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Enamel formation requires consecutive stages of development to achieve its

characteristic extreme mineral hardness. Mineralization depends on the initial presence

then removal of degraded enamel proteins from the matrix via endocytosis. The

ameloblast membrane resides at the interface between matrix and cell. Enamel formation

is controlled by ameloblasts that produce enamel in stages to build the enamel

layer (secretory stage) and to reach final mineralization (maturation stage). Each stage

has specific functional requirements for the ameloblasts. Ameloblasts adopt different

cell morphologies during each stage. Protein trafficking including the secretion and

endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of

internalization of enamel proteins on the ameloblast membrane are specific for every

stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts

is presented. The pathways for internalization and routing of vesicles are described.

Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein

and to obtain feedback from the matrix on the status of the maturing enamel.

Keywords: endocytosis, amelogenesis, endocytic trafficking, Rab proteins, clathrin, pinocytosis

ENDOCYTOSIS IN AMELOBLASTS

Enamel formation is a unique process that coordinates the movement of proteins and ions
between ameloblasts and the developing extracellular matrix (Smith and Nanci, 1996; Lacruz
et al., 2013b). The extracellular matrix represents a sealed compartment between ameloblasts
and the mineralized dentin without direct access to the vascular system or the connective tissue
compartment (Bronckers, 2016). The transport of proteins and ions between ameloblasts and
matrix for crystal mineralization is controlled by ameloblasts. As the enamel organ develops,
the inner epithelial cells differentiate into polarized ameloblasts. The two key protein transport
functions of ameloblasts are the secretion and the resorption of enamel proteins. Ameloblasts
secrete enamel proteins at the surface of forming enamel that assemble into a scaffold to
initiate and lengthen the growing mineral crystals (Smith et al., 2016). As enamel proteins are
selectively cleaved by proteinases, fragments and perhaps some almost intact proteins are removed
from the matrix via endocytosis by ameloblasts, a process that speeds up over time as enamel
formation continues (Reith and Cotty, 1967; Smith, 1979; Kallenbach, 1980a,b). The freed up
space is then utilized to widen the individual enamel ribbons. The final product contains <5%
of proteins and water (Schmitz et al., 2014). The failure of efficient removal of enamel proteins
and deposition of mineral results in hypomineralized or hypomature enamel. The enamel proteins
constitute the protein backbone of the enamel matrix and include amelogenin, ameloblastin, and
enamelin. All of them are part of the cluster called secreted calcium-binding phosphoproteins
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(Kawasaki et al., 2004). Structurally, all enamel proteins possess
a poorly defined secondary structure, a feature characteristic for
intrinsically disordered proteins (Wald et al., 2017). Regions of
hydrophobic residues of amelogenin facilitate protein-protein
interactions resulting in assemblies of nanospheres (Fincham
et al., 1995). In the absence of amelogenin, enamel ribbons
lose their self-sufficiency and fuse together in fan-like structures
(Smith et al., 2016). Enamel proteins are sequentially processed
into fragments that are then internalized by ameloblasts (Bartlett,
2013). Initially, matrix metalloproteinase 20 cleaves enamel
proteins at highly selective internal sites during the secretory
stage (Fukae et al., 1998). The remaining fragments are then
further degraded into smaller peptides by kallikrein4 (kallikrein
related peptidase 4) during the maturation stage (Nagano et al.,
2009).

The uptake of degraded proteins takes place throughout all
stages of enamel formation (Ozawa et al., 1983). The endocytic
activities of preameloblasts and ameloblasts include the removal
of basement membrane proteins and enamel proteins via vesicles
and their transport to lysosomes (Katchburian and Holt, 1969;
Kallenbach, 1980a; Takano and Ozawa, 1980; Ozawa et al., 1983;
Salama et al., 1989, 1990a,b; Smith et al., 1989; Nanci et al.,
1996). The localization of amelogenin with immune gold labeling
techniques has established that enamel proteins are found in
large quantities in organelles with functions in endocytosis in
ameloblasts of both secretory and maturation stages (Figure 1,
Table 1).

Endocytosis is linked to enamel mineralization to remove
processed enamel proteins from the matrix and to deposit
mineral (Smith, 1979, 1998; Nanci et al., 1987a; Smith et al.,
1989). The site and configuration of plasma membrane from
which enamel proteins are secreted and endocytosed differ in

FIGURE 1 | Immunocytochemical preparation illustrating the distribution of

gold labeled amelogenin over various compartments of ameloblasts from the

secretion stage in mouse incisors. Lysosomes appear variably labeled.

Multivesicular bodies are often intensely labeled (mvb+). An unlabeled

multivesicular body (mvb−) and an unlabeled dark lysosome (dl−) are shown.

The Golgi apparatus (G) shows some labeling by gold particles, × 24,875.

Bar = 0.5 µm. Permission to reprint from: Application of High-Resolution

Immunocytochemistry To the Study of the Secretory, Resorptive, and

Degradative Functions of Ameloblasts by Nanci et al. (1987a).

morphology depending on developmental stage. During the
pre-secretory stage fragments of the degraded basal lamina
are removed through finger-like cell processes penetrating into
the pre-dentin (Reith, 1967; Kallenbach, 1976; Nanci et al.,
1989). During secretory and maturation stages stippled material
adjacent to ameloblasts is interpreted as degraded enamel
proteins and their localization is indicative of resorptive activity
(Kallenbach, 1980b; Ozawa et al., 1983; Nanci et al., 1987b).

