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Abstract In contrast to traditional representational per-

spectives in which the motor cortex is involved in motor

control via neuronal preference for kinetics and kinematics,

a dynamical system perspective emerging in the last decade

views the motor cortex as a dynamical machine that

generates motor commands by autonomous temporal

evolution. In this review, we first look back at the history

of the representational and dynamical perspectives and

discuss their explanatory power and controversy from both

empirical and computational points of view. Here, we aim

to reconcile the above perspectives, and evaluate their

theoretical impact, future direction, and potential applica-

tions in brain-machine interfaces.

Keywords Dimensionality reduction � Neural network �
Machine learning � Population decoding � Brain-machine

interface

Introduction

The ultimate purpose of the nervous system is to produce

appropriate action, and the motor cortex has long been

thought to play a crucial role in planning and generating

movement. Since the motor cortex was identified by Fritsch

and Hitzig through surface electrical stimulation in the

1870s, several dogmas have been proposed to describe how

it controls our musculoskeletal system. Anatomically, the

motor cortex innervates the motoneuron pool in the spinal

cord to drive skeletal muscles, and its neurons are clustered

in accordance with the musculature following a somato-

topic map [1]. Neurophysiological studies in non-human

primates revealed that neuronal activity in the motor cortex

is tuned to single-joint movements [2] and isometric force

[3]. Since the 1980s, further studies of whole-arm move-

ments have demonstrated that activity in the motor cortex

represents a variety of motor parameters, such as direction

[4], speed [5, 6], trajectory [7], and posture [8, 9].

Although the above representational perspective that

directly maps neuronal activity to movement parameters is

straightforward and has fostered brain-machine interfaces

(BMIs), it still cannot explain the heterogeneous, complex,

and time-varying firing patterns exhibited by many neurons

in the motor cortex [10]. Since the 2000s, advances in

neural interface and data science have enabled us to record

and analyze large-scale neural signals. Recent studies have

progressed from analyzing individual neurons to a systems

approach, to the collective operation of neuronal popula-

tions. In line with this progression, Shenoy and colleagues

proposed a dynamical system perspective [11, 12] which

views the motor cortex as a dynamical machine that

autonomously evolves during execution to issue descend-

ing motor commands. Based on the evaluation of neural

data with a complex spatiotemporal structure, the
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dynamical system perspective has provided a deeper

insight into high-dimensional neural trajectories in relation

to motor planning and execution.

In this review, we not only summarize the paradigm

shift from parametric representation to a dynamical system

perspective, but also aim to reconcile these two viewpoints,

which seem contradictory at first glance. Moreover, we

present a global view of the integration of neural dynamics

in the motor cortex with empirical studies on cortico-

subcortical motor circuitry, theoretical work on the internal

model, and BMI applications.

Representation of Movement Parameters
in the Motor Cortex

A fundamental doctrine of neuroscience is that brain

structure and connectivity determine functionality. A

central goal of neurophysiology has long been to determine

where the function is implemented, and how the informa-

tion is represented in various brain areas. Following this

principle, Fritsch and Hitzig identified the motor cortex by

determining an area of the cerebral cortex from which

movements were evoked by the application of electrical

stimulation (for review, see [13]). Now we know that both

the primary motor cortex (M1) and premotor cortex send

descending projections to the spinal cord via the corti-

cospinal (CS) tract [14, 15]. The descending CS influence

on muscles is indirectly mediated by spinal interneuronal

circuits (Fig. 1A). From monkeys to apes to humans, an

increasing number of CS axons directly innervate

motoneurons in the spinal ventral horn [15, 16], forming

the cortico-motoneuronal projection. These anatomical

findings provide a solid support for a causal role for the

motor cortex in muscle control. Moreover, the motor cortex

also receives projections from the visual and somatosen-

sory cortices [17], which provide information about the

external environment and internal body status essential for

motor control. Taken together, the motor cortex receives

information about sensory input, motor intention, deci-

sions, and body status, and generates motor commands that

descend to the spinal cord and other subcortical areas [18].

