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Abstract 

Background:  Chitinase-3-like 1 (CHI3L1) is a glycoprotein elevated in paediatric severe malaria, and an emerging 
urinary biomarker of acute kidney injury (AKI). Based on the hypothesis that elevated CHI3L1 levels in malaria are 
associated with disease severity, the relationship between plasma CHI3L1 levels, AKI and mortality was investigated 
in Ugandan children enrolled in a clinical trial evaluating inhaled nitric oxide (iNO) as an adjunctive therapy for severe 
malaria.

Methods:  Plasma CHI3L1 levels were measured daily for 4 days in children admitted to hospital with severe malaria 
and at day 14 follow up. AKI was defined using the Kidney Disease: Improving Global Outcomes consensus criteria. 
This is a secondary analysis of a randomized double-blind placebo-controlled trial of iNO versus placebo as an adjunc-
tive therapy for severe malaria. Inclusion criteria were: age 1–10 years, and selected criteria for severe malaria. Exclu-
sion criteria included suspected bacterial meningitis, known chronic illness including renal disease, haemoglobinopa-
thy, or severe malnutrition. iNO was administered by non-rebreather mask for up to 72 h at 80 ppm.

Results:  CHI3L1 was elevated in patients with AKI and remained higher over hospitalization (p < 0.0001). Admission 
CHI3L1 levels were elevated in children who died. By multivariable analysis logCHI3L1 levels were associated with 
increased risk of in-hospital death (relative risk, 95% CI 4.10, 1.32–12.75, p = 0.015) and all-cause 6 month mortality 
(3.21, 1.47–6.98, p = 0.003) following correction for iNO and AKI. Treatment with iNO was associated with delayed 
CHI3L1 recovery with a daily decline of 34% in the placebo group versus 29% in the iNO group (p = 0.012). CHI3L1 
levels correlated with markers of inflammation (CRP, sTREM-1, CXCL10), endothelial activation (Ang-2, sICAM-1) and 
intravascular haemolysis (LDH, haem, haemopexin).

Conclusions:  CHI3L1 is a novel biomarker of malaria-associated AKI and an independent risk factor for mortality that 
is associated with well-established pathways of severe malaria pathogenesis including inflammation, endothelial 
activation, and haemolysis.
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Background
Acute kidney injury (AKI) is an important complica-
tion in severe malaria that is associated with increased 
mortality in both paediatric [1–6] and adult populations 
[7–10]. However, until recently, the incidence of AKI in 
paediatric malaria was under-appreciated as few chil-
dren develop signs of overt renal failure and creatinine 
testing is not routinely available in resource-constrained 
settings. Despite significant progress in reducing malaria 
incidence and mortality [11], case fatality rates in severe 
disease remain high, and the identification of an effective 
adjunctive therapy is a research priority.

Decreased bioavailable nitric oxide is a common fea-
ture in both children and adults with severe malaria, and 
clinical trials to increase nitric oxide (NO) have been 
conducted [12–14]. Although there has been no con-
clusive benefit demonstrated in human trials designed 
to increase bioavailable NO, infusion of l-arginine in 
adults with severe malaria improved endothelial recovery 
[12], and iNO delivered at 80  ppm was associated with 
reduced risk of fine motor impairment in children under 
5 years of age at 6 month follow up [15].

Despite early reports that inhaled NO (iNO) was asso-
ciated with increased splanchnic and renal blood flow 
[16], a meta-analysis of adults with acute respiratory dis-
tress syndrome found that iNO treatment was associated 
with a 50% increased risk of developing AKI (relative risk, 
95% CI 1.50, 1.11–2.02) [17]. This has been confirmed in 
another meta-analysis including non-ARDS patients [18], 
but the effect was strongest in patients with ARDS with 
prolonged exposure and a high cumulative dose. There 
are limited reports evaluating iNO and renal safety in 
children. Previously, an increase in the overall incidence 
of AKI (relative risk, 95% CI 1.36, 1.03–1.90, p = 0.026) 
was reported in children treated with iNO [6]. However, 
there was no association between iNO and AKI when 
restricting the analysis to children who developed AKI 
after treatment was initiated.

