals require several 
hundred thousand individual pancreatic islets. Furthermore, 
a critical limiting factor of a “universal donor” beta cell line is 
conventional transplant recognition, described below. In addi-
tion, unlike whole pancreas or isolated islet transplantation, 
iPS-beta cells do not replace the lost alpha cell function. Until 
these challenges are addressed, transplantation from a cadaveric 
donor will likely remain the preferred approach in combination 
with immune suppression (147, 148). A recent phase III clinical 
trial demonstrated improved glycemic control in islet transplant 
recipients following multisite standardized processing protocols 
(149, 150). As less beta cell-toxic immune suppression treatments 

are developed, we can expect transplant function and long-term 
survival to continue to improve. In the absence of these treat-
ments, transplanted beta cells in autoimmune recipient patients 
would be subject to at least two categories of T  cell responses: 
(a) autoimmune (islet-specific) responses by T cells (151, 152), 
and (b) conventional anti-transplant-reactive T  cell responses. 
However, current immune suppression treatments do not pro-
mote immune tolerance as described above, must be continued 
indefinitely after transplantation, and can render the transplant 
recipient vulnerable to cancer and infectious agents. Therefore, 
transplant-specific tolerance-promoting treatments are a highly 
sought after goal in the islet transplantation field.

An alternative to replacing the lost beta cell mass would be to 
stimulate beta cell regeneration. Beta cell regeneration is based on 
the premise that if autoreactive T cells are removed or inhibited, 
existing beta cells could proliferate, alpha cells could convert into 
beta cells, or islet-resident stem cell populations could proliferate 
and differentiate into beta cells. There is little experimental evi-
dence to support these suppositions to date. Beta cells are excep-
tionally metabolically active, continuously producing insulin 
secretory granules. The less beta cell mass is available to produce 
insulin, the higher the metabolic stress is on each individual islet. 
Therefore, the ability to regenerate beta cells from existing beta 
cells could be a significant hurdle. Another theoretical option to 
replace lost beta cell mass is to promote trans-differentiation of 
existing alpha cells into beta cells. Recent evidence from Kim’s 
laboratory at Stanford suggests that alpha cell conversion to beta 
cells may be feasible (153). However, even if beta cell replacement, 
alpha cell trans-differentiation, or beta cell regeneration succeed, 
these strategies do not address the deficiency in alpha cell gluca-
gon production, which precipitates hypoglycemia unawareness, 
and as such do not represent a complete treatment for this life-
threatening diabetic complication on its own. Therefore, whole 
islet transplantation will remain the clinical standard-of-care over 
beta cell replacement until these concerns can be fully addressed.

Concurrent Autoimmune and Alloimmune 
Pathogenesis
There are two separate immune recognition pathways leading 
to the destruction of transplanted beta cells in the autoimmune 
recipient. As mentioned above, the first is autoimmunity due 
to antigen-specific memory T cells. Regardless of the source of 
beta cells transplanted into an individual with T1D, autoim-
mune T cells would target cells producing insulin and must be 
inhibited or removed to facilitate long-term transplant function 
(154). In contrast, autoreactive T cell targeting of a kidney trans-
plant in a diabetic individual would not likely occur, because 
there would be no pre-existing kidney-specific memory T cells 
(154). Alloimmunity is the second major concern leading to the 
destruction of transplanted beta cells. Transplant-reactive or 
alloreactive T  cell responses can target the genetic differences 
between the transplant donor and recipient (155). This category 
of immune response occurs against any organ or tissue transplant, 
in any individual, regardless of autoimmune disease status (156). 
Importantly, these transplant-specific responses focus primarily 
on the HLA molecule of the human transplant or MHC in mouse. 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


TABle 2 | Islet allograft recognition pathways and likely players in rejection in autoimmune diabetic recipients.

Direct or 
indirect

T cells Target Precursor frequency  
in recipients

Fold expansion 
posttransplant

Sufficient for 
rejection?

Required for 
rejection?

