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Abstract: Lysosomes are conservative organelles with an indispensable role in cellular degradation
and the recycling of macromolecules. However, in light of recent findings, it has emerged that the
role of lysosomes in cancer cells extends far beyond cellular catabolism and includes a variety of
cellular pathways, such as proliferation, metastatic potential, and drug resistance. It has been well
described that malignant transformation leads to alterations in lysosomal structure and function,
which, paradoxically, renders cancer cells more sensitive to lysosomal destabilization. Furthermore,
lysosomes are implicated in the regulation and execution of cell death in response to diverse stimuli
and it has been shown that lysosome-dependent cell death can be utilized to overcome apoptosis
and drug resistance. Thus, the purpose of this review is to characterize the role of lysosome in
cancer therapy and to describe how these organelles impact treatment resistance. We summarized
the characteristics of typical inducers of lysosomal cell death, which exert its function primarily
via alterations in the lysosomal compartment. The review also presents other anticancer agents
with the predominant mechanism of action different from lysosomal destabilization, the activity of
which is influenced by lysosomal signaling, including classical chemotherapeutics, kinase inhibitors,
monoclonal antibodies, as well as photodynamic therapy.

Keywords: lysosomes; lysosomal membrane permeabilization; lysosomotropic agents; autophagy;
apoptosis; drug resistance

1. Introduction

Lysosomes are membrane-enclosed vesicles with an indispensable catabolic role. However, in light
of recent findings, it is well known that the role of lysosomes is far more complex and multifaceted.
Apparently, lysosomes are not only cells’ waste bag, but important regulators of a number of cellular
processes, including cell growth, adhesion, migration, autophagy, apoptosis, and other modes of
cell death.

Malignant transformation leads to changes in lysosomal size, content, subcellular localization,
and function. Alterations in lysosomal compartment render cancer cells more sensitive to
lysosome-targeting agents [1–3], which offer possibility for specific tumor eradication. What is more,
some reports also suggest that lysosome-targeting agents may overcome therapy resistance. In this
review, we would like to summarize anticancer therapeutic strategies with the mechanism of action
dependent on lysosomal compartment.
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1.1. The Structure, Function, and Biogenesis of Lysosomes

Lysosomes, initially described as cellular “suicide bags”, are membrane-enclosed organelles
responsible for the degradation of various biomolecules, such as proteins, lipids, carbohydrates,
and nucleic acids. These intracellular vesicles are present in almost all eukaryotic cells and contain over
60 hydrolases, including lysosomal proteases cathepsins. To protect other cellular compartments
from enzymatic digestion, the hydrolases are active mainly in acidic environment (pH ~4.5),
which is maintained inside lysosomes by vacuolar-type H+ ATPases (V-ATPases) [4]. Additionally,
lysosomal enzymes are detained inside the vesicles by lipid bilayer stabilized by lysosomal membrane
proteins, such as lysosome-associated membrane protein 1 and 2 (LAMP1, LAMP2), lysosomal integral
membrane protein 2 (LIMP2), CD63, as well as molecular chaperone heat shock protein 70 (HSP70) [5,6].

Lysosomes function as cellular digestive organelles, providing nutrient supply. Biomolecules from
the outside of the cell reach the lysosome via endocytosis and phagocytosis while endogenous cargos
are delivered through all types of autophagy [7]. During autophagy, damaged or obsolete organelles
and macromolecules are sequestered into double-membraned vesicles termed autophagosomes,
which then fuse with lysosomes to form autolysosomes. Subsequently, lysosomal hydrolases degrade
autophagy cargo, which enables recycling of nutrients [8].

Coordinated Lysosomal Expression and Regulation machinery (CLEAR) tightly controls lysosomal
biogenesis and function at the transcriptional level and transcription factor EB (TFEB) represents a
major component of this network [9]. It is worth mentioning that lysosomes play a central role in
nutrient sensing through interaction with the mechanistic target of rapamycin complex 1 (mTORC1),
which is known to be a master regulator of cellular growth and proliferation [10]. This notion is
further supported by the observations that mTORC1 exerts its function directly from the lysosomal
membrane [11]. Moreover, it has been recently postulated that lysosomal membrane damage promotes
autophagic response through mTOR inhibition [12].