Beyond the corticocortical and corticospinal connections,

the basal ganglia-thalamocortical circuitry and corticocere-

bellar circuits also play important roles in motor initiation,

termination, sensorimotor representation, and motor learn-

ing [19, 20]. Their outputs are delivered to the motor areas

through the ventrolateral thalamus, while the motor areas

project to the basal ganglia via the striatum, and to the

cerebellum via the pontine nuclei [19, 21, 22]. Nonetheless,

how the motor program is accomplished and its underlying

computational mechanisms are still elusive.

Inspired by the visual system, where neuronal responses

encode the properties of visual stimuli, neuroscientists

initially investigated the motor cortex by determining how

its activity represents motor variables. Influenced by the

somatotopic anatomical organization of the motor cortex,

Evarts utilized single-joint movements to determine how

M1 activity varies with certain joint parameters, such as

force, joint angle, and speed [2, 23]. Fetz and colleagues

[3] simultaneously recorded electromyography (EMG) and

neuronal activity in the motor cortex, and found that the

facilitation of specific muscles can be induced by sub-

threshold intracortical microstimulation (ICMS). These

studies suggested that M1 neurons encode detailed infor-

mation regarding intrinsic skeletomuscular parameters and

help drive the effectors to accomplish the desired move-

ment. For whole-arm reaching movements, neural activity

in M1 is tuned to the directions of the endpoint movements

(Fig. 1B) [4], and the firing rate (or discharge, D) is related

to movement direction via a cosine function (Fig. 1C):

D ¼ bþ acos ðh� PDÞ

where a is modulation depth, b is baseline, h is the

movement direction, and PD is the preferred direction.

Single-neuron activity in the motor cortex can be repre-

sented as a vector component projecting to the neuronal PD

in accordance with the current firing rate, though the PDs

might shift during motor adaptation [24, 25]. If a large

population of neurons is recorded (Fig. 1D), a population

vector algorithm [26, 27] is applied for BMIs [28] by using

neuronal PDs and their instantaneous firing rates to decode

the actual movement direction. First, the weight of each

neuron in a time bin is calculated as the baseline-subtracted

firing rate. Then, the resulting vector sum of all neurons’

weights, multiplied by the unit vector along their PDs, is

defined as the instantaneous population vector, which

closely points to the actual movement direction. The

whole-arm reach movement seems a good task for

examining the correlation between high-level extrinsic

information and neuronal activity in the motor cortex.

Due to the degrees of freedom problem in multi-joint

movements, it is easier to study motor planning at the

kinematic level, and directional tuning becomes a promi-

nent feature for evaluating the impacts of other factors.

Hence, it is unclear how M1 neurons represent high-level

parameters like hand path. Because the high-level param-

eters are usually correlated with low-level muscle

responses, a substantial effort has been made to dissociate

them. Kakei et al. trained monkeys to perform step-

tracking movements while gripping a handle with three

different postures [29] to distinguish extrinsic (movement

direction) from intrinsic (joint/muscle contraction) coordi-

nates. About half of their recorded neurons displayed a

stable PD in the various intrinsic coordinates, suggesting
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that both ‘‘muscles’’ and ‘‘movements’’ are equally repre-

sented in M1. However, for most neurons the load applied

during movement induced PD changes in M1 [30] within

different 3D workspaces [31], which might have resulted

from the task involving different covariates. Even for

unconstrained arm movements, directional tuning is also

time-varying and segmented into two or three tuning

components, and varies with other parameters [10, 32].

Hatsopoulos argued that single neurons are tuned to a

direction at both lead and lag times, thus resulting in

Fig. 1 Illustration of the representational perspective. A M1 neurons

mainly project to interneurons in the spinal cord via the corticospinal

tract. Specifically, in primates, the corticomotoneurons are mainly

located in the M1 sulcus, project monosynaptically to the motoneuron

pool in the ventral horn. B Neuronal activity varies when monkeys

push the manipulandum in different directions in the center-out task,

which indicates selectivity for movement direction. C Firing rate of

M1 neurons can be regressed with movement directions as a cosine

function. The direction with the highest firing rate is called the

preferred direction (PD). D Single neurons are represented as vectors

with PDs whose length is the firing rate. The summation of these

vectors is congruent with the actual movement direction. A and D
adapted from Principles of Neural Science, fifth edition, 2013:

835–864 [128] with permission from McGraw Hill; B and C adapted

with permission from Georgopoulos et al., 1982 [4].
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temporally-evolving movement trajectories, rather than

simply instantaneous movement parameters [7]. In this

view, the PD shift in the center-out task could be induced

by the mismatch between the preferred trajectory and the

constant target directions.