Reference

Direct CD4 
T cells

Donor MHC II + transplant-derived peptide 0.1–10% versus individual  
donor MHC

10–100 Yes No (162–164)

Direct CD8 
T cells

Donor MHC I + transplant-derived peptide 0.1–10% versus individual  
donor MHC

10–100 Yes No (162–164)

Indirect CD4 
T cells

Donor-derived peptide loaded in recipient 
MHC II

Less than 1 in 1,000,000 >100 Yes Appears likely (162–164)

Indirect CD8 
T cells

Donor-derived peptide loaded in recipient 
MHC I

Less than 1 in 1,000,000 >100 Yes Appears not (162–164)
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HLA molecules are the most polymorphic loci in the human 
genome, and each individual expresses multiple alleles of both 
class I and class II HLA (154–156). All the genetic differences 
in both alleles are potential antigens and could be targeted by 
T cells in transplant recipients. The differences in HLA class I are 
targeted by recipient CD8 T cells, and the differences in HLA class 
II are targeted by recipient CD4 T cells (156). Ironically, genetic 
diversity in HLA promotes diverse T cell responses to the same 
pathogen in different individuals, but unfortunately these genetic 
differences also promote strong T cell responses against any trans-
planted organ or tissue. In this section, we describe transplant 
recognition and alloimmunity separately from autoimmunity.

Transplant Recognition: Direct and 
indirect Pathways
Donor-derived MHC (or HLA) molecules are the most prevalent 
transplant-derived antigen seen by the immune system of a 
transplant recipient. Transplant recipient T cells can interact with 
donor MHC molecules in two ways termed direct and indirect 
recognition (157). Direct allorecognition results from T cell inter-
action with donor MHC (plus some peptide loaded in MHC), 
whereas indirect allorecognition results from T cell interactions 
with recipient MHC (plus peptide derived from donor MHC, 
or any other transplant-derived protein). It is estimated that 
1–10% of CD8 T cells or CD4 T cells will spontaneously respond 
to allogeneic MHC I or MHC II, respectively [reviewed in Ref. 
(158)]. In contrast, we hypothesize that the indirect precursor 
frequency is even smaller. In support of this hypothesis, recent 
evidence indicates that only 10% of allograft-reactive CD4 T cells 
in a mouse model of cardiac allograft rejection are indirect, while 
the remaining 90% are direct alloreactive CD4 T  cells (159). 
Due to the higher precursor frequency for direct allorecognition 
than indirect allorecognition [reviewed in Ref. (157)], immune 
suppression protocols appear to hold direct alloreactivity in 
check. However, indirect recognition, which leads to antibody 
formation, CD4 T  cell reactivity, and complement activation, 
is not completely inhibited using current immune suppression 
treatment regiments, as shown by complement deposition and 
antibody formation in chronic rejection models (160).

Importantly, both CD4 and CD8 T cells in the recipient can 
interact with donor MHC through either the direct or indirect 
pathway. The frequency and physiologic relevance of direct and 
indirect allorecognition varies with the nature of the transplanted 

organ or tissue. For islet allograft recognition, donor MHC class 
I and direct interaction with recipient CD8 T  cells is a high-
frequency event, because all cells in the graft express MHC class 
I. Since beta cells do not express MHC class II at baseline (161), 
direct recognition via CD4 T cells may not be as high frequency 
of an event. However, recent evidence suggests that beta cells may 
express MHC class II following T cell infiltration (161), which 
suggests that direct alloreactive CD4 T cells may be critical for 
anti-islet allograft responses. In contrast, indirect allorecognition 
by CD8 T  cells must be therapeutically addressed to prevent 
islet allograft rejection (see below discussion of CD154 blockade 
therapy). Table 2 summarizes the roles of direct and indirect CD4 
and CD8 T cells in islet  allograft rejection in the NOD mouse 
model.