With the formation of the Tomes’ process on the apical
membrane during secretory stage, proteins are secreted in
large quantities from two growth sites, distal and proximal,
to give rise to orientation of rod and interrod enamel (Nanci
and Warshawsky, 1984). Both of these sites are characterized
by deep membrane infoldings (Weinstock and Leblond, 1971;
Kallenbach, 1973; Nanci and Warshawsky, 1984; Uchida and
Warshawsky, 1992; Kim et al., 1994). Vesicles with granular
content to be secreted are found in close proximity to infoldings
suggesting that a membrane fusion event between vesicle and
infolding results in the discharge of the luminal content of the
vesicle into the channel of the infolding (Simmelink, 1982). The
enamel proteins then could escape through the channels between
the infoldings to the outer surface of the secretory face (Figures 2,
3). Conversely, it is conceivable that endocytosis could occur in
the reverse direction, inside the membrane infolding similar to
a tubular network (Smith, 1979). The space inside an infolding
ranges from small and narrow to bloated and filled with granular
material (Kallenbach, 1974; Nanci et al., 1987b). This mechanism
allows several vesicles to fuse in a limited area of the cell surface
and to release and internalize material in large quantities. Enamel
ribbons are bundled and closely related to the openings of the
infoldings and extend in the direction of the opening (Nanci
and Warshawsky, 1984). The ameloblast surface seems to be
less infolded when there is loss of function of any one of the
enamel matrix scaffold proteins (Smith et al., 2016). In the
maturation stage, ameloblasts acquire a ruffle-ended membrane
80% of the time compared to smooth-ended borders. Ruffle-
ended ameloblasts are more absorptive than smooth-ended
ameloblasts (Nanci et al., 1987b). The ruffle-ended membrane
forms a complex, infolded apical surface constantly changing its
configuration.

In addition to endocytosis of enamel proteins from the apical
membranes of secretory and maturation stage ameloblasts, some
small amounts of enamel matrix proteins are secreted and
endocytosed from the lateral extracellular spaces between the
cells (Nanci and Smith, 1992). Granular material containing
amelogenin has been found in accumulations between the tight
junctions of secretory stage ameloblasts (Nanci andWarshawsky,
1984; Nanci et al., 1987a). These “patches” are associated with
sites of the ameloblasts membrane that lackmembrane infoldings
and mineralization. It was suggested that the microenvironment
of rod and interrod growth sites is unique for the initiation
of mineralization (Nanci et al., 1987c). At the lateral surfaces
pinocytosis is frequently observed (Figure 3).

The packing of vesicles for secretion and endocytosis is a
membrane consuming process altering the surface area. Given
the large quantity of secreted enamel proteins, the gain of
membrane during fusion events could alter the shape of the
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TABLE 1 | Density of gold labeling over enamel and organelles in ameloblasts following incubations with anti-amelogenin antibodya.

Compartment Density of labelingb

Early secretion (mouse) Mid secretion (rat) Early maturation (rat)

Enamel 129.9 ± 9.4 121.4 ± 9.6 80.0 ± 3.9

Rough endoplasmic reticulum 7.2 ± 0.4 8.4 ± 0.4 9.2 ± 0.4

Golgi saccules 17.7 ± 0.8 15.1 ± 1.0 9.8 ± 0.6

Secretory granules 154.7 ± 10.9 137.6 ± 8.3 137.0 ± 14.5

Dark lysosomes 16.1 ± 3.3 8.5 ± 0.7 5.9 ± 0.5

Pale lysosomes 14.8 ± 2.9 11.1 ± 0.9 9.8 ± 1.2

Multivesicular bodies 19.8 ± 3.8 37.0 ± 3.5 26.9 ± 1.3

Mitochondriac 3.9 ± 0.7 3.8 ± 0.6 4.1 ± 0.2

Amelogenin is found in compartments associated with protein synthesis and secretion (rough endoplasmatic reticulum, Golgi, and secretory granules) and endocytosis (dark and pale

lysosomes, and multivesicular bodies) pathways.
aData modified from Nanci et al. (1985, 1987b).
bNumber of particles / µm2 ± SEM.
c Index of background labeling.

Permission to reprint from: Application of High-Resolution Immunocytochemistry To the Study of the Secretory, Resorptive, and Degradative Functions of Ameloblasts by Nanci et al.

(1987a).

FIGURE 2 | Sites of secretion and endocytosis of the ameloblast membrane. (A) The secretory ameloblasts forms a Tomes’ process from the apical membrane with a

proximal portion and a distal portion. The proximal portion is associated with formation of interrod enamel, the distal portion with rod enamel formation. Vesicle fusion

can be observed on the surface membrane adjacent to the rod growth site. Many vesicles fuse (secretion) or originate (endocytosis) from membrane infoldings found

on the proximal portion and the distal portion. (B) In the maturation stage, degraded enamel proteins are internalized by ameloblasts. Ameloblasts modulate between

smooth-ended and ruffle bordered membranes. In 80% of the maturation stage, ameloblasts are ruffle-ended with deep membrane invaginations. Degraded enamel

proteins from the enamel matrix permeate the area between convoluted tubules and are resorbed via vesicles.

cell. However, for the Tomes’ process maintaining the shape is
critical to allow a defined mineralization front. By fusing with the
membrane of infoldings or ruffles, membrane is recycled and the
outer plasmamembrane is not affected. As a result, infoldings and
ruffles become longer and branched (Nanci and Smith, 1992).

ENDOCYTOSIS TYPES, MECHANISMS,
PATHWAYS

Endocytosis is a form of active, energy-using transport of
extracellular molecules internalized by a cell into vesicles. As
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FIGURE 3 | Early and mid secretory stage ameloblasts in mandibular mouse incisors. All procedures involving animals were reviewed and approved by the IACUC

committee at the University of Michigan and all relevant guidelines were followed. Handling of animals and tissues was followed according to protocols described

earlier (Smith et al., 2016). (A) The Tomes’ processes are not fully developed in early secretory stage ameloblasts. Enamel crystallite ribbons in the initial interrod layer

are oriented perpendicular to dentin and the apical ameloblast membrane. (B) In mid secretory ameloblasts pinocytotic vesicles are observed along the non-secreting

surface of the Tomes’ process and laterally between adjacent ameloblasts below the level of the apical junctional complex. In the distal portion of the Tomes process

membrane infoldings form a complex network and are in close relationship to vesicles. D, dentin; E, enamel; mvb, multivesicular body; acw, apical cell web; rER,

rough endoplasmic reticulum; m, mitochondria; db, dense body (lysosome); im, membrane infolding; dTP, distal portion of Tomes’ process; IRG, interrod growth site;

pTP, proximal portion of Tomes’ process; sg, secretory granule; p, pinocytotic vesicle.

a mechanism to communicate the status of the extracellular
environment and the cells, endocytosis is a vehicle for executing
cell homeostasis including uptake of nutrients, matrix- cell
communication, changes in cell shape and polarity (Mills,
2007; Eaton and Martin-Belmonte, 2014; Villasenor et al.,
2016). Beyond the homeostasis of a single cell, endocytosis is
essential for the homeostasis of multicellular tissues, organs
and communities (Mostov and Cardone, 1995; Mellman,
1996).