In principle, the motor cortex performs not as a

parametric representation to describe movement but as a

repertoire to produce it. Soon after Fritsch and Hitzig found

that brief electrical stimuli evoked twitches, Ferrier showed

that longer electrical stimulation evoked complex move-

ments [33, 34]. Graziano and coworkers refined this

experiment using a behaviorally relevant duration of

ICMS, and found that the evoked behaviors of monkeys

were complex, coordinated, and ‘‘purposive’’ [35, 36].

Moreover, the stimulation sites in the macaque motor

cortex are clustered according to categories of evoked

actions, so it is difficult to build an explanatory model

following the repertoire hypothesis. The potential dimen-

sionality of movement categories makes it a non-deter-

ministic polynomial problem, and the continuity and

flexibility of natural movements are challenging for data

collection and analysis.

An alternative approach to refining the representational

model is to introduce more parameters. For instance,

movement speed is also conveyed in the motor cortex, and

a gain-offset modulation model can fit this correlation well

[5, 37]. Like the aforementioned posture effect, the PD

shift was believed to be the result of sensorimotor

transformations [38]; this is accomplished by posture-

related gain modulation in a recurrent network of extrinsic-

like units with different preferences [39–41].

Heterogeneity and Complexity of Firing Patterns
in the Motor Cortex

The representational perspective is more focused on the

‘‘encoding-decoding’’ problem. Especially for movement

kinematics and kinetics, it attempts to build the represen-

tational function in the generalized form:

rnðt � snÞ ¼ fn½param1ðtÞ; param2ðtÞ; param3ðtÞ. . .�

where neuronal activity rn is jointly tuned to movement

parameters parami and time lag sn is used to cover the

neuron-specific latency between cortical activity and

parameters; neuronal conjunctive tuning to several vari-

ables is called mixed selectivity. If the tuning functions for

each parameter are independent, fn is a linear function

[5, 7, 12, 28].

Another problem is the heterogeneity of neuronal

activity in the motor cortex. As noted above, further

studies on the tuning properties revealed that the temporal

pattern does not always follow the representational model.

In contrast to responses in the visual system that are

triggered by the stimulus and maintained with stable pref-

erence, many neurons in the motor cortex exhibit ramping

activity before movement onset, so-called preparatory

activity, and a rapid bell-shaped peri-movement activity,

although some neurons exhibit execution activity only, and

others may show opposite tuning between preparation and

execution. In addition, movement speed might not only

reflect the change of firing rate and PD, but also the

temporal relation between the neuronal response and the

movement (Fig. 2A, [10, 32]). Even though some of the

above findings might be explained by better behavioral

measurements and by introducing more parameters into the

representational model, they cast doubt on the model’s

reliability. Following the doctrine that individual neurons

are the basic computational units that represent information

during each epoch in motor generation, such as the

translation from extrinsic to intrinsic, from high-level to

low-level, or formation and adjustment of the internal

model, every stage and intermediate variable should be

represented by the corresponding neuron, and all neurons

together should formulate the movement command like the

population vector. However, to compensate for the hetero-

geneous and time-varying tuning properties in the frame-

work of representational perspective, nonlinear functions,

and temporal profiles must be introduced, leading to

increasingly complicated descriptive models without

generalization.

Neural Population Dynamics in the Motor Cortex

Interestingly, although single neurons show great hetero-

geneity, the linear decoding algorithms maintain stability

and efficiency, indicating a robust linear readout at the

population level, although there is a heterogeneous non-

linear response at the single-neuron level [26, 42, 43].