islet Allograft Tolerance in Non-
Autoimmune Diabetic Mice
Unfortunately, islet transplants are subject to both autoimmune 
disease recurrence and allograft recognition in T1D mice and 
humans. To remove autoimmunity as a confounding variable 
from islet transplant tolerance studies, several labs have made use 
of the free radical generator streptozotocin (STZ) (165–167). STZ 
induces diabetes due to the relative lack of free radical scaveng-
ing enzymes expressed in pancreatic beta cells relative to other 
cell types (168). Following induction of diabetes with STZ, mice 
can be transplanted with allogeneic (MHC-disparate) pancreatic 
islets and treated with candidate transplant tolerance-promoting 
therapies. In experiments using non-autoimmune diabetic mice, 
untreated recipients serve as control groups to determine time to 
normal allograft rejection.

Multiple different general immune suppressive therapies 
have been tested in preclinical mouse models and are used 
clinically (168). These therapies can include anti-CD3, antithy-
mocyte globulin, calcineurin inhibitors, mTOR inhibitors, 
tacrolimus, or mycophenolate mofetil (169). Interestingly, one 
of the tolerance-promoting protocols, which reversed diabetes, 
ECDI-coupled splenocytes, can also promote islet  allograft 
tolerance in non-autoimmune mice (170). Of particular interest, 
monoclonal antibodies to block T cell co-stimulation (or signal 
2) have been tested by several groups (165, 171). For example, 
short-term monoclonal antibody therapy directed against the 
T  cell-expressed co-stimulation molecule CD154 (CD40L) has 
been shown by several groups (165, 171) to induce long-term 
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(>100 days) islet allograft tolerance across full MHC mismatch 
donor/recipient pairs (e.g., BALB/c islets transplanted into STZ-
treated B6 male mice). This tolerance resides in the CD4 T cell 
compartment and can be transferred from treated and tolerant 
mice to naive mice (165). It is controversial whether this therapy 
induces allo-specific regulatory T  cells de novo [suggested by 
Ferrer et al. (172)] or inhibits reactivity of naive alloreactive CD8 
T  cells through killing mediated by NK  cells (173), or if these 
effects are simultaneous. In addition, the combination of anti-
CD154 antibody with other therapies has been highly efficacious, 
in particular LFA-1 blockade. LFA-1 (CD11a) is an adhesion mol-
ecule expressed on most leukocytes, in particular on neutrophils, 
macrophages, and activated T cells. LFA-1 inhibition appears to 
delay and/or prevent islet allograft rejection as a single therapy. 
Similar to anti-CD154-induced transplant tolerance, uniform 
(100% of mice), long-term (>100 days) tolerance induced by the 
combination therapy of LFA-1 blockade and CD154 blockade 
resided in the CD4 T cell compartment and was serially trans-
ferable to multiple islet  allograft recipients (165). In summary, 
STZ-induced diabetes represents a useful, non-autoimmune 
model system to test candidate islet allograft tolerance-promoting 
therapies. However, the end goal is to induce islet tolerance in 
autoimmune recipients, such as the NOD mouse.

In islet transplantation studies, “indirect” (recipient MHC-
restricted) alloreactive CD4 T  cells are key perpetrators of 
islet  allograft rejection (174). As such, we hypothesize that co-
transfer of islet antigen-specific Tregs at the time of islet trans-
plantation would inhibit alloreactive T  cell responses. Indeed, 
immune tolerance to antigen-presenting cell-depleted islet allo-
grafts in non-autoimmune mice requires CD4 T cells in trans-
plant recipient mice (175). An alternative approach is to promote 
expression of T cell inhibitory receptor ligands on beta cells prior 
to transplantation (Figure 1). One example of this approach is 
beta cell expression of Fas ligand, which when combined with the 
immune suppressive drug rapamycin generated Tregs in recipient 
mice (176). Another example of this approach is a recent report 
which demonstrated that enforced beta cell-intrinsic PD-L1 and 
CTLA4 expression significantly delayed islet  allograft rejection 
in NOD mice (177). In conclusion, whether autoimmunity or 
alloimmunity drives islet transplant rejection, generation, or 
adoptive transfer of Tregs or pre-arming transplanted beta cells 
with co-inhibitory molecules represent two distinct strategies to 
protect beta cells.