The prerequisite for the regulation of endocytosis is that
cells are able to receive and respond to external signals
(Pelkmans et al., 2005). The interaction can be modulated
through different uptake mechanisms and through ligand-
receptor binding, inducing specific cellular functions (Le
Roy and Wrana, 2005). Identified uptake pathways include
non-specific macropinocytosis and specific receptor-
mediated/clathrin-mediated and caveolae/raft-mediated
endocytosis (Racoosin and Swanson, 1992; Swanson and
Watts, 1995; Mellman, 1996; Conner and Schmid, 2003). The
interaction between receptor and ligand triggers a change in
the conformation in the cytosolic tail that includes motifs
for internalization (Dahlen et al., 2003; Pandey, 2009). These
motifs are tyrosine or dileucine based and are critical for
internalization efficiency and for routing the cargo to the
intended designation (Collawn et al., 1993; Dahlen et al., 2003;
Pandey, 2009).

Clathrin-Mediated Endocytosis
The most extensively described endocytosis pathway is clathrin-
mediated endocytosis. The generation of coated vesicles was
discovered in mosquito oocytes (Roth and Porter, 1964). Each
clathrin subunit consists of three large (heavy) and three small
(light) polypeptide chains resembling a triskelion, a three-legged
structure (Pearse, 1975, 1976). Clathrin molecules self-assemble
into a 3-dimensional lattice supported by the heavy chains in
the shape of a basket. The assembly and disassembly of clathrin
around the vesicle is controlled by the clathrin light chains
(Pearse, 1976). Clathrin uses adapter proteins (AP) to bind to
membranes or cargo (Pearse et al., 2000; Sorkin, 2004). Clathrin-
mediated endocytosis regulates the internalization and recycling
of receptors employed in cellular activities. Some examples are
signal transduction, cell adhesion, cell proliferation, nutrient
uptake and synaptic vesicle reformation (Polo and Di Fiore, 2006;
Saheki and De Camilli, 2012; Antonescu et al., 2014).

Vesicles found in preameloblasts, Tomes’ processes of
secretory ameloblasts and maturation stage ameloblasts are
either coated or non-coated (Smith, 1979; Ozawa et al., 1983;
Sasaki, 1984a,b; Franklin et al., 1991; Uchida and Warshawsky,
1992). Compared to uncoated vesicles originating either from
secretion or endocytosis, coated vesicles are inactive for the
internalized vesicles via the clathrin-mediated pathway. Coated
vesicles are described in electron micrographs of secretory
stage ameloblasts with a size of 0.1–0.12 µm in diameter
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(Reith and Cotty, 1967; Garant and Nalbandian, 1968). In
presecretory ameloblasts, coated vesicles are found in the
cytoplasmic protrusion that penetrate the basal lamina and
facilitate its degradation (Katchburian and Burgess, 1983). In
secretory stage ameloblasts, extracellular material is internalized
by coated vesicles and tubulovesicular structures (Sasaki, 1984a).
Coated vesicles have a tight relationship to tubules residing in
the core of the Tomes’ process (Uchida and Warshawsky, 1992).
Tubules branch out from the core and are part of a network.
In maturation stage ameloblasts, coated vesicles are found in
ruffle-ended ameloblasts that are filled with fine granularmaterial
(Sasaki, 1984b). In contrast, smooth-ended ameloblasts contain
only few coated vesicles (Kallenbach, 1980a; Sasaki, 1984b). The
morphological difference in the apical membrane of maturation
stage ameloblasts suggests that their function is dedicated to
different processes with high resorptive activities associated with
a ruffled border and low resorptive, but homeostasis activities
with a smooth-ended border (Figure 2; Takano and Ozawa,
1980).

The endocytosis of amelogenin in enamel organ epithelium
is proposed via clathrin dependent endocytosis involving the
receptor proteins lysosome-associated membrane protein 1
(Lamp1) and cluster of differentiation 63 (CD63) (Shapiro et al.,
2007; Lacruz et al., 2013a). Lamp1 and CD63 are transmembrane
proteins routed between the membranes of the cell surface and
lysosomes via endocytosis and via recycling pathways. Lamp1
and CD63 may interact with AP-2 clathrin AP for the uptake of
clathrin-coated vesicles in ameloblasts (Lacruz et al., 2013a). The
regulation of endocytosis may involve the microRNA miR-153
through interactions with Lamp1 and clathrin (Yin et al., 2017).

Pinocytosis
Fluid-phase endocytosis called pinocytosis can be distinguished
by the size of the pinosomes as macropinocytosis and
micropinocytosis. While macropinocytosis marks the uptake
of fluid phase, micropinocytosis is associated with receptor-
mediated and fluid-phase uptake.

