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Abstract

Background: The Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine is given to >120 million infants each
year worldwide. Most studies investigating the immune response to BCG have focused on adaptive immunity.
However the importance of TCR-gamma/delta (γδ) T cells and NK cells in the mycobacterial-specific immune
response is of increasing interest.
Methods: Participants in four age-groups were BCG-immunized. Ten weeks later, in vitro BCG-stimulated blood was
analyzed for NK and T cell markers, and intracellular IFNgamma (IFNγ) by flow cytometry. Total functional IFNγ
response was calculated using integrated median fluorescence intensity (iMFI).
Results: In infants and children, CD4 and CD4-CD8- (double-negative (DN)) T cells were the main IFNγ-expressing
cells representing 43-56% and 27-37% of total CD3+ IFNγ+ T cells respectively. The iMFI was higher in DN T cells
compared to CD4 T cells in all age groups, with the greatest differences seen in infants immunized at birth (p=0.002)
or 2 months of age (p<0.0001). When NK cells were included in the analysis, they accounted for the majority of total
IFNγ-expressing cells and, together with DN Vδ2 γδ T cells, had the highest iMFI in infants immunized at birth or 2
months of age.
Conclusion: In addition to CD4 T cells, NK cells and DN T cells, including Vδ2 γδ T cells, are the key populations
producing IFNγ in response to BCG immunization in infants and children. This suggests that innate immunity and
unconventional T cells play a greater role in the mycobacterial immune response than previously recognized and
should be considered in the design and assessment of novel tuberculosis vaccines.
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Introduction

The Mycobacterium bovis Bacille Calmette-Guérin (BCG)
vaccine is given to more than 120 million children worldwide
each year and remains a key intervention in the prevention of
tuberculosis (TB) [1]. In infants it provides approximately 80%
protection against severe forms of TB [2].

Understanding the immune response to BCG immunization
provides important information in the search for immunological
correlates of protection against TB. Surrogate biomarkers of

protection against TB remain elusive but are important for the
development of improved TB diagnostics and vaccines.

Most studies investigating the immune response to BCG and
protection against TB have investigated adaptive immunity
[3–5]. In recent years there has been increasing recognition of
the importance of the innate immune response in early
neonatal life [6–9]. T cells with a gamma-delta (γδ) TCR and
NK cells play a key role in innate immunity. These cells
increase in frequency during foetal development and represent
major cell subsets in cord blood [10–12]. To date, only few
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studies have investigated the innate immune response to BCG
immunization in infants.

We have previously reported the CD4 and CD8 T cell
responses 10 weeks after BCG immunization [3,13]. In this
study we used samples from the same studies to investigate
the role of CD4-CD8- double negative (DN) T cells, Vδ2 γδ T
cells and NK cells in the mycobacterial-specific IFNgamma
(IFNγ) response after BCG immunization.

Methods

Ethics Statement
The study was approved by the Human research ethics

committees at the Mercy Hospital for Women (R07/16), the
Royal Children’s Hospital (26191) and The University of
Melbourne (0828435). Written informed consent was obtained
from participants or parents.

Study participants
Infants were recruited at the Mercy Hospital for Women in

Melbourne as part of a previous study [3]. Children aged
between 10 and 24 months that needed BCG immunization for
travel to high TB-prevalence countries were recruited at the
Royal Children’s Hospital, Melbourne [13]. Adult volunteers
were recruited from University of Melbourne medical students
aged between 22 and 27 years who planned to work during
their elective overseas in high TB-prevalence countries [13].

BCG vaccine
BCG Denmark, SSI-1331 (Statens Serum Institute,

Copenhagen, Denmark) was used to immunize infants in the
first week of life or at 2 months of age [3]. BCG Connaught
(Sanofi Pasteur, Toronto, Canada) was used to immunize
children older than 2 months and adult participant [13]. BCG
vaccine was administered intradermally in the left deltoid
region.

Whole blood assay
Blood was obtained 10 weeks after immunization for in vitro

assays. To measure cytokine production, whole blood was
stimulated with BCG (1.6 x 106 CFU/ml of the same BCG
vaccine strain used for immunization reconstituted with Roswell
Park Memorial Institute medium) for 7 hours at 37°C in the
presence of co-stimulatory antibodies CD49d and CD28 (1
µg/ml each; both from BD Biosciences, San Jose, USA) or left
unstimulated (nil control). After addition of brefeldin A (Sigma-
Aldrich, St. Louis, USA) at a concentration of 10 µg/ml cells
were incubated for 5 additional hours, harvested with 2 mM
EDTA (Sigma-Aldrich) then fixed with FACS lysing solution (BD
Biosciences) and stored at -80 °C.