Potential Role for Regulatory CD4 T Cells 
in the Autoimmune Recipient of an islet 
Allograft
Importantly, regulatory CD4 Foxp3+ T cells engage peptides through 
the indirect antigen recognition pathway. Therefore, therapies that 
promote the development of transplant-specific Tregs are highly 
desirable. One long-term goal of the islet transplantation and auto-
immunity field is to either deplete “indirect” autoreactive CD4 T cells 
or re-educate these CD4 T cells to become Foxp3+ regulatory CD4 
T cells, while also generating additional “indirect” Tregs specific for 
transplant-derived antigens. Based on the above considerations for 
beta cell MHC II expression in the inflamed transplant recipient, we 

hypothesize that regulatory CD4 T cells specific for donor MHC II 
would prolong islet allograft survival. In addition, we hypothesize 
that conventional self-reactive and “indirect” CD4 T  cells, which 
recognize autoantigens through the transplant recipient’s MHC 
class II molecule, would prolong graft survival. In combination, 
we speculate that adoptive transfer of both autoantigen-specific 
“indirect” Tregs as well as transplant MHC II-specific “direct” Tregs 
would synergize to significantly prolong islet  allograft survival in 
autoimmune recipients.

Failure of islet Transplant Tolerance  
in the NOD Mouse
Laboratories at the Barbara Davis Center (31), Vanderbilt (178), 
Harvard (179), University of Massachusetts (180), University of 
North Carolina (181), the University of Miami (182), and the 
St. Vincent’s Institute in Melbourne (78) have utilized the NOD 
mouse as a model system to study both autoimmune disease 
recurrence (rejection of NOD-background islets) or islet allograft 
rejection (rejection of islet from genetically unrelated donor 
strains including B6, C3H). Due to its autoimmune disease status, 
the diabetic NOD female islet transplant recipient is a difficult, but 
clinically relevant model to test islet transplant tolerance-promot-
ing therapies. Several studies have demonstrated the requirement 
for both CD4 T cells and CD8 T cells in diabetes recurrence in 
NOD mice (183, 184). Less data are available in the islet allograft 
scenario in NOD mice. Due to the sheer number of pancreatic 
islets required to reverse hyperglycemia and rapid T cell-mediated 
transplant rejection, diabetic female NOD mice are not frequently 
used to test transplant tolerance-promoting therapies.

The NOD mouse is an extremely stringent model to test 
transplant tolerance-promoting therapies. There are vanishingly 
few examples of long-term transplant tolerance in NOD mice. 
In particular, the combination of CD154 and LFA-1 in B6 mice 
resulted in long-term tolerance (180, 185). It is controversial 
whether this stringency results from resistance to therapeutic 
intervention in the autoimmune primed/memory T  cell com-
partment, the alloreactive T cell response in NOD mice, or both. 
Mouse models and human clinical reports have suggested that 
autoimmune T cells are less susceptible to conventional immu-
nosuppression (151, 185). In addition and in parallel, data from 
NOD mice support the existence of an accelerated and therapy-
resistant anti-allograft T cell response (162). Additional studies 
in the Bio Breeder rat further suggested that autoimmune T cells 
are strongly impervious to tolerance-promoting therapy in this 
animal model of T1D, whereas the anti-allograft response can 
be made tolerant (186–189). These differences between models, 
and a lack of peptide-MHC II reagents to separately track both 
autoreactive and alloreactive CD4 T cells in the same transplant 
recipient mouse, lead to a lack of consensus in the field and an 
incomplete understanding of auto- and allo-T cell tolerance, in 
particular when both immune responses occur simultaneously.