1.2. Lysosomal Alterations in Cancer

Due to increased metabolic demands, cancer cells upregulate their lysosomal function [13].
Furthermore, lysosomal proteases—cathepsins—are involved in tumor invasion and progression [14].
As a result of high lysosomal reliance, alterations in lysosome structure render malignant cells more
sensitive to the destabilization of these organelles [15]. These alterations include changes in protein and
sphingolipid composition of lysosomal membranes. As an example, oncogenic transformation drives
cathepsin-dependent degradation of LAMP1 and LAMP2, thus increasing the fragility of lysosomal
compartment [16]. Additionally, increased lysosomal fragility observed in tumor cells is also dependent
on decreased activity of acid sphingomyelinase (ASM) and subsequent rise in lysosome-destabilizing
sphingomyelin [1]. Another example of altered sphingolipid content in lysosomes has been reported
in chronic lymphocytic leukemia (CLL). Compared to healthy B-lymphocytes, elevated levels of
sphingosine render CLL cells more prone to lysosome perturbation [17]. Sphingosine can also be
converted by two sphingosine-kinase isoforms (SPHK1 and SPHK2) to form sphingosine-1-phosphate,
which generally exerts antiapoptotic and prosurvival properties [18]. Overall, changes in lysosome
structure in cancer cells sensitize them to LMP and may result in cell death. However, knowledge on
the lysosome structure in specific types of cancers is limited and further studies are needed to identify
cancer-specific alterations in lysosomes.

2. The Definition and Mechanisms of Lysosome-Dependent Cell Death

Accumulating evidence indicates that the lysosomal compartment is involved in shaping cell
death in response to various internal and external stimuli, acting either as an initiator or amplifier of
cell death signaling [19]. According to the definition provided by the Committee on Cell Death [20],
lysosome-dependent cell death represents a form of regulated cell death initiated primarily by
lysosomal membrane permeabilization (LMP). LMP involves the relocation of lysosomal constituents



Int. J. Mol. Sci. 2018, 19, 2256 3 of 17

into the cytosol [21], which in turn triggers a whole cascade of events leading to cell death (Figure 1).
The precise molecular mechanism of LMP is still unclear. It remains elusive whether LMP involves
unselective destabilization of lysosomal integrity or formation of specific pores to allow selective
passage of constituents.
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Figure 1. Triggers of lysosomal membrane permeabilization. Lysosome membrane integrity is protected
by heat shock protein 70 (HSP70) as well as lysosomal-associated membrane protein 1/2 (LAMP1/2),
lysosome integral membrane protein 2 (LIMP2) and CD63. Accordingly, degradation of LAMP1 and
HSP70 leads to lysosome membrane permeabilization (LMP). LMP may be also induced by other
stimuli, including ROS (H2O2), proteases such as caspases and calpains, cytoskeleton disruption and
changes in sphingolipids composition in lysososmal membrane, e.g., increase in sphingomyelin and
sphingosine. Inhibition of V-type H+ ATPase and therefore impaired acidification of the lysosome
is also contributing to its destabilization. As a result of these events, the breakdown of lysosomal
membrane provokes cathepsins release and subsequently lead to cell death. Detailed characteristic
of LMP promoting mechanisms are described in paragraph 2. The LMP-inducing mechanisms are
displayed in rectangles.

Loss of lysosomal membrane integrity and subsequent LMP results from disruption of lysosomal
lipids and proteins. It is well known that the lysosomal membrane is prone to oxidative damage [22].
Reactive oxygen species (ROS) have been shown to stimulate LMP via macromolecule peroxidation.
Lysosomes are rich in redox-active iron (Fe2+), catalyzing a nonenzymatic Fenton reaction with
hydrogen peroxide, which diffuses across the lysosomal membrane [23]. As a result, highly reactive
hydroxyl radicals lead to lipid and protein peroxidation and subsequent LMP [24]. The contribution of
ROS to lysosomal injury is further corroborated by the fact that LMP can be reversed by lipid-soluble
scavengers, including α-tocopherol [25], which inhibit lipid peroxidation. However, as α-tocopherol
incorporates into the lysosomal bilayer, inhibition of LMP may result from physical stabilization of
lysosomal membrane rather than from its antioxidant properties [26].

LMP can also be triggered by cleavage and disruption of the lysosomal membrane proteins by
cytosolic proteases. Calcium-activated proteases, calpains, were reported to promote LMP via cleavage
of HSP70 [27] and LAMP1 [28], whereas caspases, in particular, caspase 8 and caspase 2 have been
noted to induce cathepsins translocation into the cytosol [29,30].