Flow cytometry
Stored blood samples were thawed at 37 °C, permeabilized

with Perm 2 buffer for 10 minutes (BD Biosciences) and
stained for 30 minutes in the dark with the following anti-human
antibodies: CD4-allophycocyanin-efluor 780 (clone SK3;
eBioscience, San Diego, USA), CD8-Qdot605 (3B5; Invitrogen,

Carlsbad, USA), CD3-Pacific blue (UCHT1), Vδ2 TCR-PE (B6),
CD56-allophycocyanin (NCAM 16.2), IFNγ-AlexaFluor 700
(B27) (all BD Biosciences). Cells were acquired using LSRII
flow cytometer (BD Biosciences) and analyzed with FlowJo 8.8
(TreeStar, Ashland, USA) and Prism 5 (GraphPad Software, La
Jolla, USA). Cytometer setup and tracking beads (BD
Biosciences) were used to define LSRII baseline and run daily
measurements. CompBeads set anti-mouse Igk (BD
Biosciences) was used to optimize fluorescence compensation
settings. For each sample, a minimum of 106 cells was
acquired. Proportions of BCG-induced cytokine producing cells
were analyzed after background correction by subtracting the
nil control sample values. Median fluorescence intensity (MFI)
was calculated using FlowJo. MFI of BCG-stimulated samples
was background corrected by subtracting the MFI of nil control
samples. The total functional response of a cell population
producing IFNγ is expressed as the integrated MFI (iMFI) and
was calculated by multiplying the frequency of IFNγ-expressing
T cells by the related MFI as described previously [14].

Results shown in Figures 1 and 2 depict re-analyzed data
from samples used in previous studies [3,13]. The following
conjugated anti-human antibodies were used in these samples:
CD3 PerCP-Cyanin5.5 (SK7), CD4 FITC (RPA-T4), CD8
AlexaFluor-700 (RPA-T8) and IFNγ PE-Cyanin7 (4S.B3) (all
BD Biosciences). A hierarchical gating strategy was used to
determine proportions of CD4, CD8, DN and double positive
(DP) cells within the CD3+IFNγ+ population (Figure S1). Only
samples with more than 100 cells detected in the CD3+IFNγ+

gate (Figure 1) or in the combined NK and CD3 IFNγ+ gate
(Figure 3) were included in the analysis. Only samples with
more than 10 cells detected in the CD3+CD4-CD8-IFNγ+ gate
were included in Figures 2 and 4.

Statistical analysis
A Kruskal-Wallis test and Dunn’s multiple comparison tests

were used to compare groups. If the p-value was less than
0.05, a Wilcoxon signed rank test was done to compare two
pairs. Graphs were generated and statistics calculated using
Prism 5 (GraphPad Software, La Jolla, USA).

Results

Participants in four age-groups were immunized with BCG.
After 10 weeks, blood samples from participants were
stimulated with BCG or left unstimulated (nil control), and the
mycobacterium-specific immune response was measured by
flow cytometry. In children below two years of age, DN T cells
represented between 3.4% (n=28) and 7.8% (n=26) of CD3 T
cells (Table 1). Despite their small proportion, this subset was
responsible for a large share of mycobacterial-specific IFNγ-
expressing cells (Figure 1), comparable with the contribution
from CD4 T cells. Notably, in contrast to the response
observed in children, CD8 T cells were the major contributor of
IFNγ-expressing cells in adults (n=5) (Figure 1).

DN T cells more frequently expressed IFNγ than CD4 T cells
following BCG immunization. At birth (n=28), 1.69%
(interquartile range (IQR) 0.8-2.4%) of DN T cells expressed
IFNγ compared to 0.08% (IQR 0.04-0.18%) of CD4 T cells,
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p<0.0001. Similarly at two months of age (n=26), 3% (IQR
0.7-6.2%) of DN T cells expressed IFNγ compared to 0.1%
(IQR 0.04-0.16%) of CD4 T cells, p<0.0001 (Figure 2A).
Importantly, DN T cells also showed a higher IFNγ-producing
capacity (median fluorescence intensity (MFI)) than CD4 T
cells and the total functional IFNγ response (combining
frequency of IFNγ-expressing cells and MFI) was higher in DN
T cells than in CD4 T cells (Figure 2B and 2C).