Fluid phase endocytosis represents an uptake mechanism
documented as occurring in ameloblasts. The process of fluid
phase endocytosis trafficking of cargo can be demonstrated by
supplying exogenously provided horseradish peroxidase (HRP)
and observing the intracellular localization of HRP in cell
organelles to which HRP is transported. For this technique,
HRP is intravenously injected as a 5% solution and animals
are sacrificed after 15–90 min (Sasaki, 1984c). During secretory
stage, the apical terminal bars are not permeable for HRP
(Kallenbach, 1980b). HRP accumulates at rod and interrod
growth sites. The uptake of large quantities of HRP takes
place at the Tomes’ process and is subsequently trafficked to
endosomes and lysosomes (Kallenbach, 1980b; Matsuo et al.,
1986). In maturation stage ameloblasts, the apical and basal
tight junctions open and close as ameloblasts modulate between
ruffle-ended and smooth-ended forms and allow HRP to reach
intercellular spaces between ameloblasts and close to the papillary
layer (Sasaki et al., 1983a). HRP is rapidly internalized in
large quantities and is carried forward in coated pits, vesicles,
multivesicular bodies (MVB) and tubulovesicular structures

(Sasaki and Higashi, 1983; Sasaki et al., 1983b; Sasaki, 1984a,c).
Accumulated HRP is incorporated from the cell membrane
into the cytoplasm through pinosomes and pinocytotic coated
vesicles (Sasaki, 1984a). The pinosomes then fuse to form
large endocytic vesicles. HRP is accumulated in the endocytic
vacuoles and MVB which serve as a carrier for HRP (Sasaki,
1984c). Highmagnification focused ion beammicrographs reveal
pinocytotic activity at the lateral membranes of the proximal
portion of the Tomes’ Process (Figure 3). HRP can be followed
from internalization through the endocytic compartment to the
lysosomes where it is digested by lysosomes (Kallenbach, 1980b).

Phagocytosis
Phagocytosis describes the uptake of a solid particle (>0.5
µm) by the cell to form an internal compartment known
as a phagosome (Gordon, 2016). In unicellular eukaryotes,
phagocytosis serves in the acquisition of nutrients. In
mammalian cells, phagocytosis is a mechanism for immune
cells, such as macrophages, neutrophils, and dendritic cells
to remove pathogens, damaged cell organelles and dead cells.
In contrast to pinocytosis endosomes, phagosomes can be as
large as the phagocyte, depending on the size of the ingested
particle. Phagocytosis is initiated by membrane protrusions
(filopodia) in direction of the particle and through binding
of the particle to cell surface receptors. Pathogen-associated
molecular patterns, Fc regions of antibodies, complement
molecules and apoptotic cells are recognized by cell surface
receptors (Flannagan et al., 2012; Gordon, 2016). After ingestion
of the particle the phagosome fuses with a lysosome where
the particle is exposed to degradation and microbicidal
action.

After completion of the secretory stage, ameloblasts go
through a brief shift to enter the maturation stage. This shift
is accompanied by notable changes in ameloblasts morphology
from tall polarized cells with a Tomes’ process to shorter
polarized cells without an apical process. In rodent incisors, this
change occurs within 19 hours (Smith and Warshawsky, 1977).
About 25% of transitional stage ameloblasts perish into cellular
debris of varying size found between and below ameloblasts (Moe
and Jessen, 1972). Cellular debris is distinct from ameloblasts
with their dense cytoplasm surrounded by wide intercellular
spaces between ameloblasts. It can cross intercellular spaces
to the adjacent cell layer (stratum intermedium). Cells of the
stratum intermedium form cytoplasmic processes to engulf
ameloblast debris (Moe and Jessen, 1972). During the transition
and maturation stages, macrophages are present in the forming
papillary layer that are involved in the removal of cellular debris
(Jessen and Moe, 1972; Nishikawa and Sasaki, 1996).

ENDOCYTIC TRAFFICKING OF VESICLES

Vesicles that originated by phagocytosis or pinocytosis contain
cargo in the form of bound ligands or extracellular liquid
phase material. The movement of vesicles within the cell to
their destination compartment or organelle is called endocytic
trafficking. Newly formed vesicles are first transported into early
endosomes to sort them based on their content and to direct
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them to their destination. Endosomes can progress to lysosomes
to degrade their content or fuse with the plasma membrane to
return receptors and release the content to the environment.
A group of proteins in the Ras superfamily of GTPases (Rab
proteins) have been identified as the molecular machinery that
regulates membrane trafficking pathways (Segev, 2001). They
take part in vesicle formation, motility, docking, membrane
remodeling and fusion (Segev, 2001).

Ras Superfamily of GTPases
Rab proteins constitute the largest branch of the Ras superfamily
with over 70 members. They are small GTPases/GTP-binding
proteins of 21–25 kDa and localize to the cytosolic periphery
of the membrane. As the predominant regulators of trafficking
of endocytic vesicles, they control the un-coating, tethering, and
membrane fusion and are executed by different types of Rabs
(Hutagalung and Novick, 2011; Jena, 2011). The directionality of
the vesicles is determined by the type of Rab protein localizing
with the membrane of the endocytic organelle (Table 2, Figure 4;
Hutagalung and Novick, 2011). Rab genes are highly conserved
from yeast to human (Colicelli, 2004). Rab GTPases interact
with the cytosolic aspect of the intracellular compartment to
regulate and direct vesicles along different pathways. Through
their effectors, Rab GTPases control vesicle formation, vesicle
movement mediated by microfilaments, and membrane fusion
(Hammer and Wu, 2002; Short et al., 2002).

In the enamel organ, a limited number of Rab GTPases have
been investigated. Rab10 and Rab24 were localized to ameloblasts
of the maturation stages and papillary cells (Lacruz et al.,

2013a). Rab10 assists in the trafficking of vesicles from the Golgi
apparatus to the basolateral membrane (Schuck et al., 2007).
Rab24 is found in the endoplasmatic reticulum, cis-Golgi and late
endosomes related to autophagy (Munafo and Colombo, 2002).
In presecretory to secretory ameloblasts Rab23 was localized
possibly negatively regulating sonic hedgehog signaling (Miletich
et al., 2005).