Several hypotheses have been proposed to explain this

cFig. 2 Illustration of the dynamical systems perspective. A In this

task, the monkey performs a center-out reach with two distances and

two hand speeds (gray, averaged hand velocity; red and green, mean

firing rates fast and slow reaches, respectively). For neuron A46,

tuning width varies with hand speed; for A56, the neural response

leads the velocity profile in slow reach, while lagging in some

directions of fast reach; B68 shows a multiphasic pattern with a

different directional preference between preparatory and execution

periods; and B107 presents a neuron that is exited only for long-

distance reaches with speed-varied PD (adapted with permission from

Churchland and Shenoy, 2007 [10]). B Neurons form a high-

dimensional state space where the brain state evolves towards the

optimal preparatory region to accomplish motor preparation (adapted

with permission from Churchland et al., 2006 [80]). C The efferent

descending motor program from neural dynamics leads the temporal

sequence of muscle activation and holistic movement.
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phenomenon. The reliability of linear decoding algorithms

such as population vectors may be due to the existence of a

large population of neurons related to hand directions with

uniformly distributed PDs [44]. The mixed selectivity

produces high-dimensional neural representations, and

enables a linear readout for every task-relevant parameter

[45, 46]. In a neural network, it is granted that the neuronal

connectivity preserves a coordinating functional organiza-

tion with intrinsic dynamical evolution. Noise correlation

and preference distribution somehow may reflect this

dynamic procedure [47–49]. This neural constraint by

connectivity is also related to population plasticity in motor

learning [50–53]. On the other hand, both kinematic and

kinetic spaces cannot explain as much neural population

variance as the peri-movement space [11], indicating that

neural activity contains task-irrelevant elements. Church-

land et al. tried to interpret the neural population in the

motor cortex as a dynamical system and applied jointed

principal component analysis (jPCA) to extract compo-

nents of evolution that form a temporally oscillating

structure. Because the oscillation emerged from not only

a rhythmic movement, but also from a single reach, they

claimed the rotations of the populational state are a

prominent feature of the motor cortex. This simple and

consistent feature challenges the framework of representa-

tional perspective by emphasizing the population state

evolution which can be described with ordinary differential

equations as the dynamical system (Fig. 2B, C) [54]. It has

been recently revealed that the ‘‘hand knob’’ area in the

human premotor cortex is indeed tuned to the entire body;

following the dynamical system view, its control is

supposed to be accomplished through limb-specific parts

and general movement dynamics rather than the motor

homunculus [55].

However, Lebedev et al. argued that the oscillation

structure is only a byproduct of jPCA, by which any neural

population with temporal shifts of individual neurons’

firing rates, and a condition-specific temporal sequence,

would result in such an oscillation structure. Therefore, it is

an exaggeration to claim that the structure is related to ‘‘an

unexpected yet surprisingly simple structure in the popu-

lation response’’ which ‘‘explains many of the confusing

features of individual neural responses.’’ [56]. Later studies

further addressed the ‘‘epiphenomenon’’ problem and

tended to agree with both of the opinions that the

oscillation structure is a byproduct, while the population

dynamics during reach is better explained by a dynamical

system than representational framework [57]. The signif-

icant difference is possibly embedded in the covariance

across time, neurons, and conditions [58].

Although the dynamical perspective inspired a new

direction for understanding population activity and

improved comprehension of the motor cortex, it seems to

dwell in the qualitative description and visualization of

high-dimensional data, but to lack a tight link to the

behavior as the representational perspective. Understand-

ing the encoding of the population dynamics, and the

triggering and control of temporal evolution will require

further quantitative approaches.

Dimensionality Reduction and Neural Manifold

A variety of dimensionality reduction methods have

emerged, enabling selective extraction of information from

high-dimensional neural data. The resulting principal

components are believed to be the epitome of complex

neuronal activity, as they are chosen to preserve or

highlight some instructive characteristics in the data [59].