In a next step, we analyzed the IFNγ expression of NK cells
and the phenotypic subgroups of DN T cells (for this, only
samples from infants BCG-immunized at birth and two months
of age were available [3]). As shown in the gating strategy
(Figure S2), NK cells were chosen from the CD56+CD3-

population and DN T cells were selected from the CD56-

CD3+CD4-CD8- population and then analyzed for their Vδ2
TCRγδ expression. The proportions of Vδ2 γδ T cells within the

DN T cell population were 12.6% (IQR 6.5-19.7%) and 7.9%
(IQR 4.8-12.3%) in blood taken from infants immunized with
BCG at birth (n=21) and at two month of age (n=25)
respectively. NK cells, DN Vδ2 TCRγδ+ and DN Vδ2 TCRγδ- T
cells represented a substantial proportion of IFNγ-expressing
cells, with NK cells alone contributing to more than half the
measured total IFNγ-expressing cells in both age groups
(Figure 3).

Up to 23% of NK cells and 11% of DN Vδ2 TCRγδ+ T cells
expressed IFNγ compared to less than 1% of double positive
(DP), CD8, CD4 and DN Vδ2 TCRγδ- T cells expressing IFNγ
in infants BCG-immunized at birth (n=21) and at 2 months of
age (n=25) (Figure 4A). The IFNγ-expressing capacity was
comparable in all subsets with the exception of DP T cells,
which had a lower IFNγ MFI in infants immunized at two
months of age (Figure 4B). Consequently, the greatest IFNγ

Figure 1.  CD4 and DN (CD4-CD8-) T cells are the main IFNγ-expressing subsets in blood taken from infants 10 weeks after
BCG immunization.  Box plots (with lower quartile, median and upper quartile, Tukey whiskers) of the proportion of DP, CD8, CD4,
DN T cell subsets within the IFNγ+ expressing cells in individuals given BCG at birth (n=28), at 2 months of age (2m; n=27), between
10 and 24 months of age (10-24m; n=7) and in adulthood (n=5). DN: CD4-CD8- double negative T cells. DP: CD4+CD8+ double
positive T cells.
doi: 10.1371/journal.pone.0077334.g001
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Figure 2.  DN (CD4-CD8-) T cells have a higher IFNγ
functional response than CD4 T cells in blood taken from
infants 10 weeks after BCG immunization.  (A) Frequency
and (B) median fluorescence intensity (MFI) of IFNγ-expressing
CD4 (grey bars) and DN T cells (white bars), and (C) IFNγ total
functional response (iMFI) in individuals given BCG at birth
(n=28), at 2 months of age (2m; n=26), between 10 and 24
months of age (10-24m; n=7) and in adulthood (n=9). Box plots
with lower quartile, median, upper quartile and Tukey whiskers
are shown. **: p<0.001, ***: p<0.0001. DN: CD4-CD8- double
negative T cells.
doi: 10.1371/journal.pone.0077334.g002

functional response was measured in NK cells and DN Vδ2
TCRγδ+ T cells (Figure 4C). Notably, CD4 T cells were not
major contributors to the total IFNγ functional response (Figure
4C).

Discussion

Our study is the first to investigate in detail the importance of
NK cells, γδ T cells and DN T cells in the mycobacterial-
specific IFNγ response following BCG immunization in infants.
We found that the key populations producing IFNγ in response
to BCG in infants and children were NK cells and DN T cells,
including Vδ2 γδ T cells, rather than CD4 T cells. This
highlights the potential importance of the innate immune
response and unconventional T cells in the immunoprotective
response to BCG.

Previous studies of the immune response to BCG have
largely focused on cell-mediated immunity. A CD4 T cell (Th1-
type) response associated with IFNγ expression and cytotoxic
activity is observed in infants and children after BCG
immunization [3,13,15–19]. BCG also induces dendritic cell
maturation and production of IL-12 that leads to Th1
differentiation [20–22]. Activation of CD8 T cells producing
IFNγ, TNFα and perforin has also been demonstrated [3,23]. In
our study, we found that in BCG-immunized adults, in contrast
to infants, CD8 T cells were the main IFNγ-producing cells.
This suggests that this subset is a crucial player in the immune
response to TB in adults as previously proposed [23]. Another
recent study in adults shows that CD4 T cells expressed lower
IFNγ level than CD8 and DN T cells in TB patients [24]
consistent with our results. Although it has been suggested that
non-conventional T cells and innate immunity play a role in the
response to BCG immunization [25], this aspect of TB immunity
has been less well investigated.