Lysosomal integrity is also affected by sphingolipid composition and hence is regulated by
sphingolipid-metabolizing enzymes. Specifically, sphingomyelin accumulation and inactivating
mutations in sphingomyelin hydrolase—ASM—are associated with lysosomal destabilization and
lysosomal storage diseases [31]. ASM resides inside lysosomal lumen and its hydrolytic activity is
stabilized by a docking lipid, bis(monoacylglycero)phosphate (BMP) [32]. The chaperone protein,
HSP70, further supports the interaction between ASM and BMP and thus confers resistance against
lysosomal destabilization [33]. Moreover, increased activity of acid ceramidase, and subsequent
upregulation of sphingosine production, may also trigger LMP.

Enlargement of lysosomes and their destabilization may also result from disruption of
the cytoskeleton, which guides lysosomal turnover by exocytosis and autophagy. Vincristine,
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a microtubule-targeting drug, increased lysosomal compartment and triggered LMP [25]. Similarly,
relocalization of actin filaments caused expansion of lysosomes and subsequent LMP [34].

The consequences of LMP and subsequent mode of cell death depend on the extent of the
lysosomal damage. Complete lysosomal rupture and massive release of lysosomal hydrolases lead to
uncontrolled damage of cytoplasmic components and necrosis [35]. Conversely, partial or gradual
LMP provokes apoptosis, both in caspase-dependent [36] and independent manner [37].

Although lysosomal cathepsins preferentially work in acidic conditions, they may retain some
activity in neutral pH [38]. Upon LMP and translocation to the cytosol, cathepsins stimulate apoptosis
directly through mitochondrial depolarization or indirectly via truncation of Bid, which triggers the
release of mitochondrial cytochrome c [36] and other apoptogenic factors [39]. On the other hand,
intrinsic apoptosis may also trigger LMP. It was shown that mitochondrial depolarization and increased
generation of ROS trigger LMP through a mechanism that involves lipid peroxidation [40]. Moreover,
more recent reports imply that the lysosomal compartment is also associated with alternative ways of
cellular demise, including ferroptosis [41]. The triggers of LMP and the crosstalk between various cell
death pathways associated with LMP are presented schematically in Figure 1.

3. Lysosome-Targeting Agents as Anticancer Drugs

Several groups of agents can induce LMP and lead to lysosomal cell death (LCD) via different
mechanisms. These agents can be divided into two groups: typical and atypical inducers of LCD.
As for the typical inducers of LCD, the predominant mechanism of action focuses on the lysosomal
compartment. Atypical inducers of LCD involve various anticancer therapeutics with the major
mechanisms of action different from LCD, for which lysosomes were shown to contribute to their
overall cytotoxicity. We will discuss each of these two groups of agents separately (Tables 1 and 2).

3.1. Typical Lysosome-Targeting Agents

Among the typical inducers of LMP, four groups with different mechanisms of activity can be
distinguished: chloroquine (CQ) and its derivatives, V-type H+ ATPase inhibitors, agents interfering
with sphingolipid metabolism, and antagonists of HSP70.

3.1.1. Chloroquine (CQ) and Its Derivatives

CQ and its derivative, hydroxychloroquine (HCQ), are widely applied in the clinical setting to
treat malaria and some of the rheumatoid disorders. Moreover, CQ and HCQ are well known as
autophagy inhibitors [42]. Though the exact molecular mechanism of action of CQ remains elusive,
it is suggested that CQ prevents endosomal acidification [43] and therefore blocks autophagic flux by
preventing cleavage of lysosomal cargo [42]. Additionally, it has been reported that HCQ, apart from
raising lysosomal pH, elicits LMP [41]. The importance of the latter mechanism has been demonstrated
in a study, in which CQ significantly delayed the development of Burkitt’s lymphoma via induction of
LMP-dependent cell death [44]. These results are in line with the observations from the clinical trial
performed in equatorial Africa, where the use of CQ decreased by 75% the incidence rate of Burkitt’s
lymphoma, which reached its baseline two years after the end of the study [45].