In practice, components acquired with different dimen-

sionality reduction methods reveal different structural

features of the data. For example, the most widely used

method, principal component analysis (PCA) can identify

components capturing the largest variance, and meanwhile

orthogonal to each other, making it efficient for separating

the dominant dynamics linearly. In contrast, factor analysis

(FA) leads to components regarding shared variance. In

addition to these two methods based on the covariance of

trial-averaged neural data, there are also unsupervised

methods to depict the temporal dynamics of single-trial

population activity in time-series data, such as hidden

Markov models (HMM), Gaussian process factor analysis

(GPFA), latent linear dynamical systems (LDS), and latent

nonlinear dynamical systems (NLDS). Methods to preserve

dependent variables have been developed as well: linear

discrimination analysis (LDA) can maximize cross-group

variance compared to the within-group variance if given

the number of separate groups, while demixed PCA

(dPCA) gives principal components according to discrete

task-relevant parameters and their possible combinations

(for review, see [59–61]).

Dimensionality reduction facilitates observation and

understanding by realizing the visualization of data in a

low-dimensional space, for the time-varying neural activity

can be represented as continuous neural trajectories or the

instantaneous neural states in the space defined by principal

components. For instance, the fact that the largest compo-

nent detected by dPCA was nearly condition-invariant, but

time-varying, suggests the apportion for neural encoding in

the motor cortex [62]. In addition, the clustering and

separating of neural states corresponding to different task

variables in a low-dimensional space implicate distinct

neural encoding rules, and thus help to distinguish different

cortical regions [63].

More importantly, given that they are not actual

neuronal activities, what is the connotation or essence of
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these principal components? It has been speculated that

these components are key elements underlying behavior-

relevant firing patterns that generate motor commands.

This idea is embodied in a ‘‘manifold’’ theory, in which a

manifold appears as a stable space restricted by some

potent neural activity patterns called ‘‘neural modes’’

(Fig. 3A) [64]. It has been reported that a consistent neural

manifold serves as the base for multiple motor behaviors

[65], implying the possibility of a few basic sets of neural

modes shared by the neural population.

Moreover, the finding that long-term learning would

induce novel neural response patterns [52], shows the

flexibility of such movement-relevant manifolds. On the

other hand, the perturbation on manifold or off manifold

are both favored to correlational studies, as they raise

mechanistic hypotheses related to behavior [66].

Furthermore, principal components suggest functional

partition in high-dimensional neural dynamics. It has been

reported that subspaces captured by low-dimensional

neural responses in different epochs, like preparatory and

movement subspaces, are nearly orthogonal to each other,

demonstrating their distinguishing functions [67, 68].

Beyond these period-relevant subspaces, a new method

called preferential subspace identification (PSID) has lately

been developed to model the neural dynamics relevant to

behavior [69]. The transitions between subspaces and their

relationships are expected to promote the understanding of

the neural mechanism for motor control.

Computational Models of Neural Dynamics
for Movement Generation

With the observation of common tracks for neural trajec-

tories from single trials in the same task, the temporal

evolution of the neural population is deemed to generate

movement itself, other than its parametric representation.

In this sense, the framework of neural dynamics, which is a

subject that studies those systems evolving with time [70],

has been introduced.

In fact, it is not novel to view the cortex as a dynamical

system: Decades ago the dynamical systems perspective

nourished central pattern generator theories for the spinal

cord and an equilibrium point hypothesis for motor control

[71]. However, just as the analogy between a dynamical

system and mind was controversial in the 1990s [72, 73], it

is intriguing today to consider the motor cortex from a

dynamical system perspective.

An approach to casting the motor cortex as a dynamical

system is to regard the nervous system as a machine that

generates an appropriate neural response pattern to trigger

the holistic movement [12]. In this framework, time-

varying neuronal activities contribute to motor control as

drivers, and the temporal evolution can be independent of

the kinematic or kinetic parameters. In general, the

temporal pattern of neuronal activities r(t) can be described

with a differential equation,

srðtÞ ¼ h½rðtÞ� þ uðtÞ

where the temporal derivative of neural activity _r, is

modulated by a time constant s and impacted by the local

interactions in the motor cortex h( ) and the input from

other brain areas u(t) srðtÞ ¼ h½rðtÞ� þ uðtÞ [12]. In such a

system, the initial states, the synaptic inputs due to

connectivity among local circuits, the external inputs, and

even the time constant, all have a considerable influence on

neural activities.