Chitinase-3-like 1 protein (CHI3L1) is a 39  kDa 
secreted glycoprotein produced by a variety of cell types 
in response to inflammation, including activated mac-
rophages, neutrophils, and fibroblasts. CHI3L1 is highly 
expressed in healthy kidney tissue [19] and is freely fil-
tered by the glomerulus. CHI3L1 is also secreted by 
activated macrophages in the kidney upon stress or dam-
age [20]. Elevated levels of CHI3L1 have been reported 
in Ugandan children with severe malaria, and further 
elevated in fatal malaria [21]. Co-culture of human 
peripheral blood mononuclear cells with Plasmodium 
falciparum-infected erythrocytes in  vitro induced 
CHI3L1 transcription and secretion of CHI3L1 pro-
tein [21]. While CHI3L1 was elevated by day 5 infec-
tion in an experimental model of cerebral malaria, 

genetic disruption of Chi3l1 did not affect inflammatory 
responses or outcome [21].

In this secondary analysis of an iNO intervention trial, 
CHI3L1 was investigated as a biomarker of morbidity and 
mortality in paediatric severe malaria, the longitudinal 
kinetics of CHI3L1 were explored in children hospital-
ized with severe malaria, and the impact of iNO therapy 
on CHI3L1 normalization was evaluated.

Methods
Study design
The study was conducted between 2011 and 2013 at the 
Jinja Regional Referral Hospital in Jinja, Uganda. All chil-
dren were treated with intravenous artesunate followed 
by oral artemisinin-based combination therapy. Inclu-
sion criteria were age 1–10 years, P. falciparum by RDT 
(First Response Malaria Ag. HRP2/pLDH Combo Rapid 
Diagnostic Test, Premier Medical Corporation Limited, 
India), selected severe malaria criteria (decreased con-
sciousness, repeated seizures, prostration, and/or respir-
atory distress), and plasma sample available for CHI3L1 
testing. Exclusion criteria included: known chronic ill-
ness, severe malnutrition, known haemoglobinopathy, 
prior treatment with quinine in the emergency depart-
ment, suspicion of acute bacterial meningitis. Study gas 
was delivered continuously by non-rebreather mask for 
up to 72 h, as previously described [13, 22].

Acute kidney injury
Creatinine and BUN were assessed at the point of care 
using i-STAT CHEM8+ or Crea cartridges (Abbott Lab-
oratories, Saint-Laurent, Québec). Creatinine measured 
by i-STAT is calibrated traceable to the isotype dilution 
mass spectrometry reference measurement and is free 
of interference from haemoglobin, bilirubin, and glucose 
[23]. Estimated glomerular filtration rate (eGFR) was 
calculated using the Bedside Schwartz equation, using a 
constant for children (k =  0.413) [24]. Presence of AKI 
was determined retrospectively using KDIGO guidelines 
[25]. Children were considered to have AKI if they had 
either a ˃26 μmol/L rise in creatinine within 48 h or > 1.5-
fold increase in creatinine from estimated baseline. Base-
line creatinine was estimated assuming a normal GFR of 
120 mL/min/1.73 m2 and using the Schwartz equation to 
back calculate creatinine based on the child’s height. The 
children with AKI were further classified by stage: stage 
1 (risk; 1.5–1.9-fold increase in creatinine from nadir), 
stage 2 (injury; 2.0–2.9-fold increase), and stage 3 (fail-
ure; greater than 3.0-fold increase, single value greater 
than 354  µmol/L during hospitalization, or an eGFR 
of  <  35  mL/min/1.73  m2) [25]. The incidence of AKI in 
this cohort has been previously reported [6].
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Laboratory testing
K2 EDTA anticoagulated plasma samples were collected 
daily from children during hospitalization (day 1–4), and 
at follow up (day 14) and stored at −  80  °C until testing. 
Cystatin C and CHI3L1 were measured by ELISA (DuoSet, 
R&D Systems, Burlington, Canada) with the investigator 
blinded to treatment group and outcome [6]. LDH activity 
was measured using a colorimetric assay according to man-
ufacturer’s protocol (BioVision, Milpitas, CA, USA). The 
limit of detection for CHI3L1 was 4.5  ng/mL with inter- 
and intra-assay reproducibility of 5.9 and 6.3%, respectively. 
Markers of intravascular haemolysis (haem, haemopexin) 
[26], endothelial activation (Ang-2, sICAM-1) [27], and 
inflammation (CRP, sTREM-1, CXCL10/IP-10) were meas-
ured by ELISA as previously described [27, 28]. Biomarkers 
were selected for analysis based on an established associa-
tion with disease severity and mortality in Ugandan chil-
dren with severe malaria [27, 28].