Endosomal Vesicles
Endosomes are membrane-bound compartments inside of
eukaryotic cells containing material that was internalized
from the exterior of the cell. Their function is to sort and
transport vesicles containing internalized solutes, receptors,
lipids or pathogenic agents. Through their cargo, they
also carry information from the extracellular compartment
into the cell critical for cell morphology, maintenance
and response to signals (Villasenor et al., 2016). Efficient
sorting routes the vesicles to their destinations within the
cells, such as the Golgi apparatus, lysosomes and plasma
membrane. The two major sorting stations are the early and
late endosomes (Mellman, 1996; Russell et al., 2006). Among
the early endosomes, late endosomes, and lysosomes exists
a dynamic and adaptable continuum with transient hybrid
forms. An endosome fused with a lysosome is called an endo-
lysosome. The endocytosis pathway is versatile because the
organelles undergo continuous maturation, transformation,
fusion, and fission (Huotari and Helenius, 2011). The
following paragraphs describe the endocytic pathways of

TABLE 2 | Intracellular proteins in endocytic, transcytic, and exocytic pathways.

Protein Human genes Intracellular localization Function References (cloning, localization, function)

RAB PROTEINS

Rab1 RAB1A, RAB1, YPT1 ER–Golgi intermediate Anterograde trafficking from ER

to Golgi

Zahraoui et al., 1989; Tisdale et al., 1992;

Zerial and McBride, 2001

Rab2 RAB2A, LHX, RAB2 ER–Golgi intermediate Retrograde trafficking from Golgi

to ER

Zahraoui et al., 1989; Chavrier et al., 1990;

Tisdale et al., 1992

Rab4 RAB4A EE and RE Trafficking from EE and RE to

plasma membrane

Zahraoui et al., 1989; van der Sluijs et al.,

1992; Seachrist and Ferguson, 2003

Rab5 RAB5A, RAB5 Clathrin coated vesicles and EE Endocytic internalization and EE

fusion

Zahraoui et al., 1989; Chavrier et al., 1990;

Somsel Rodman and Wandinger-Ness, 2000

Rab7a RAB7A, PRO2706 LE Trafficking from EE to LE and

from LE to lysosomes

Chavrier et al., 1990; Harrison et al., 2003;

Guerra and Bucci, 2016

Rab7b RAB7B, RAB7 LE Trafficking from LE to TGN Surmacz et al., 2006; Progida et al., 2010

Rab8 RAB8A, MEL, RAB8 Median Golgi and TGN Trafficking from median Golgi and

TGN to basolateral membrane

Huber et al., 1993; Chen and Wandinger-Ness,

2001; Peranen, 2011

Rab9 RAB9A, RAB9 LE Retrograde transport from LE to

trans-Golgi

Lombardi et al., 1993; Soldati et al., 1995;

Davies et al., 1997

Rab10 RAB10 Golgi Trafficking and recycling from

Golgi to basolateral membrane

Chen et al., 1993; Bao et al., 1998; Schuck

et al., 2007

Rab14 RAB14, FBP EE and Golgi Transport from Golgi to EE Elferink et al., 1992; Junutula et al., 2004;

Proikas-Cezanne et al., 2006

Rab31 (alternate

name Rab22b)

RAB31 EE and TGN Anterograde transport from TGN

to early endosomes

Rodriguez-Gabin et al., 2001; Ng et al., 2007

ER, endoplasmatic reticulum; EE, early endosome; RE, recycling endosome; LE, late endosome; TGN, trans-Golgi network.
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vesicles following internalization from the extracellular matrix
(Figure 4).

Early Endosomes
Early endosomes are the initial endocytic vesicle to accept
incoming internalized molecules (Gruenberg et al., 1989). Their
shapes vary from thin tubes (∼60 nm diameter) to large spheres
(∼400 nm diameter). As membrane invaginations and scission
events occur simultaneously on the endosome membrane, the
shape of the endosomes underlies dynamic changes (Gruenberg,
2001). Proteins targeted for recycling may accumulate within
tubular membranes. Early endosomes are a hub for sending
vesicles off to late endosomes, recycling endosomes, vesicles
from the Trans Golgi network or lysosomes. Internalized
vesicles are assisted in their transport to and fusion with early
endosomes by Rab5. Rab5 tethers to the membranes of cells
and endosomes via a C-terminal hydrophobic isoprenoid moiety
(Peter et al., 1992; Desnoyers et al., 1996; Shen and Seabra,
1996). In addition to controlling the origination of vesicles from
the plasma membrane, vesicle Rab5 helps to recruit Rab7 as
endosomes progress from early to late endosomes via fusion
events (Gorvel et al., 1991; Huotari and Helenius, 2011). The
fusion of endosomes is facilitated by effector proteins including
early endosome antigen 1 (EEA1), rabenosyn5 and multiprotein
complex C core vacuole/endosome tethering (CORVET) (Rubino
et al., 2000; Balderhaar and Ungermann, 2013; Gautreau et al.,
2014).

Trans-Golgi Network and Recycling Endosomes
The trans-Golgi network (TGN) is the site for sorting newly
translated membrane and secretory proteins (Griffiths and
Simons, 1986; Mellman and Warren, 2000). Several Rab proteins
carry out the vesicle transport from the TGN to early endosomes
or plasma membrane for release (Figure 4). Rab31 transports
vesicles bidirectionally between the TGN and early endosomes
(Rodriguez-Gabin et al., 2009). Vesicles with Rab1 and Rab2 are
transported from the TGN to the endoplasmatic reticulum and
vice versa, respectively (Plutner et al., 1991; Tisdale et al., 1992,
2004). Rab8 is recruited for the transport of vesicles destined
to release proteins from the TGN to basolateral membranes
(Huber et al., 1993). Vesicles arriving at the TGN from either
the endoplasmatic reticulum or the late endosome are bound for
secretion at the plasma membrane via Rab4 (van der Sluijs et al.,
1992; Junutula et al., 2004).