Nevertheless, it has not been without confusion to verify

the existence of such a dynamic system. For this purpose,

surrogate datasets designed randomly, but sharing certain

features of the original data were built with the ‘‘corrected

Fisher randomization’’ (CFR) and ‘‘tensor maximum

entropy’’ (TME) methods. As a result, preserved features

alone cannot reproduce the dynamical structure in real

neural data [58]. Thus, although this did not directly unveil

the neural dynamical system, it indicated that the neural

dynamics changed with an intrinsic logic.

To uncover a neural dynamical system, one cannot

avoid depicting it. For this purpose, the neural trajectories

now take on new values, since they not only exhibit the

real-time neural states, but also indicate trends in the phase

space. Measurements of condition-varying trajectories thus

offer insights into neural mechanisms. The length, speed,

and curvature of single trajectories, along with the angle

between them, can be calculated to test hypotheses in a

differential geometric way [74, 75]. While neural trajec-

tories from data show the actual situations, ‘‘fixed points’’,

as one of the most salient features of phase portraits, can be

even more significant because of their ability to predict

situations starting from new initial states [70]. In neuro-

science, stable fixed points or attractors, corresponding to

steady states or equilibria of the system, can be regarded as

stable response patterns such as memory [76, 77] or

appropriate states necessary for movement [78].

Finding specific neural states that reflect the dynamical

system is promising, but just the beginning. It is more

important, but difficult, to figure out how the system is

related to the behavior. In other words, how to explain the

neural mechanism with the structure of the proposed

dynamical system. It has been shown that one-dimensional

dynamics are enough to model the transition from spon-

taneous activity to delay activity in the macaque lateral

intraparietal area for spatial attention diversion [79], but

things get more complicated for motor control. For a

specific example of arm movement, the preparatory

activity has been proposed to act as the initial state of a
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dynamical system for action [11]. In neural space, the

population dynamical states converge to ‘‘a relatively tight

set’’ after the appearance of targets (Fig. 2B). This set,

called the ‘‘optimal subspace’’, is supposed to benefit

evolution to the desired motor command. According to the

optimal subspace hypothesis, the goal of motor preparation

is to set the population dynamical state into this optimal

preparatory subspace [12, 80]. In fact, it is impractical to

build a unified dynamical system for the entire movement

generation process, for it has been demonstrated that

different motor areas contain distinct neural dynamics [81].

Like the optimal subspace hypothesis, period- or location-

specific dynamical systems may have more practical value

at present.

Meanwhile, modeling efforts under the dynamical

system perspective have been emerging [82–85]. Take

the classical model of two-interval discrimination as an

example. It is a simple mutual-inhibition network model

that captures all task phases within a single framework. In

this model, the population of neurons is simplified as an

excitatory and an inhibitory node. Then the phase-plane

plot of input/output functions of these two nodes is

sufficient to reveal the dynamics in each phase, including

the shift of stable fixed points as well as the appearance and

disappearance of line attractors [82].

While discrete attractor dynamics have recently been

shown to support short-term memory associated with motor

planning in mice [86], continuous attractor dynamics seem

to have entered the field earlier. An early form of

continuous attractor neural network (CANN) was a neural

field consisting of several types of neurons as homoge-

neous subnets. This network could obtain equilibrium

solutions without input, and react to a stimulus of

stationary patterns [87]. Now CANNs (Fig. 3B, top) can

be regarded as a kind of recurrent network adept at

information representation, for stimuli can be encoded as

their stable activity patterns (attractors). The translation-

invariant connection determines this kind of network and

becomes the most prominent feature [88]. In the field of

motor control, CANNs have been applied to explain the

encoding of continuous changing direction [89] and

anticipative tracking [90].