Statistical analysis
Data were analysed using Stata/SE v14.0, GraphPadPrism 
v7.03, and R [29]. For access to the dataset see Additional 
file 1. Continuous data are presented as median (interquar-
tile range, IQR) and analyzed using Wilcoxon rank sum test 
or non-parametric test for trend. Categorical data are pre-
sented as n (%) and analysed using Pearson’s Chi Square or 
Fisher’s exact test, as appropriate. To compare biomarker 
levels at admission, Spearman’s non-parametric correla-
tion was used. To assess the relationship between CHI3L1 
and mortality, generalized linear models were used opting 
first for a log-binomial model with robust standard errors. 
In the event of failed convergence Poisson regression was 
used with robust standard errors.

R [29] and lme4 [30] were used to perform a linear mixed 
effects (LME) analysis of in-hospital longitudinal course of 
log (CHI3L1) over time in patients without AKI and with 
different stages of AKI. Time, nitric oxide treatment arm, 
and AKI stage were entered as fixed effects with and with-
out interaction terms. Intercepts and slopes were mod-
eled for each subject as random effects. The intercept for 
treatment arm was constrained to zero at baseline as chil-
dren were randomly allocated to treatment arm. Visual 
inspection of residual plots did not reveal deviations from 
homoscedasticity or normality. p values were obtained by 
likelihood ratio tests of the full model (including AKI stage) 
against the model without AKI stage.

Results
CHI3L1 levels at presentation are associated with disease 
severity and AKI
Levels of CHI3L1 were available for 159 children at 
admission (Fig.  1). A description of the population is 
included in Table  1. The median age of children was 

2.0 years and 56% were male. At admission, children with 
CHI3L1 levels in the highest quartile had a median of 5 
severe malaria criteria compared to 4 in children with 
the lowest three quartiles (p  <  0.0001) [31]. Children 
with elevated CHI3L1 also had higher lactate (p = 0.001), 
lower bicarbonate, (p  <  0.0001) and higher Cystatin C 
(p =  0.001) and BUN levels (p =  0.025). Children with 
CHI3L1 levels in the highest quartile were more likely to 
have AKI (p =  0.034), and there was a strong relation-
ship between CHI3L1 and severity of AKI with 5.9% of 
children with CHI3L1 levels in the lowest three quar-
tiles having stage 3 AKI compared to 28.2% of children 
with CHI3L1 levels in the highest quartile having stage 
3 AKI (p  <  0.0001). The relationship between CHI3L1 
levels and kidney function was further explored using 
linear regression to investigate the relationship between 
creatinine, Cystatin C. and BUN as dependent variables 
and log10(CHI3L1) levels at admission as the independ-
ent variable (Table  2). A log10 increase in CHI3L1 was 
significantly associated with creatinine, Cystatin C, and 
BUN following adjustment for age and sex. When adjust-
ing for other measures of kidney function, log10(CHI3L1) 
remained independently associated with an increase in 
Cystatin C following correction for creatinine (beta, 95% 
CI 0.17, 0.05–0.30, p =  0.008), but not BUN. The rela-
tionship between log10(CHI3L1) and BUN was not sig-
nificant when adjusting for either creatinine or Cystatin 
C (p > 0.05), and the relationship between log10(CHI3L1) 
and creatinine was not significant when adjusting for 
Cystatin C or BUN (p > 0.05).

Admission CHI3L1 is independently associated 
with in‑hospital and all‑cause 6 month mortality
CHI3L1 levels were compared at admission with sub-
sequent in-hospital mortality and all-cause 6  month 
mortality. CHI3L1 levels in the highest quartile were 
significantly associated with death (Table  1). Further, 
median CHI3L1 levels were higher among children who 
died in-hospital than those who survived (p  =  0.023, 
Wilcoxon rank sum test) and children who died by 
6  months follow up compared to those known to sur-
vive (p  =  0.046). By multivariable analysis, a one unit 
increase in log10(CHI3L1) was associated with a 4.10-fold 
increased risk of in-hospital death (95% CI 1.32–12.75, 
p =  0.015) following adjustment for treatment arm and 
AKI status using a log binomial model. Further, a one 
unit increase in log10(CHI3L1) was associated with a 
3.21-fold increased risk of death by 6  months (95% CI 
1.47–6.98, p = 0.003) following adjustment for treatment 
arm and AKI status.