Promising results of preclinical studies prompted the initiation of numerous clinical trials aiming
to assess the utility of HCQ in cancer therapy, which has been summarized in detail elsewhere [46].
However, despite the ability of HCQ to inhibit autophagy in patients, as evidenced by autophagosome
accumulation on peripheral blood mononuclear and tumor cells [47], its application in the clinical
setting is limited by poor pharmacokinetics and frequent side effects [48]. Therefore, huge effort
has been made to design more potent autophagy inhibitors with reduced side effects, such as
Lys05, dimeric CQ derivate, which has been shown to elicit more potent autophagy inhibition [49].
Despite improved pharmacokinetic profile in comparison to HCQ, Lys05 has not been tested in clinical
trials yet.
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Table 1. List of typical inducers of lysosomal cell death.

Drug Combination/Monotherapy Study Model Mechanism Reference

Chloroquine and its derivates

Chloroquine In combination with tyrosine
kinase inhibitors (TKIs)

Chronic myelogenous
leukemia (CML)

Prevention of lysosomal sequestration through
lysosomal membrane permeabilization (LMP) [50]

Chloroquine Monotherapy Burkitt’s lymphoma LMP, autophagy inhibition,
p53-dependent cell death [44]

Mefloquine Monotherapy Acute myeloid leukemia (AML) LMP, reactive oxygen species (ROS) generation [51]

Hydroxy-chloroquine Monotherapy Various cancer cell lines LMP, followed by MMP and caspase activation [52]

V-type H+ ATPase inhibitors

Bafiliomycin Monotherapy Gastric cell line Cathepsin release, LMP, caspase-3 dependent
cell death [53]

Omeprazole Monotherapy Human lymphoma and
leukemia cell lines

Lysosomal alkalization leading to LMP,
ROS generation and

caspase-independent apoptosis
[37,54]

Heat shock protein 70 (HSP70) inhibitors

Pifithrin-µ Monotherapy Primary effusion lymphoma (PEL) LMP, mitochondrial depolarization,
dendritic cell activation [55]

Pifithrin-µ
Monotherapy and in combination with cytarabine,

17-(allylamino)-17-desmethoxygeldanamycin,
suberoylanilide hydroxamic acid, and sorafenib

AML B-cell acute lymphoblastic
leukemia (B-ALL) T-cell acute

lymphoblastic leukemia
(T-ALL) CML

Apoptosis, cell cycle arrest,
caspase-3 activation [56]

Drugs interfering with sphingolipid metabolism

Siramesine
Nortriptyline Desipramine Monotherapy Chronic lymphocytic leukemia (CLL)

LMP, rtrad transcription factor EB (TFEB)
nuclear translocation, mitochondrial

depolarization, ROS generation,
lipid peroxidation,

altered sphingosine metabolism

[17]

Siramesine Monotherapy Breast and cervical cancer cell lines,
murine fibroblasts

LMP, increased ROS generation and
nonapoptotic cell death [15]

In combination with lapatinib Human breast cancer cell lines Increased ROS generation and ferroptosis [57]

Opaganib (ABC294640) Monotherapy Kidney, breast and prostate
cancer cell lines

Cell death associated with increased lysosomal
size and acidification, potentiated in

combination with autophagy inhibitors
[58]
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Table 2. List of atypical inducers of lysosomal cell death.

Drug Combination/Monotherapy Study Model Mechanism Reference

Classical chemotherapeutics

Vincristine In combination with siramesine Human breast and cervical
cancer cell lines Increased LMP and synergistic cell death [25]

Docetaxel Monotherapy Prostate cancer cell lines Cell death partially dependent on LMP [59]

Fludarabine Monotherapy and in combination
with valproic acid CLL LMP and cathepsin B upregulation [60]

Cisplatin Monotherapy or in combination
with trichostatin A

Head and neck squamous cell
carcinoma (SCC)

LMP associated with cathepsin
B-mediated LAMP-2 degradation, which

could be further potentiated by
Trichostatin A treatment

[61]

Bortezomib Monotherapy Human pancreatic cancer cells
LMP followed by cathepsin B-mediated
activation of caspase 2 and subsequent

mitochondrial depolarization
[62]

Tyrosine-kinase inhibitors and BH3-mimetics

Imatinib Monotherapy CML cell lines and CD34+ cells
from CML patients

LMP and cathepsin B release into
the cytoplasm [63]

Sorafenib Monotherapy Human bladder cancer cell lines LMP followed by MMP and apoptosis [64]

Obatoclax Monotherapy or in combination
with chloroquine or bafiliomycin Thyroid cancer cells LMP and autophagy blockade [65]

Monoclonal antibodies

Anti-CD20 mAbs-tositumomab
and obinutuzumab Monotherapy Lymphoma and leukemia

cell lines
LMP initiated by actin cytoskeleton
reorganization upon mAb-mediated

homotypic aggregation of cells

[34,66,67]