Fig. 3 Illustration of neural manifolds and two kinds of recurrent

network models. A Neural manifolds. The activity of three neurons

(N1, N2, and N3) can be captured by a manifold spanned by two

neural modes (u1 and u2, as basic vectors). As a specific space defined
by latent and shared neural activity patterns, a neural manifold can be

approached by linearization despite its curvature in higher dimensions

(adapted with permission from Gallego et al., 2017 [64]). It is implied

that the manifold underlies movement preparation and generation,

because the necessary neural activity is expected to evolve on it. B
Diagram of Continuous Attractor Neural Networks (CANNs). A

CANN receives the external input Iext x; tð Þ and the synaptic input

U x; tð Þ at time t for neurons with preferred stimulus at x. All the
model neurons are connected with each other, in a way that the

difference between their preference for a stimulus determines the

strength of connectivity, J x; x
0� �

denoting the interaction from the

neuron at x to the neuron at x
0
, (adapted with permission from Wu S

et al., 2016 [88]). Therefore, this kind of recurrent network is highly

structural and analytical. C Diagram of Recurrent Neural Networks

(RNNs). The RNNs in modeling motor control now are usually based

on dynamic nodes. That is, the neural nodes evolve following a

differential equation, rather than being filtered by simple activation

functions. The yellow dots denote the nodes with only inhibitory

(negative) connections while the purple dots denote the others, as a

possibility. The inputs for these networks can be external signals in

step form, while the outputs so far have been EMG, velocity, and

hand trajectories.
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Recurrent network models are established under the

dynamical system perspective as well. Recurrent neural

networks (RNNs, Fig. 3B lower), whose neurons evolve

according to a group of ordinary differential equations, can

generate desired EMG signal patterns after training.

Moreover, the dynamics of either single neurons or the

population of the model are comparable to real data [91]. In

many applications, RNNs show eminent flexibility that is

attributable to the adjustable connection structure

[57, 92–96]. This plasticity, along with their temporal

extensibility, makes RNNs the first choice for studies on

the emergent property and behavior-relevant neuronal

activities. Nonetheless, RNNs with fixed structural con-

nectivity have recently been built. In an excitation-inhibi-

tion balanced recurrent network, which can generate

complex movements, the neural dynamics also largely

agree with experimental findings. The optimization for the

stability of the connectivity in this network was guided by

dynamics theory [97]. Except for being applied to build

network models, mathematical knowledge and techniques

in dynamics have also been introduced to open the ‘‘black

box’’ of high-dimensional RNNs. In a theoretical study, the

effect of linearization in realms of phase space around fixed

points or points with very slow movements was explored.

In the example cases provided, the mechanisms of

networks could be deduced from linearized dynamics

around these important points [98].

Perspectives

Emerging as a new framework for understanding the neural

basis of motor control, the dynamical systems perspective

indeed is a complement or extension of the representational

perspective, rather than a firm refutation. It emphasizes that

the autonomous dynamical evolution is predominately

determined by preparatory activity, consistent with the

central concept in the prevalent theory of motor control, the

internal model [99, 100]. Numerous behavioral and com-

putational studies suggest that the motor program is

inversely preplanned (inverse model) based on the forward

model of future states, rather than adjusted online relying

on continuous sensorimotor transformation during execu-

tion [101, 102]. From our point of view, dynamical

evolution from initial neural states set by preparatory

activity provides a plausible neural mechanism underpin-

ning the internal model.

In principle, if the neural dynamical machine in the

motor cortex autonomously generates motor commands, a

cohesive motor program could be decoded from prepara-

tory activity to rapidly drive an external actuator to

implement BMIs. Although some models aimed to link

neural dynamics and the muscle/arm [91, 97, 103],

remarkable advances in BMIs over the past two decades

largely relied on a representational perspective [104–110].

In the current BMI framework, a decoder first is trained to

find a parametric mapping between recorded neural activity

and movement covariates, and then it continuously con-

verts neural activity to control variables guiding external

objects (see review, [111]). For this representative map-

ping, the population vector algorithm, as noted before,

makes use of clear analytical relations which are intuitive

and interpretable. In fact, the essence of decoders based on

representational perspectives does not go beyond the

population vector algorithm. Putting aside cosine tuning

and Cartesian coordination, Sanger showed that the

population vector can be found with the simple assump-

tions that neurons respond to behavior in a predictable way,

and that neuronal preferences are approximately uniformly

distributed in task space [112]. However, this frame is

static, essentially depending on the previously-recorded

fluctuating neural responses. Consequentially, movement

of the actuator requires the continuous adjustment of brain-

controlled signals without prior trajectory formation, unlike

naturalistic movements planned in a feedforward manner,

leading to unsatisfactory performance of BMIs for viable

clinical applicability in terms of motion speed and

smoothness (Fig. 4A, [113]).