Survival data were not available at 6  months fol-
low up for 16 children lost to follow up (LTFU) and 19 
children > 5 years of age and not followed to 6 months 
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(according to the study protocol). To evaluate whether 
the association between CHI3L1 and 6 month mortal-
ity was robust to various assumptions a sensitivity anal-
ysis was performed first assuming all children < 5 years 
of age LTFU died (Table  3, model 1). Then all chil-
dren < 5 years of age LTFU were assumed to have sur-
vived (model 2). Assuming all children  <  5  years of 
age LTFU died, log10(CHI3L1) was associated with a 

2.13-fold increased risk of death (1.18, 3.84, p = 0.012, 
model 1), and a 3.11-fold increased risk of death (1.38–
6.99, p = 0.006, model 2) if all children < 5 years of age 
LTFU survived. This analysis was then expanded to all 
children in the cohort (including children  >  5  years 
of age that were not followed). Assuming all chil-
dren LTFU or  >  5  years of age died, log10(CHI3L1) 
was associated with a 1.99-fold increased risk of 

Fig. 1  Flow chart of study population
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Table 1  Patient characteristics based on quartiles of CHI3L1 levels at admission

Cohort CHI3L1 Q123 
versus Q4, p 
valueQ123 (n = 120) Q4 (n = 39)

Patient demographics

 Age, years 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 0.825

 Sex, males 89 (56.0) 68 (56.7) 21 (53.8) 0.450

 Weight, kg 11.0 (9.0, 13.0) 11.0 (9.0, 13.0) 11.0 (9.0, 13.0) 0.893

 Height, cm 79 (71, 90) 79 (71, 90) 80 (70, 88) 0.850

 Weight-for-age z − 1 (− 2, 0) − 1 (− 2, 0) 0 (− 2, 0) 0.247

 Height-for-age z − 2 (− 3, 0) − 2 (− 3, 0) − 2 (− 3, − 1) 0.575

Clinical parameters at admission

 Temperature 37.9 (37.0, 38.8) 38.0 (37.0, 39.0) 37.8 (37.0, 38.4) 0.304

 Heart rate 161 (144, 179) 161 (142, 177) 162 (153, 181) 0.186

 Respiratory rate 48 (38, 62) 46 (36, 60) 55 (44, 66) 0.056

 Systolic BP 110 (100, 120) 110 (100, 120) 110 (100, 125) 0.740

 Diastolic BP 60 (50, 70) 60 (50, 70) 60 (50, 70) 0.932

 Coma 95 (59.7) 67 (55.8) 28 (71.8) 0.077

 Convulsions 126 (79.2) 95 (79.2) 31 (79.5) 0.966

 Severe anaemia 104 (65.4) 74 (61.7) 30 (76.4) 0.082

 Haemoglobinuria 26 (16.4) 20 (16.7) 6 (15.4) 0.403

 Jaundice 25 (15.8) 17 (14.3) 8 (20.5) 0.355

 Deep breathing 74 (46.5) 54 (45.0) 20 (51.3) 0.494

 Shock 14 (8.8) 9 (7.5) 5 (12.8) 0.308

 Severe malaria criteria 4 (3, 6) 4 (3, 5) 5 (4, 6) 0.0004

Laboratory tests

 Parasitaemia 25,280 (2620, 78,840) 23,000 (2640, 72,320) 36,320 (2525, 115,600) 0.264

