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Abstract

The targeted and conditional activation of pharmaceuticals is an increasingly important feature in 

modern personalized medicine. Nucleic acid nanoparticles show tremendous potential in this 

exploit due to their programmability and biocompatibility. Among the most powerful nucleic acid 

specific treatments is RNA interference-based therapeutics. RNA interference is a naturally 

occurring phenomenon in which specific genes are effectively silenced. Recently we have 

developed two different strategies based on customized multivalent nucleic acid nanoparticles with 

the ability to conditionally activate RNA interference in diseased cells as well as elicit detectable 

fluorescent responses.[1,2] These novel technologies can be further utilized for the simultaneous 

delivery and conditional intracellular activation of multiple therapeutic and biosensing functions to 

combat various diseases.

Nucleic acid nanoparticles have become increasingly attractive in therapeutic research due to 

their high customizability and various functionalities while retaining biocompatibility and 

ease in production [3–10]. Specifically, RNA has garnered attention through research 

exploiting its plethora of functionalities in sensing and treating various diseases. RNA 

interference (RNAi) which is the effective termination of specific protein production, serves 

as an important aspect of RNA therapeutics [11–13]. RNAi occurs naturally through various 

pathways but can be taken advantage of synthetically using a number of designed RNA 

strands (i.e., short-interfering RNA, or siRNA, and slightly elongated dicer-substrate RNA or 

DS RNA [14]). The ability to simultaneously deliver and activate multiple functionalities 

(including but not limited to RNAi) would prove immensely beneficial to personalized 

medicine. Additionally, predicting the structure, folding, and tertiary interactions of RNA 

would greatly benefit and accelerate the design of therapeutics.
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We introduced nucleic acid-based programmable system with the ability to conditionally 

activate multiple functionalities via introduction of split cognate strands [15–16]. Each strand 

contributes half of a designed DS RNA duplex, which upon re-association and further dicing 

forms a functional therapeutic. The initially prepared non-functional DNA-RNA hybrids 

contain either ssDNA or, as in the highlighted work [2], ssRNA over-hangs of different 

lengths, called toeholds (Figure 1A). These toeholds allow for the non-functional cognate 

hybrids to interact and, through branch migration, form more energetically suitable 

complexes – that is the formation of DS RNA. To allow for multiple functionalities to be 

delivered and activated simultaneously, previously designed RNA rings [17] were used in this 

work as scaffolds carrying six hybrids. The efficacy of re-association based on varying 

toehold length was assessed using both native-PAGE and FRET. Toeholds of 2, 4, 6, and 8 

nucleotides were investigated for their efficiency of re-association. FRET analyses revealed 

that longer toeholds led to improved re-association rates. The functionality of these particles 

was confirmed in different human cell lines.

The previously mentioned functionality operates using DNA-RNA hybrids. An additional 

scheme has also been exploited using RNA-RNA interactions (Figure 1B).[1] In this system 

an RNA strand is designed to interact with specific mRNA strands in cells. The designed 

RNA strand contains both “therapeutic” and “trigger” components; these two components 

are designed to dissociate from each other in the presence of a “trigger” mRNA and form 

both a byproduct as well as a short hairpin-like RNA which can be processed by dicer to 

form functional siRNA. The conformational change takes place due to the presence of an 

extended ssRNA toehold in the “trigger”-binding strand which allows for the specific 

binding to an mRNA present in diseased cells. This novel approach allows for the 

conditional activation of therapeutic RNAs only where a designated trigger strand is present. 

For potential use in treatment of diseases, such as cancer, this can be a tremendous boon as it 

will reduce off target silencing and allow for more precise treatment. Rational design of 

these RNA nanoparticles was performed using HyperFold, a novel multistrand nucleic acid 

modeling approach used for predicting structures and interactions between nucleic acid 

strands as well as the formation of pseudoknots (RNA structures with non-nested base 

pairing). This in silico approach supplemented in vitro experiments to confirm RNA 

structures and interactions.

The conditionally activated RNA nanoparticles, published back-to-back in Nano Letters [1, 

2], offer alternative techniques supplementing each other. The combination of these 

technologies provides the ability to deliver multiple functionalities simultaneously. Currently 

there are two synthesis techniques for constructing these architectures and their functional 

moieties: transcription of individual components followed by a one pot assembly, as is the 

case for the switch, or co-transcriptional assembly, as in the case of the hybrid 

nanostructures. The former consists of transcribing DNA strands separately, then purifying 

and recombining in equimolar concentration by heating (causing denaturation) and snap-

cooling to achieve the designed conformation. The latter is a more simplistic approach as it 

can be done in one step and offers great promise for an alternative pathway to 

functionalization of particles in vivo.
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There are other approaches of designed RNA constructs that can switch between different 

conformations. For example, riboregulators have been developed, that enable protein 

translation conditional to the binding of a trigger RNA [18]. In a bacterial system, designed 

riboswitches that are responsive to temperature and binding of a ligand were recently shown 

to be able to regulate both transcriptional and translational efficiency [19]. Such approaches 

are not necessarily in competition, but instead have different uses. The two aforementioned 

approaches are well suited for designing reporter genes or gene circuits but require the de 

novo design of genomic regions upstream of the translation start site of a gene. The 

conditional activation of RNA interference (the focus of this research highlight) on the other 

hand, is based on comparatively short synthetic noncoding RNAs that function in the context 

of human cancer cells and are thus closer to traditional small molecule therapeutics. Not 

only will it be interesting to compare these different novel tools for the “smart” control of 

gene expression: exciting opportunities abound to combine such approaches, leading to 

systems that allow ever more complex control of the cellular machinery by operating on 

different levels simultaneously.

Overall, published techniques can be used in conjunction with pre-existing nucleic acid 

nanostructures thus increasing the control over the formulation and co-delivery of 

pharmaceuticals and biosensors for the treatment and detection of a large variety of diseases.
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Figure 1. Schematic representation of two alternative ways, described in highlighted papers, to 
conditionally activate various functionalities intracellularly.
A: corresponds to the hybrid approach and B: corresponds to the two stranded switch 

approach.
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