Our results show that while DN T cells represent only a small
proportion of T cells, this subset makes a considerable
contribution to the IFNγ response in infants immunized with
BCG that is greater than that made by CD4 T cells. These
findings are consistent with a previous study in humans
showing that DN T cells represent approximately 4% of T cells
in PBMC and express 3 to 4 times more IFNγ than CD4 T cells
[26]. It has been suggested that DN T cells play an
immunoregulatory role as they can express perforin and
suppress cytotoxic CD8 T cells [26]. In humans, DN T cells
suppress CD4 and CD8 T cell responses [27]. Similarly in
mice, DN T cells kill CD4 T cells, B cells and NK cells and
down-regulate co-stimulatory molecules on mature dendritic
cells thus contributing to immune tolerance [28]. In simian
immunodeficiency virus infection, DN T cells develop CD4 T
cell functions that parallel the loss of CD4 T cells and protect
against viral dissemination [29]. DN T cells are also involved in
the mycobacterial-specific immune response in mice [30,31]
and develop a memory phenotype, potentially contributing to
effective protection [30].

Within the DN T cell population, γδ T cells have long been
known to constitute a “first line of defense” linking innate and
adaptive immunity [32,33]. Their presence is necessary for the
expansion of CD4 T cells and they can also act as antigen-
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presenting cells and cross-present antigen to CD8 T cells
[34,35]. In the early 1990s, γδ T cells were shown to be
activated by phosphoantigens, which are abundant in
Mycobacterium tuberculosis (MTB) [36,37]. In animal studies in
mice and pigs immunized with attenuated MTB or BCG, γδ T
cells are activated, expanded and express IFNγ[38–40] These
cells have cytotoxic activity for BCG-infected macrophages and
are necessary to prime antigen-specific CD8 T cell responses
through the enhanced production of IL-12 by lung dendritic
cells [39,40]. TCRγδ T cell-deficient mice infected with BCG
had markedly reduced IFNγ production, suggesting a role in
immunity to BCG [39,41,42]. In neonates, when a mature
TCRαβ immune system is still lacking, it has been proposed
that γδ T cells are crucial for protection against infections [43].
Human γδ T cells have been shown to produce IFNγ when
BCG-stimulated in vitro [41] and γδ T cells from BCG-
immunized infants expand to comprise 60% of total T cells after
in vitro restimulation [44]. However, the relationship between γδ
T cells and protection is uncertain. In infants immunized with
BCG at birth, the frequency of IFNγ-producing γδ T cells after
immunization did not correlate with protection against TB [45].
In contrast, in patients with severe TB, the frequency of total
DN T cells was increased compared to healthy donors, but the
DN γδ T cells frequency was reduced. However, both DN and
DN γδ T cells expressed IFNγ in patients with moderate
disease suggesting a role in the immune response to TB [24].
TB patients with mild disease have a greater γδ T cell
frequency compared to patients with advanced pulmonary and

miliary TB, and therefore these cells may correlate with
protective immunity [46].

NK cells are major players in the innate immune response
and their function during MTB infection has increasingly been
investigated in the last decade. In BCG-immunized mice, NK
cells play a key role in the control of bacterial replication and
enhance T cell responses mediated by the secretion of IL-22
and IFNγ [47]. In addition, IFNγ produced by NK cells is crucial
for the regulation of T cell-independent resistance to MTB and
neutrophil recruitment in lungs of MTB-infected mice [48]. In
humans, NK cells produce IFNγ, perforin and granzyme A
when stimulated with BCG or PPD [49–51]. It has recently
been shown that BCG induces the maturation of NK cells
isolated from umbilical cord blood and enhances their cytotoxic
activity against immature dendritic cells, suggesting a role in
shaping adaptive immunity [52]. NK cells also play a major role
in protection against TB by lysis of MTB-infected monocytes
and enhancement of CD8 T cell effector functions [53].
Furthermore, in patients with active TB, NK cell activity was
diminished [53].