Synthesis and secretion are major functions of ameloblasts
during enamel formation. The morphology of ameloblasts
changes greatly when they differentiate and begin appositional
growth of the enamel layer thereby initiating the secretory stage.
Secretory stage ameloblasts in rodent incisors, for example,
have width to height dimensions of approximately 4–60 µm
(1:15). The extreme extension of the ameloblasts facilitates the
accommodation of a large number of pronounced cell organelles
to synthesize and secrete enamel proteins and to support enamel
mineralization. After transcription into mRNA in the nucleus
and protein translation in the rough endoplasmatic reticulum,
the synthesized enamel proteins progress through the centrally

FIGURE 4 | Vesicular trafficking pathways during endocytosis. Schematic

diagram showing the general pathways of internalized material. Molecules are

taken up into vesicles via various types of endocytosis (receptor-mediated,

phagocytosis, micropinocytosis, pinocytosis). Vesicles (coated and

non-coated) fuse with EE, the first cellular sorting station, where the cargo is

distributed to MVB/LE, GA or back to the plasma membrane (recycling

pathway) via their respective Rab proteins. Cargo which is destined for

degradation in lysosomes, is transported from EE to lysosomes via MVB/LE.

At MVB/LE vesicles can still enter the recycling pathway via GA. Decreasing

pH in the EE, MVB/LE, and lysosome are indicated by different shades of blue.

EE, early endosome; ER, endoplasmatic reticulum; GA, Golgi apparatus; L,

lysosome; MVB/LE, multivesicular body/late endosome; N, nucleus.

located and very large tubular-shaped Golgi apparatus for post-
translational modification and packaging into secretory granules.
The supranuclear cytoplasm between nucleus and the Tomes’
process is filled with rough endoplasmatic reticulum, Golgi
apparatus cisternae, and vesicles, forming an intricate network
of membranes in constant exchange of membrane and cargo
(Garant and Nalbandian, 1968;Warshawsky, 1968; Sasaki, 1983a;
Sasaki and Higashi, 1983). The Golgi cisternae are oriented
perpendicular to the nucleus, following the long axis of the
cell body. They occupy much of the supranuclear compartment
between the nucleus and the microfilaments of the apical cell web
with the dimension of 25× 1.5 µm, but do not penetrate into the
Tomes’ process (Kallenbach et al., 1963; Garant and Nalbandian,
1968). The saccular stacks of the Golgi apparatus adopt an open-
ended, tubular structure and are polarized with shorter saccular
stacks on the periphery and long flattened cisternae internally
located (Garant and Nalbandian, 1968; Nanci et al., 1993). The

Frontiers in Physiology | www.frontiersin.org 7 July 2017 | Volume 8 | Article 529

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pham et al. Endocytosis and Enamel Formation

endoplasmatic reticulum surrounds the Golgi apparatus in the
periphery.

The number of vesicles shuttling between the rough
endoplasmatic reticulum, the Golgi apparatus and the plasma
membrane is large (Garant and Nalbandian, 1968). They
accumulate in the Tomes’ process close to the secretory face
(Reith, 1967; Garant and Nalbandian, 1968). Vesicles with a
dense content are, in average, of 0.8–0.16µm in diameter (Garant
and Nalbandian, 1968; Warshawsky, 1968) and contain enamel
proteins to be released at the plasma membrane (Uchida et al.,
1991).

All secretory stage enamel proteins, amelogenin (Nanci et al.,
1987a, 1989; Inage et al., 1989), enamelin (Uchida et al., 1991;
Dohi et al., 1998), and ameloblastin (Lee et al., 1996; Murakami
et al., 1997; Uchida et al., 1998) were found in the Golgi apparatus
of ameloblasts. They have also been identified in secretory vesicles
and at the secretory face of the Tomes’ process (Nanci et al., 1989;
Uchida et al., 1991). One of the commonalities of the enamel
proteins as part of the secreted calcium-binding phosphoprotein
cluster is that all members are phosphorylated on a conserved
serine residue in a SXE motif of exon 3 (Kawasaki et al., 2004).
The enzyme catalyzing the phosphorylation has been identified as
Golgi-localized casein kinase, encoded by FAM20C (Tagliabracci
et al., 2012), localized to the Golgi apparatus of ameloblasts
(Wang et al., 2013). The phosphorylation of enamel proteins is
essential as mutations lead to non-lethal Raine syndrome with
hypoplastic amelogenesis imperfecta (Acevedo et al., 2015).

After the completion of the secretory stage, maturation
stage ameloblasts reduced their height, and the Golgi apparatus
reduces its dimensions (Nanci et al., 1993). Most of the
enamel proteins synthesized during the secretory stage are
greatly reduced in expression by maturation stage ameloblasts
(Somogyi-Ganss et al., 2012). They start to produce and secrete
the basement membrane proteins amelotin (Holcroft and Ganss,
2011) and ODAM (Iwasaki et al., 2005; Nishio et al., 2010; Dos
Santos Neves et al., 2012), implicated in the mineralization of
the enamel surface (Abbarin et al., 2015; Nakayama et al., 2015;
Núñez et al., 2016).

Late Endosomes
Along the endocytic pathway, early endosomes mature into late
endosomes (Huotari and Helenius, 2011). Late endosomes are a
sorting center to direct cargo to the lysosome, Golgi apparatus
or opposite plasma membrane (recycling, transcytosis). In the
course of conversion from early to late endosomes, Rab5 is
removed and replaced with Rab7 (Rink et al., 2005) which is
controlled by the membrane protein complex SAND-1/Mon-1
and HOPS (homotypic fusion and protein sorting) (Rink et al.,
2005; Peralta et al., 2010; Poteryaev et al., 2010; Plemel et al.,
2011). The late endosome is recruited to the target lysosome and
tethered onto the lysosomal membrane by HOPS accomplishing
the fusion (Balderhaar and Ungermann, 2013). Late endosomes
provide an intersection for arriving and leaving vesicles and have
a size between 250 and 1,000 nm (Huotari and Helenius, 2011).
Incoming vesicles bring information about the environmental
conditions and nutrients for the cell. Outgoing vesicles can carry
signals for protein synthesis, secretion, endocytosis, recycling,

and autophagy. Fusion events with other endosomes and
lysosomes are executed by Rab7. Once the endosome fuses
with a lysosome, the vesicle content will be degraded and
the endosomal pathway cannot be re-entered (Luzio et al.,
2007). Endocytic vesicles contain acid hydrolases that operate
in an acidic environment and are indicative for degradation
(Yamashiro and Maxfield, 1987).