Anti-CD38 antibodies—daratumumab
and isatuximab Monotherapy Myeloma cell lines [68,69]

Photodynamic therapy

Photosensitizer-NPe6 Monotherapy Murine hepatoma cell line LMP and subsequent apoptosis through
Bid truncation [70]
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3.1.2. V-Type H+ ATPase Inhibitors

V-type H+ ATPase, an ATP-dependent proton pump, maintains a low pH, which is essential
for proper lysosomal functioning [71]. The disruption of lysosomal acidification was linked to LCD.
A classic V-type H+ ATPase inhibitor, bafilomycin A1, was noted to induce cell death in tumor cell
lines via the mechanism involving cathepsin leakage [53]. Lysosome-destabilizing properties were
also reported for proton pump inhibitors (PPI), like omeprazole, which are commonly used clinically
to treat gastric-related disorders. It has been reported that PPI lead to increased ROS generation,
lysosomal destabilization, and subsequent cell death, which could be prevented by ROS scavengers.
Nevertheless, the exact molecular mechanism of PPI-mediated ROS generation remains elusive [37].

3.1.3. Sphingolipid Metabolism Targeting Drugs

LMP can be achieved by targeting sphingolipid metabolism at different levels; nonetheless,
most of the drugs are inhibitors of ASM [72]. ASM can be targeted by many clinically applicable drugs,
including antidepressants, antiarrhythmics, and antihistamines, which are collectively termed cationic
amphiphilic drugs (CADs) [73]. CADs diffuse across the lysosomal membrane and become protonated
inside lysosomal acidic environment. The most prominent feature of CADs is their ability to displace
ASM from its docking molecule, BMP, thus leading to lysosomal degradation of ASM and buildup of
sphingomyelin in lysosomes [1,33].

Among CADs, siramesine has been the most frequently studied and utilized in various
in vitro and in vivo studies. Although most of the papers focus on LMP-promoting properties of
siramesine [25,74], one report implies that higher concentrations of this drug can also destabilize
mitochondria [75]. Application of siramesine seems attractive from a therapeutic perspective since it
preferentially targets cancer cells [1]. A recent study revealed that siramesine selectively kills leukemic
cells as compared to healthy B-cells [17]. Siramesine has also been tested in combination with other
drugs, showing synergism in combination with vincristine [25] and lapatinib [41]. Likewise, LCD has
been also observed with other CADs, including antidepressant desipramine, which showed efficacy
in CLL [17]. Altogether, it should be noted that CADs hold great potential since most of them are
already applied in the clinical setting and have a well-characterized safety and pharmacokinetic profile.
However, none of them has been tested in cancer patients thus far.

LMP can be also achieved by increasing sphingosine composition within the lysosomal
bilayer [76]. Inhibition of sphingosine kinase increases the ratio sphingosine/sphingosine-phosphate
and thus augments the tendency toward LMP [77,78]. Accordingly, cathepsin B-mediated cleavage
of sphingosine-kinase 1 [79] and inhibition of sphingosine-kinase 2 by the selective inhibitor,
opaganib (ABC294640), induced cell death associated with alterations in lysosomal compartment [80].
Opaganib, which is orally available, shows potent antitumor activity in various cancer models [58,81–83]
and is now tested in stage II clinical trials in patients with multiple myeloma and liver cancer [84].

3.1.4. Antagonists of HSP70

HSP70 is a molecular chaperone that prevents LMP and stabilizes lysosomal membrane proteins
in response to various stressful stimuli [85]. Furthermore, HSP70 stabilizes lysosomes via upregulation
of ASM activity [1,33]. Both genetic [86] and pharmacological [55] inhibition of HSP70 were described
to induce LMP. Pifithrin-µ (2-phenylethynesulfonamide), an HSP70 inhibitor, induced LMP in primary
effusion lymphoma cell lines in vitro, but also activated dendritic cells, proving immunogenic
potential [55]. Moreover, pifithrin-µ was reported to be a potent autophagy inhibitor [87], which could
be potentially utilized to enhance the efficacy of other therapeutic regimens, especially those associated
with cytoprotective autophagy induction.
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3.2. Atypical LMP Inducers Utilized in Cancer Treatment

A variety of anticancer schemes can trigger LMP, albeit the significance of this phenomenon
depends on the context and cell type. Thus, the following section describes the anticancer regimens
with various mechanisms of actions, which are accompanied by LMP or other alterations in lysosomal
functioning. Below we describe these therapeutics, referred to as atypical inducers of LCD, with the
major focus on the clinically applicable therapeutic regimens.