 Lactate, μmol/L 3.6 (2.1, 6.5) 3.1 (2.0, 5.5) 5.5 (3.0, 10.3) 0.001

 Glucose, μmol/L 6.7 (5.6, 8.1) 6.8 (5.8, 8.1) 6.3 (4.2, 8.5) 0.106

 Haemoglobin, g/dL 4.7 (3.0, 6.4) 4.8 (3.0, 6.7) 4.6 (3.1, 5.4) 0.341

 WBC 11.6 (7.5, 19.4) 11.30 (7.65, 19.30) 12.50 (6.70, 20.30) 0.746

 Platelets × 103 71 (38, 124) 73 (42, 133) 60 (29, 114) 0.186

 HCO3− 17.3 (13.0, 20.1) 18.3 (14.8, 20.2) 12.4 (10.5, 18.0) 0.0001

 Na+ 137 (135, 140) 138 (135, 140) 137 (134, 140) 0.289

 K+ 4.1 (3.7, 4.5) 4.1 (3.7, 4.4) 4.3 (3.8, 4.9) 0.125

 Cl− 108 (104, 112) 108 (104, 112) 110 (105, 114) 0.501

 Creatinine, μmol/L 31 (23, 41) 30 (24, 38) 34 (23, 58) 0.260

 Cystatin C 1041 (778, 1313) 954 (754, 1191) 1247 (1054, 1545) 0.001

 BUN 16.0 (9.0, 27.5) 14.0 (9.0, 25.0) 25.5 (10.8, 42.0) 0.025

Treatment group

 Received iNO 76 (47.8) 53 (44.2) 23 (59.0) 0.108

Acute kidney injury

 AKI 70 (44.3) 47 (39.5) 23 (59.0) 0.034

AKI stage

  0 88 (55.7) 72 (60.5) 16 (41.0) < 0.0001

  1 38 (24.1) 32 (26.9) 6 (15.4)

  2 14 (8.9) 8 (6.7) 6 (15.4)

  3 18 (11.4) 7 (5.9) 11 (28.2)

 Incident AKIa 22 (13.9) 17 (14.3) 5 (12.8) 0.819

Outcome

 Discharge with disability 7 (6.7) 6 (7.2) 1 (4.6) 1.000

 Death, in-hospital 14 (8.8) 7 (5.8) 7 (18.0) 0.020

 Death, 6 monthsb 22 (17.3) 13 (13.5) 9 (29.0) 0.048
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death by 6  months (1.22–3.25, p  =  0.006, model 3). 
Assuming all children LTFU or  >  5  years of age sur-
vived, log10(CHI3L1) was associated with a 3.10-
fold increased risk of death by 6  months (1.34–7.16, 
p = 0.008, model 4).

CHI3L1 levels are associated with endothelial activation, 
inflammation and hemolysis
In order to explore potential pathophysiologic mecha-
nisms linking elevated CHI3L1 and mortality in severe 
paediatric malaria, admission levels of CHI3L1 were 
compared with other host markers of immune and 
endothelial activation. CHI3L1 was correlated with path-
ways implicated in the pathobiology of severe malaria 
including markers of endothelial activation (angiopoie-
tin-2, 0.43, p < 0.0001; sICAM-1, 0.43, p < 0.0001), mark-
ers of inflammation (CRP, 0.36, p  <  0.0001; CXCL10/
IP-10, 0.26, p = 0.0008; sTREM-1, 0.23, p = 0.005); and 
markers of haemolysis (LDH, 0.28, p  =  0.0004; hae-
mopexin, − 0.23, p = 0.004; haem, 0.30, p = 0.0001).

Inhaled nitric oxide is associated with delayed recovery 
of CHI3L1 levels in children with severe malaria
LME models were used to explore the relationship 
between the longitudinal time course of CHI3L1 in 
patients in the placebo and treatment arms of the iNO 
trial. Assuming that differences at baseline between 
trial arms were due to chance alone (random alloca-
tion), we observed that CHI3L1 was elevated at baseline 
and decreased over the first 3  days of hospitalization at 
a different rate in children receiving iNO compared to 
placebo. The baseline (day 1) CHI3L1 concentration (esti-
mate, 95% CI 213 ng/mL, 176–259) decreased by 34% per 
day (95% CI 31–38) in the placebo group and 29% per day 
(95% CI 25–33) in the iNO group (p = 0.007) (Fig. 2).

Longitudinal CHI3L1 levels are elevated in patients 
with AKI, in both placebo‑ and iNO‑treated children 
with severe malaria
AKI is associated with higher mortality in paediatric 
severe malaria [6]; therefore, the relationship between 
longitudinal time course of CHI3L1 in patients with 

Table 1  (continued)
Data presented as median (interquartile range) or n (%). Continuous data analyzed using Mann–Whitney U test and dichotomous variables analysed using Pearson’s 
Chi Square or Fisher’s exact test
a  Incident AKI defined as AKI that developed following admission to hospital (n = 55 cases of AKI were present on admission)
b  Outcome available for 127 children

Table 2  Relationship between log10CHI3L1 levels and kidney function

a  Adjusted for age and sex

Dependent variable Unadjusted beta (95% CI) p value Adjusted betaa (95% CI) p value