Molecular markers for late endosomes in ameloblasts have not
been described. In electron microscopy images unique features
of late endosomes can be identified in ameloblasts in secretory
and maturation stages with intraluminal vesicles (Katchburian
et al., 1967; Reith and Cotty, 1967; Garant and Nalbandian,
1968; Katchburian and Holt, 1969; Smith, 1979; Matsuo et al.,
1986; Nanci et al., 1987a, 1993; Salama et al., 1989; Franklin
et al., 1991; Uchida andWarshawsky, 1992). MVB originate from
fusion with early endosomes and lysosomes and can release their
content into the extracellular environment. They represent a type
of late endosomes and are found during the entire life cycle of
ameloblasts. MVB are first found in pre-secretory ameloblast
associated with finger-like projections and the disruption of the
basement membrane between odontoblasts and pre-ameloblasts
(Reith, 1967; Nanci et al., 1989). In ameloblasts of the secretory
stage, MVB reside in the supranuclear zone of the cell (Sasaki,
1983b). During the maturation stage, the resorptive activity at
the ruffled border is intense. Large quantities of HRP labeled
fluid-phase material are resorbed via pinosomes and delivered to
MVB (Sasaki, 1984c). The number of MVB is greater in early
maturation compared to late maturation stage (Salama et al.,
1990a).

Multivesicular bodies (MVB) containing amelogenin protein
have been found with immune gold labeling techniques in
secretory-stage, smooth-ended, and ruffle-ended ameloblasts
(Nanci et al., 1987a, 1993). However, immunolocalization studies
do not answer the question whether the proteins had intracellular
or extracellular origin.

Lysosomes
Lysosomes originate from late endosomes. The transition
between these two organelles is continuous, often forming an
endo-lysosome before it transforms into a secondary or dense
lysosome (Luzio et al., 2007; Huotari and Helenius, 2011).
Lysosomes are the cell’s primary degradation center and the
terminal station in the endocytic pathway. They contain the
breakdown of proteins, polysaccharides, and lipids catalyzed
by a wide array of lipases, proteases, and glycosidases in an
acidic environment (Luzio et al., 2007; Huotari and Helenius,
2011; Xu and Ren, 2015). Lysosomes generate an acidic luminal
pH to activate hydrolytic enzymes and degrade. Acidification
is accomplished by proton transport into the lysosome lumen
countered by chloride (Dell’Antone, 1979; Ohkuma et al., 1982;
Nelson et al., 2000; Sun-Wada et al., 2004;Mindell, 2012). Among
lysosomal hydrolases, cathepsins play a major role in peptide
degradation. Cathepsins are classified into serine, aspartic and
cysteine proteases referring to the amino acid residue in the
catalytic center. Cathepsins A (also called human protective
protein) and G contain a serine residue in their active site
(Kawamura et al., 1980; Rudenko et al., 1995; Hof et al., 1996),
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while cathepsins D and E have an aspartic acid residue in their
active site (Shewale and Tang, 1984; Ostermann et al., 2004).
Accordingly, cathepsins B, C (also known as dipeptidyl peptidase
I), F, H, K, L, O, S, V, W, and X each feature a cysteine residue
in the catalytic site (Turk et al., 2012). While cathepins B, H,
L, C, X, F, O, and V are ubiquitously expressed (Turk et al.,
2012), cathepsins K, W, and S are only found in specific tissues.
Cathepsin K, for example is highly expressed in osteoclasts, and
in many epithelial cells (Drake et al., 1996; Buhling et al., 1999;
Salminen-Mankonen et al., 2007).

In enamel formation lysosomes are found in ameloblasts
at presecretory, secretory and maturation stages (Katchburian
and Burgess, 1983; Nanci et al., 1987a,b). Lysosomal activity
for acid phosphatase has been demonstrated in preameloblasts,
secretory and maturation stage ameloblasts located in granules
within the center of the supranuclear region and in the Tomes’
process (Katchburian et al., 1967). In preameloblasts, the target
of the resorptive function is the basal lamina facing odontoblasts
(Katchburian and Burgess, 1983; Uchida et al., 1989). During
secretory and maturation stages, enamel proteins are removed
from the matrix through resorption by ameloblasts (Reith and
Cotty, 1967; Nanci et al., 1987a,b; Salama et al., 1990a). Large
lysosomes can have smooth or rough surfaces in maturation
stage ameloblasts (Nanci et al., 1993). The shape of lysosomes is
described as spherical and elongated, tubular with sizes ranging
from 80 to 140 nm in length (Salama et al., 1989).

Lysosomal enzymes present in ameloblasts include acid
phosphatase, β-glucoronidase, and leucyl-naphthylamidase
(Beynon, 1972). The distinction between pale and dark
lysosomes was derived from the electron density of deposits
observed with electron microscopy. Pale lysosomes stain
inconsistently with inorganic trimetaphosphatase and acid
phosphatase. In contrast, dark lysosomes are reliably positive
for inorganic trimetaphosphatase (Nanci et al., 1987b). Dark
lysosomes contain less protein than pale lysosomes as they are
secondary lysosomes with ongoing protein degradation (Nanci
et al., 1987a). Ruffle-ended ameloblasts show more endocytic
activity than smooth-ended ameloblasts (Nanci et al., 1987b).
Interestingly, the lysosomal activity of ameloblasts is higher
during secretory stage compared to maturation stages (Table 1).
Among the enamel proteins, amelogenin localizes to lysosomes
(Nanci et al., 1987b; Inage et al., 1989). Whether enamelin
localizes to lysosomes is not clear since the antibody was raised
against a protein species of 50–70 kDa potentially containing
enamelin and/or ameloblastin (Inage et al., 1989). Much of the
degradative effort in lysosomes is associated with cathepsin B, D,
F, H, K, L, O, S, and Z expressed by maturation stage ameloblasts
(Tye et al., 2009).