3.2.1. Classical Chemotherapeutics

A big class of long-known chemotherapeutics, which destroys cancer cells by interference with
the cytoskeleton, also affects the stability of the lysosomal membrane [25,88,89]. Vincristine-mediated
microtubule destabilization blocks lysosomal trafficking and consequently results in LCD, which could
be further potentiated by adding siramesine [25]. Likewise, LCD was also observed with taxanes [90],
a group of chemotherapeutics known to inhibit microtubule breakdown [89]. Indeed, LMP was noted
to mediate docetaxel cytotoxicity in hormone-refractory prostate cancer [59].

Moreover, a lysosomotropic mechanism of action has been recently attributed to fludarabine,
a commonly used nucleoside analogue. Incubation of CLL primary cells with fludarabine led to
the lysosome integrity loss and cathepsin B release, which was further potentiated by the addition
of valproic acid, a well-known histone deacetylase (HDAC) inhibitor that increased cathepsin B
expression [60]. Similarly, cisplatin was also reported to induce cell death associated with LMP [61],
whereas cisplatin resistance could be overcome by inducing LMP with CQ coincubation [91].
In addition, LMP was also attributed to the proteasome inhibitor, bortezomib, with a mechanism
involving cathepsin-mediated caspase 2 activation [62].

3.2.2. Thyrosine Kinase Inhibitors (TKIs) and BH3-Mimetics

TKIs are known to affect lysosome stability via several mechanisms. It has been reported
that BCR-ABL inhibitor, imatinib, leads to LMP and cathepsin B redistribution into the cytoplasm,
which contributs to CML eradication [63]. Moreover, lysosomes are postulated to mediate cell death
after sunitinib treatment, which results from ASM inhibition [92].

BH3-mimetics represent small-molecule inhibitors of antiapoptotic proteins of the BCL-2
superfamily, which are best known to elicit classic apoptotic response [93]. However, there are
reports suggesting that BH3-mimetics can influence the structure and the function of lysosomes.
BCL-2 inhibitor, obatoclax, leads to lysosomal alkalization and subsequently impairs cathepsin
activity [65,92–95]. Obatoclax-dependent lysosome destabilization blocks autophagosome degradation;
thus, combination with other lysosome-destabilizing agents can further potentiate its efficacy [65].

3.2.3. Monoclonal Antibodies (mAbs)

The lysosome-dependent mechanism of action has been also reported for some monoclonal
antibodies (mAbs), which target tumor antigens on malignant cells. mAbs exert their function by
triggering an immune response, which is dependent on their fragment crystallizable (Fc) regions
mechanisms, i.e., induction of antibody-dependent or complement-dependent cellular cytotoxicity,
as well as immunophagocytosis [96]. However, some of the mAbs, e.g., anti-CD20 mAb-obinutuzumab,
induce direct LCD via a unique mechanism characterized by the homotypic aggregation of
the cells. This phenomenon starts upon mAb-mediated cross-linking of cells, which induces
peripheral translocation of actin filaments and rapidly drives lysosomes to this region. Consequently,
lysosome membranes are damaged and the released content leads to the activation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase resulting in massive ROS production and cell
death [34]. The mode of cell death evoked by obinutuzumab is nonapoptotic, Bcl-2 independent,
with no signs of poly (ADP-ribose) polymerase (PARP) nor caspase cleavage [66]. The mechanisms of
homotypic aggregation-initiated cell death have been best studied for obinutuzumab, albeit similar
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mechanism is described for some other mAbs as listed in Table 2. Lysosomal-dependent nonapoptotic
cell death provides a new chance of overcoming resistance mechanisms in hematological malignancies.
To our knowledge, mAbs were not combined with other LCD inducers thus far, but it would be
interesting to test whether these combinations could elicit synergistic responses.