One potential limitation of our study is that different BCG
vaccine strains were used for immunization. BCG-Connaught
was the licensed vaccine strain for routine immunization in
Australia during the study period, while BCG-Denmark was
used in the randomized study. No study has compared the in
vitro immune response to these two vaccines in humans, but a
study in mice showed comparable proportions of cytokine-

Figure 3.  NK, DN Vδ2 TCRγδ- and DN Vδ2 TCRγδ+ T cells represent two-thirds of measured IFNγ-expressing cells in blood
taken from infants 10 weeks after BCG immunization given at birth (n=20) or at 2 months of age (2m; n=23).  Box plots (with
lower quartile, median and upper quartile, Tukey whiskers) of the proportion of DP, CD8, CD4, DN Vδ2 TCRγδ-, DN Vδ2 TCRγδ+

and NK cells within the combined NK IFNγ+ and CD3+ IFNγ+ population. DN: CD4-CD8- double negative T cells. DP: CD4+CD8+

double positive T cells.
doi: 10.1371/journal.pone.0077334.g003
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Figure 4.  NK and DN Vδ2 TCRγδ+ T cells have the highest IFNγ functional response in blood taken from infants 10 weeks
after BCG immunization given at birth (n=21) or at 2 months of age (2m; n=25).  (A) Frequency and (B) median fluorescence
intensity (MFI) of IFNγ-expressing DP, CD8, CD4, DN Vδ2 TCRγδ-, DN Vδ2 TCRγδ+ T cells and NK cells, and (C) IFNγ total
functional response (iMFI) in those subsets. Box plots with lower quartiles, median, upper quartiles and Tukey whiskers are shown.
***: p<0.0001. #: NK cells are different from all subsets except DN Vδ2 TCRγδ+ with a p ≤ 0.0012. *: DP MFI is different from all
subset MFI except CD8 with a p ≤ 0.0007. DN: CD4-CD8- double negative T cells. DP: CD4+CD8+ double positive T cells.
doi: 10.1371/journal.pone.0077334.g004
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producing CD4 and CD8 T cells in the lungs after immunization
with either BCG-Connaught or Denmark [54].

The development of new improved TB vaccines is one of the
WHO Stop TB priorities, and vaccines that rely on boosting
BCG at birth are the most advanced. In a recent randomized
controlled trial, the novel boosting vaccine MVA85A failed to
show protection of infants despite having shown good
mycobacterial-specific adaptive immune responses in previous
trials [54]. This underlines the importance of investigating the
effects of BCG on early life anti-mycobacterial immunity and
the potential importance of other cells such as unconventional
T cells and NK cells.

Our results highlight an important role for both DN Vδ2 γδ T
cells and NK cells in the mycobacterial-specific IFNγ response
to BCG immunization in infants. Recent studies in both mice
[55] and humans [24,45] suggest there is not a simple
relationship between IFNγ production from T cells and

Table 1. DN T cells represent approximately 3-9% of total
CD3+ T cells.

Group given
BCG at: Median (interquartile range) proportion of T cell subset (%)

 CD4 DN CD8 DP

Birth (n=28)
73.2
(66.8-78.1)

3.4 (2.2-4.7)
23.7
(16.9-28.6)

0.23
(0.2-0.3)

2 months of
age (n=26)

70.8
(59.1-74.7)

4.6 (3.2-5.3)
24.6
(20.5-34.2)

0.15
(0.1-0.2)

10-24 months
of age (n=7)

63.6
(57.1-71.3)

7.8 (6-13.1) 22.5 (20-25.5)
0.81
(0.5-0.9)

Adulthood
(n=9)

50.8
(46.6-58.5)

9.4 (7.9-12.8)
37.9
(28.7-43.8)

0.44
(0.4-0.8)

doi: 10.1371/journal.pone.0077334.t001

protection against TB. However, our study supports the
concept that the role of the innate immune response and
unconventional T cells should be considered in future
investigation of the immunoprotective function of BCG and
potential new TB vaccines.

Supporting Information

Figure S1.  Gating strategy to select IFNγ-expressing cells
within the CD3 T cell population. The IFNγ positive gate was
set using Nil-stimulated samples (top right panel). In BCG-
stimulated samples (bottom panels), CD8 and CD4 expression
was then analyzed on CD3+ IFNγ+ cells.
(TIF)

Figure S2.  Gating strategy to select CD56+ NK cells and
CD56-CD3+ T cells. Within the CD56-CD3+ cells, DN T cells
were further gated into DN Vδ2 TCRγδ+ and DN Vδ2 TCRγδ-

populations. Bottom panels show IFNγ expression in NK, DN
Vδ2 TCRγδ+ and DN Vδ2 TCRγδ- cells. Note, for clarity, gating
of CD4+, CD8+ and CD4+CD8+ T cells within CD56-CD3+ gate is
not shown.
(TIF)
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