Creatinine 13.97 (5.16, 22.77) 0.002 13.51 (4.66, 22.36) 0.003

Cystatin C 0.28 (0.13, 0.44) < 0.0001 0.28 (0.13, 0.44) < 0.0001

BUN 10.21 (3.92, 16.51) 0.002 10.23 (3.87, 16.60) 0.002

Table 3  Association between  admission CHI3L1 levels 
and risk of death

Default model: generalized linear model with binomial family and log link

LFTU lost to follow up
a  In the event of failed convergence a Poisson model with robust standard 
errors was used

In-hospital mortality All cause 6 month 
mortality

RR (95% CI) p value RR (95% CI) p value

Primary models

 iNO group 0.72 (0.28, 1.90) 0.512 0.85 (0.41, 1.76) 0.670

 AKI 2.61 (0.85, 8.00) 0.094 1.28 (0.61, 2.68) 0.521

 Log10CHI3L1 4.10 (1.32, 12.75) 0.015 3.21 (1.47, 6.98) 0.003

Sensitivity analysis

 Model 1: children < 5 years of age LTFU dieda

  iNO group – – 0.87 (0.52, 1.45) 0.589

  AKI – – 1.33 (0.76, 2.32) 0.312

  Log10CHI3L1 – – 2.13 (1.18, 3.84) 0.012

 Model 2: children < 5 years of age LTFU survived

  iNO group – – 0.78 (0.37, 1.65) 0.513

  AKI – – 1.29 (0.61, 2.75) 0.505

  Log10CHI3L1 – – 3.11 (1.38, 6.99) 0.006

 Model 3: children < 5 years of age LTFU or > 5 years dieda

  iNO group – – 0.76 (0.49, 1.17) 0.213

  AKI – – 1.21 (0.77, 1.90) 0.419

  Log10CHI3L1 – – 1.99 (1.22, 3.25) 0.006

 Model 4: children < 5 years of age LTFU or > 5 years survived

  iNO group – – 0.86 (0.40, 1.84) 0.701

  AKI – – 1.30 (0.60, 2.81) 0.509

  Log10CHI3L1 – – 3.10 (1.34, 7.16) 0.008
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and without AKI was investigated. In an analysis 
including all trial participants and adjusting for the 
effect of iNO, AKI was associated with higher CHI3L1 
levels (1.02-, 1.30-, and 2.50-fold higher in AKI grade 
1, 2 and 3, respectively, relative to no AKI, p < 0.0001, 
Fig.  3). To confirm the association between AKI and 

elevated CHI3L1 independent of iNO exposure, a sub-
group analysis was performed using patients in the 
placebo arm of the trial: AKI grade 1, 2 and 3 was asso-
ciated with CHI3L1 concentrations 0.94, 1.31, and 2.41-
fold higher than patients without AKI, over the course 
of the first 3 days of hospitalization (p = 0.017).
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Fig. 2  Treatment with inhaled nitric oxide is associated with a slower recovery of CHI3L1 levels. Line plots showing individual CHI3L1 trajectories 
for patients randomized to receive placebo (left) or inhaled nitric oxide (iNO, right). CHI3L1 levels for in-hospital mortality are depicted in red. The 
line for the random-intercept, random-slope linear mixed effects model is shown in black. The CHI3L1 concentration (estimate, 95% CI 213 ng/mL, 
176–259) decreased by 34% per day (95% CI 31–38) in the placebo group and 29% per day (95% CI 25–33) in the iNO group (p = 0.0071, likelihood 
ratio test)
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Fig. 3  CHI3L1 levels are elevated over hospitalization according to the severity of acute kidney injury. Line plots showing individual CHI3L1 
trajectories for patients according to the severity KDIGO-defined acute kidney injury (AKI). CHI3L1 levels for in-hospital mortality are depicted in red. 
The line for the linear mixed effects model is shown in black. Time, nitric oxide treatment arm, and AKI stage were entered as fixed effects. In this 
model, AKI grade 1, 2 and 3 was associated with CHI3L1 concentrations 1.02, 1.3, and 2.5-fold higher than patients without AKI, over the course of 
the first 3 days of hospitalization (p < 0.0001)
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Discussion
Acute kidney injury has recently become recognized as 
a common complication of paediatric severe malaria, 
but its pathogenesis is not well understood. In this study, 
elevated CHI3L1 levels at admission were associated with 
the severity of AKI. Using linear regression we explore 
the relationship between CHI3L1 levels and biomark-
ers of kidney function and found that CHI3L1 was sig-
nificantly associated with increased Cystatin C following 
correction for age, sex and creatinine. CHI3L1 levels 
were associated with an increased risk of both in-hospital 
and long-term mortality independent of treatment arm 
and AKI. Importantly, using LME models to evaluate the 
longitudinal course of CHI3L1, administration of iNO 
was associated with prolonged elevation of CHI3L1 lev-
els over the first 4 days of hospitalization. Further, there 
was a strong relationship between CHI3L1 levels and 
the severity of AKI that was independent of iNO treat-
ment. These results suggest that CHI3L1 is an important 
biomarker of disease severity and mortality in paediatric 
severe malaria that is associated with kidney dysfunction 
as well as endothelial activation, inflammation and hae-
molysis. Additional studies are required to validate the 
relationship between CHI3L1 and AKI in severe malaria 
and investigate the association between CHI3L1 and 
established biomarkers of AKI.