PERSPECTIVES AND FUTURE
DIRECTIONS

Enamel mineralizes and matures as a result of a balance
between synthesis, deposition, degradation and internalization.
The homeostasis between ameloblasts and matrix is critical for
proper enamel formation. The intracellular transport of vesicles

is important for polarization of epithelial cells, serving as a
mechanism to regulate differentiation (Bryant and Mostov, 2008;
Butler and Wallingford, 2017). Endocytosis is a fundamental cell
function executed during all stages of the ameloblast life cycle
to create the most mineralized hard tissue. Since the enamel
matrix represents a secluded compartment surrounded by dentin
and ameloblasts (Bronckers, 2016), ameloblasts are granted full
control of enamel formation. No other cell type has direct access
to the enamel matrix. As a result, ameloblasts closely monitor the
transport of ions and proteins across the membrane, necessary
to control crystal growth. Endocytosis may be a mechanism
for communicating changes in the maturing enamel to the
ameloblasts. Each of the various stages of amelogenesis has
specific criteria that need to be fulfilled to allow cells to advance
to the next stage. Disruption of the completion of a stage results
in severe cell pathology as caused by absence of any of the
enamel proteins (amelogenin, ameloblastin, enamelin), matrix
metalloproteinase 20 or kallikrein4 (Fukumoto et al., 2004;
Simmer et al., 2009; Bartlett et al., 2011; Hu et al., 2014, 2016).
The inability to cleave the enamel proteins is associated with
hypomineralized enamel and matrix-retained proteins (Simmer
et al., 2009; Bartlett et al., 2011), allowing the conclusion that
cleavage and degradation of enamel proteins are a prerequisite
for effective endocytosis. Appropriate feedback to ameloblasts is
required to maintain ameloblast function (Chun et al., 2010).

Aside from releasing and internalizing vesicle content, the
vesicle membrane may supply or reduce the plasma membrane
surface when vesicles fuse with the membrane or are pinched
off from the membrane. Thereby, the shape and size of the
cell may be modified. During the life cycle of an ameloblast,
the cell undergoes significant changes in cell shape. During
the development of the Tomes’ process in preameloblasts, the
membrane surface is enlarged which could be supplied by
secretory vesicles. During this event, secretion may dominate
over endocytosis. Once the Tomes process has been established
in secretory stage ameloblasts, secretion and endocytosis may
take place in equilibrium. Given the intense protein synthesis
activity of secretory ameloblasts, a mechanism is needed to
attain homeostasis of membrane surface and the overall cell
shape. The three-dimensional shape of the Tomes’ process
coordinates enamel ribbons in the characteristic rod and interrod
enamel. The forming interrod enamel completely surrounds the
protruded distal portion of the Tomes’ process like prongs.
The interrod enamel originates from the proximal portions of
the Tomes’ process. If ameloblasts were separated from the
forming enamel, a cavity in which the Tomes’ process resides
would become visible from a baso-apical direction. The interrod
enamel would be elevated and form a rim surrounding a cavity
in the shape of the Tomes’ process. The interrod is partially
mineralized, and therefore may restrict the size and shape the
Tomes’ process is able to adopt. When a secretory vesicle
undergoes fusion with the surface membrane of a cell, the
vesicle experiences a gain in membrane and increases the overall
surface of the cell. For the Tomes’ process, a gain in membrane
from secretory vesicles would alter and enlarge the shape of
the Tomes’ process. However, being encased by rigid rod and
interrod enamel, an enlarged Tomes’ process would collide with

Frontiers in Physiology | www.frontiersin.org 9 July 2017 | Volume 8 | Article 529

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pham et al. Endocytosis and Enamel Formation

enamel ribbons. Endocytosis, on the other hand, removes plasma
membrane from the cell surface when vesicles are pinched off
and trim the contour of the Tomes’ process. Invaginations of
the plasma membrane of the Tomes’ process present an elegant
solution to offer surface membrane, but because it is shifted
internally, variability in the shape due to membrane fusion from
secretory or endocytic vesicles is bypassed. As a result, the surface
membrane and the shape of the Tomes’ process remain largely
unaltered. When the ameloblast progresses from secretory stage
to transition stage and maturation stages, the cell’s dimensions
are reduced and the Tomes’ process is dismantled. A preference
of endocytosis events would facilitate a reduction in cell surface
membrane. Ruffle-ended maturation stage ameloblasts display
high activity in endocytosis. Throughout amelogenesis, secretion
and endocytosis are highly prominent operations in ameloblasts
that may participate in the control of the cell membrane surface
available to form and disassemble cell appendages and infoldings
and invaginations.

During their life cycle, ameloblasts adopt many different
morphologically distinct appearances as preameloblast, secretory
ameloblast, transition stage ameloblast, ruffle-ended ameloblast,
smooth-ended ameloblast, and reduced enamel epithelium. The
sites of endocytosis on the ameloblast membrane are different
in each stage. Small processes are protruded into the basal
lamina in preameloblasts. The Tomes’ process of the secretory
ameloblast is a very large projection from the apical membrane.
The infoldings of the membrane distal portion form inwards
in the Tomes’ process. The ruffled border of maturation stage
ameloblasts is formed much differently from the secretory
stage infoldings associated with rod and interrod growth sites.
They sink into the supranuclear cytoplasmic mass. The stage-
specific mechanisms and pathways of endocytosis in ameloblasts
are not well defined. While strong evidence is available

to document vesicles generated during endocytosis, so far,
only clathrin-mediated endocytosis and pinocytosis have been
identified in ameloblasts as internalization routes. Lipid rafts or
caveolae-mediated endocytosis as a clathrin independent form
of endocytosis has not been described in ameloblasts. Future
directions in understanding endocytosis in ameloblasts should
address the feedback mechanisms, differences in endocytosis
types depending on the vesicle origin from the infolding of the
Tomes’ process vs. ruffled border vs. smooth-ended border vs.
lateral membrane and the trafficking of endosomes.
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