3.2.4. Photodynamic Therapy (PDT)

Another strategy to elicit LMP involves PDT. Mechanistically, the mechanism of action of
PDT depends on ROS generation, following photosensitizer activation by light [97]. It has been
reported that photodamage of lysosomal membranes and subsequent leakage of hydrolases results
in cell death, however, the mode of cell death depends on the degree of the cellular injury [98].
It is worth noting that PDT-mediated LMP occurs with the photosensitizers that preferentially
accumulate in lysosomes [99,100]. Nevertheless, cancer cells differ in their sensitivity to the lysosomal
photodamage, which can depend on the content and the activity of lysosomal hydrolases [101].
Moreover, it has been suggested that LMP can also prevent lysosome-dependent autophagosome
degradation, and consequently blocks autophagic flux [102]. In the context of PDT, autophagy
plays a dual role, having both tumor-promoting and tumor-suppressing properties, which is
context-dependent [103]. Literature data suggest that PDT-induced autophagosome accumulation can
eventually contribute to cell death [99], which is referred to as autophagic cell death [102]. On the
other hand, autophagy was also noted to exert cytoprotective function, for example by aiding in the
clearance of oxidatively-damaged proteins [104].

4. Lysosome-Mediated Drug Resistance

Drug resistance and subsequent treatment failure represent a major clinical challenge. Lysosomes
have also been described to contribute to resistance to antineoplastic drugs. There are several
plausible explanations of this phenomenon, one of which involves the lysosomal sequestration
of chemotherapeutic agents [57], which prevents binding to target molecules and thus impairs
their cytotoxic activity. The above mentioned mechanism affects mainly lipophilic weak-base
drugs, which become trapped inside the lysosomal lumen after protonation inside acidic
environment. Moreover, it has been also postulated that some of the lysosome-accumulating
agents, such as doxorubicin and TKIs, upregulate the biogenesis of lysosomal compartment,
further enhancing lysosomal drug sequestration and therapy resistance [50,105–108]. Another report
suggests that lysosomal accumulation of drugs stimulate exocytosis of the lysosomal content [109],
thereby contributing to drug transportation outside the cell through a mechanism different than
multidrug resistance (MDR) efflux transporters of the ATP-binding cassette (ABC) superfamily [110].
Therefore, the use of lysosomotropic agents seems an attractive solution to overcome the problem of
their lysosomal-dependent drug resistance [50]. Indeed, CQ significantly increased the concentration
of imatinib outside the lysosome in a murine bone marrow-derived cell line, suggesting that lysosome
targeting can improve the efficacy of TKIs [50].

5. Concluding Remarks and Future Directions

Despite a significant progress in cancer treatment in the recent years, a high proportion of patients
still develops drug resistance and relapses. Therefore, there is a constant need for new therapeutic
approaches. Given the altered lysosomal biology in cancer cells, lysosome-targeting agents represent a
promising antitumor strategy. Indeed, therapies involving various lysosome-targeting drugs alone or in
combination with other chemotherapeutics show remarkable antineoplastic efficacy in various in vitro
and in vivo studies and the list of agents interfering with lysosomal compartment constantly expands.
Unfortunately, the utility of the lysosome-targeting agents, as anticancer drugs, can be limited by their
low cancer selectivity, which results in substantial toxicity. Therefore, it is necessary to search for novel
agents, which would enable specific targeting of lysosomes in cancer cells. Moreover, it is worth to
highlight that lysosomes are engaged in shaping a response to various anticancer regimens even in
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circumstances, where the primary mechanism of cell death is different from LCD. Therefore, combining
these therapeutic modalities with typical lysosomotropic agents could be potentially beneficial and
would be interesting to be tested in preclinical studies. Moreover, targeting lysosomes represents a
promising and feasible approach to overcome drug resistance. Further studies are needed to investigate
the clinical utility and efficacy of lysosome-targeting agents in cancer patients.

Lysosome membrane integrity is protected by HSP70 as well as lysosomal-associated membrane
protein 1/2 (LAMP1/2), LIMP2, and CD63. Accordingly, degradation of LAMP1 and HSP70
leads to lysosome membrane permeabilization (LMP). LMP may be also induced by other stimuli,
including ROS (H2O2), proteases such as caspases and calpains, cytoskeleton disruption and changes in
sphingolipids composition in lysososmal membrane, e.g., increase in sphingomyelin and sphingosine.
Inhibition of V-type H+ ATPase and therefore impaired acidification of the lysosome is also contributing
to its destabilization. As a result of these events, the breakdown of lysosomal membrane provokes
cathepsins release and subsequently lead to cell death. Detailed characteristic of LMP-promoting
mechanisms are described in paragraph 2. The LMP-inducing mechanisms are displayed in rectangles.
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