While global immune suppressive treatments promote sur-
vival of transplanted beta cells [with the exception of calcineurin 
inhibitors, which are toxic to beta cells (190)], it is challenging 
to interpret effects of immune-modulatory therapies on specific 
T  cell populations. Clinically, in the autoimmune recipient of 
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pancreatic islets, there are at least two concurrent immune 
responses. As such, a major limiting factor in this analysis is 
the quality and availability of reagents to reliably and separately 
track autoreactive and alloreactive T  cell responses in human 
patients. Lack of validated reagents to monitor these responses 
longitudinally in clinical samples presents a major challenge to 
interpret therapeutic effects on recurrent autoimmunity versus 
anti-allograft responses. Lack of reagents to separately assess these 
two categories of T cell responses in the NOD mouse prevents 
the development of reagents to preferentially influence either 
category of T cell response in the preclinical or clinical setting.

CONClUDiNG ReMARKS

To prevent diabetes onset in the NOD mouse or at-risk human 
patients, several goals must be achieved. The genetics of T1D 
risks are well established, but the field lacks a comprehensive 
panel of peptide-HLA II tetramers to specifically track disease-
associated CD4 T  cell populations. Several groups (191–193), 
including our own (194), are working to fill this gap. Reagents 
to track key pathogenic CD4 T cells, perhaps including hybrid 
peptide-specific or DRiP-specific CD4 and CD8 T cells, are being 
developed and validated for clinical use. In addition, predictive 
biomarkers to measure not only the presence of these autoreac-
tive T cells but also their activation status should be a focus of 
attention. Real-time monitoring of the activation status of rate-
limiting autoreactive T cells is required to measure the efficacy 
of any tolerance-promoting therapy. Finally, to establish beta 
cell protection, measurements of beta cell function are required, 
in combination with assessment of autoreactive T  cell biology. 
Non-invasive imaging methods represent one option (195, 196), 
but require specialized imaging technology and may not have suf-
ficient sensitivity. More recently, methods such as high-sensitivity 
C-peptide assays (46, 197) and quantification of demethylated 
insulin DNA in the circulation (198, 199) could accomplish this 
beta cell health surveillance goal.

Despite our understanding of diabetes pathogenesis and 
ever-improving clinical care for individuals with T1D, some 
individuals develop debilitating diabetic complications that 
necessitate whole pancreas or isolated islet transplantation. In 
the autoimmune recipient, two categories of T  cell responses 
must be prevented or inhibited to promote long-term transplant 
function. Both memory autoimmune T  cell responses and 

nascent T  cell responses against polymorphic MHC molecules 
occur after pancreas, islets, or iPS-beta cell replacement in T1D 
individuals. Therefore, a thorough understanding of not only 
autoimmune pathogenesis but also transplant recognition is 
required to develop methods to protect transplanted beta cells 
in autoimmune individuals. Intriguingly, Foxp3+CD4 regulatory 
T cells may represent a path toward developing antigen-specific 
tolerance in both autoimmunity and transplant recognition. As 
such, immunotherapies that promote the development of regula-
tory CD4 T cells in both autoimmune models and transplantation 
models are highly desirable.

Multiple challenges remain to achieve the elusive goal of 
preventing islet transplant rejection in autoimmune recipients. 
Chief among these is to more specifically define the roles of CD4 
and CD8 T  cells and to determine whether autoimmunity or 
alloimmunity represents the higher barrier to beta cell transplant 
survival. Additional challenges to establishing islet  allograft 
tolerance in the autoimmune recipient include (a) determining 
whether removing MHC from islet allografts would delay trans-
plant rejection, (b) investigating if there is overlap of autoimmun-
ity and alloreactivity on the individual T cell level, as has been 
shown for viral memory and transplant rejection (200, 201), (c) 
understanding if an MHC-matched “universal donor” beta cell 
line would avoid alloimmune T  cell responses, (d) determin-
ing if beta cells can be induced to express proteins that would 
protect a transplant, and (e) developing reagents to track “direct” 
alloreactivity (against donor MHC). We and others are working 
to determine answers to these and other critical questions. With 
coordinated work by many dedicated individuals, we anticipate 
further advancements in our understanding of autoimmune 
pathogenesis, beta cell biology, and transplant recognition.
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