In contrast to discriminative decoding algorithms fos-

tered by representational perspectives that continuously

translate neural signals into movement parameters, the

decoders inspired by the dynamical systems perspective

should be temporally generative to yield an integrative

control program based on preparatory activity (Fig. 4B).

Ideally, clinically feasible BMIs should be able to interact

with dynamic environments in realtime, demanding a

feedforward controller to produce ballistic movements

[114–116]. Recently, in nonhuman primates, we tested a

BMI with a generative model to intercept moving objects

indicating potential advantages of feedforward control in

dynamic BMI design for more biomimetic and flexible

neuroprosthetics [117, 118].

So far, BMIs have distinguished themselves from a

static decoder in various aspects. The good performance of

current static decoders based on discriminative models may

be due to neural redundancy and low task dimensionality

[46, 64, 119, 120]. However, considering the limited,

biased, and unstable sampling of daily neural recordings, a

generative model would be preferred for a more naturalistic

prosthesis.

Moreover, while a static decoder is not suitable for

dynamic sensorimotor contingencies [121], novel BMIs

based on neural dynamical systems enable the sophisti-

cated integration of feedforward control and multi-modal

feedback (e.g., via ICMS) [116, 122]. While the external

device is controlled by only cortical signals, the control and
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feedback of brain-controlled neuroprosthetics are different

from natural movements, leading to novel neural responses

[51–53, 123], suggesting an inherent difference between

BMI control and neural decoding.

Furthermore, an optimistic dynamical perspective

emphasizes the importance of initial state and temporal

dynamics within the cortex, which subsequently triggers

the detailed control program in subcortical and spinal

circuitry [12, 124, 125], demanding hierarchical decoding

algorithms for next-generation BMI control.

From our viewpoint, neural population dynamics and

single-neuron characteristics complement each other. Neu-

ral population dynamics rely on the coordinated tuning of

individual neurons, whereas single neurons must be

spatiotemporally orchestrated to generate motor com-

mands. On the other hand, the parametric representation

and the dynamical systems perspectives are two sides of a

coin. It is fair to suggest that the representation perspective

asks, ‘‘what motor parameters are involved?’’, while the

dynamical system perspective focuses on ‘‘how does

function evolve in time?’’. Since the dynamical states can

be representational [126], it is reasonable to hope that these

two perspectives can be incorporated into one framework,

though this will demand great effort. In the future, it will be

helpful to quantitatively link neural population dynamics

and holistic physical movement, as well as to identify the

recurrent neural circuitry underlying dynamical rules and

external triggers for the transition from preparation to

execution [127]. Studies on the initial state, local dynam-

ics, and external inputs of a dynamical system could

provide inspiration. Nevertheless, it is still unclear if neural

dynamics emerge from the motor cortex alone or a larger

brain network. Thus, it is important to identify the specific

roles of multiple brain areas in future studies.
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Fig. 4 Decoding frameworks of BMIs based on representational (A)
and dynamical systems (B) perspectives. A Neural activities within a

certain sliding window ahead of the decode time tdecode are binned

with 100 ms to form a high-dimensional matrix. BMIs based on

representational perspectives usually use fixed decoders like the

Wiener filter to map high-dimensional neural activities into low-

dimensional control signals. From the start (green point) to the end

(red point), the endpoint (endpt) trajectory (blue line) is segmented

due to feedback adjustment (modified with permission from Athalye

et al., 2017 [113]). B Schematic for BMIs from the dynamical

systems perspective. This regards the motor cortex as a machine to

generate proper neural activity patterns for the desired movement, and

thus the movement can be implemented once the mapping between

neural dynamics and concrete muscle activity is defined. In this

situation, it is essential to first figure out stable neural states, for they

function as attractors, and then design reliable generative algorithms

(e.g. RNNs) for efficient neuron-to-muscle signal transition.
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