CHI3L1 is a relatively new biomarker of AKI or altered 
renal function that has been investigated in the con-
text of critical illness [32, 33], and sepsis [34]. However, 
CHI3L1 has been predominantly investigated as a bio-
marker of AKI in urine rather than blood. CHI3L1 was 
identified in a urine proteomic screen in mice with kid-
ney ischaemic reperfusion injury where a direct correla-
tion was observed between the severity of kidney injury, 
CHI3L1 expression in the kidney, and levels in the urine 
[20]. Studies of urinary CHI3L1 from donor kidneys sug-
gested that CHI3L1 is a repair phase protein produced 
in response to tubular injury, and associated with recov-
ery from AKI and delayed graft function [35]. CHI3L1 
expression has been reported on the surface of tubular 
epithelial cells, consistent with either uptake of filtered 
CHI3L1 or tubular cell secretion, and urinary CHI3L1 
levels correlate with the severity of acute tubular necrosis 
[35].

Studies in mice have shown that CHI3L1 plays a criti-
cal role in tissue repair and remodelling following pul-
monary insult by limiting oxidative damage, stimulating 
alternative (M2) macrophage activation, and inhibiting 
apoptosis [36–38]. In the context of malaria, an increase 
of M2 monocytes in peripheral blood has been reported 
in children with severe malaria compared to healthy con-
trols [39]. Further, M2 monocytes were associated with 
increased expression of arginase 1, lower NOS2 mRNA, 

and lower plasma arginine [39]. Additional studies are 
needed to delineate the role between CHI3L1, alternative 
macrophage activation in severe malaria and its relation-
ship with AKI and NO bioavailability.

There are limited, and conflicting, data related to the 
relationship between CHI3L1 and NO. CHI3L1 has 
been positively correlated with NO levels in tissue cul-
ture supernatant from herniated lumbar discs [40], and 
exhaled NO in children with severe therapy-resistant 
asthma [41]. However, in patients with type 1 diabe-
tes reduced NO in the blood correlated with elevated 
CHI3L1 [42], and plasma CHI3L1 was negatively asso-
ciated with nitric-oxide mediated vasodilatory capacity 
in adults with obstructive sleep apnea [43]. In this study 
there was delayed CHI3L1 recovery in children receiving 
iNO independent of AKI-associated changes in CHI3L1, 
with CHI3L1 the only biomarker identified that has been 
shown to differ in response to iNO therapy [27]. While 
there were differences in the rate of CHI3L1 recovery 
over the first 4  days of hospitalization associated with 
iNO therapy, the effect was not significant by day 14 sug-
gesting that iNO results in a transient delay in the nor-
malization of CHI3L1 levels.

Acute kidney injury is a common complication in 
severe malaria but its pathogenesis is unclear. Peripheral 
parasitaemia is not associated with worsening kidney 
function in children or adults with severe malaria [6, 10], 
but plasma HRP2 levels (reflecting total parasite biomass) 
are associated with worsening renal function, suggesting 
AKI is associated with the sequestered parasite biomass 
[10]. Plasma suPAR—a marker of mononuclear cell acti-
vation—was elevated in adults with malaria-associated 
AKI [10]. These results are consistent with post-mortem 
studies showing parasite sequestration and mononuclear 
cell infiltration in glomerular and peritubular capillaries 
[44]. Neutrophil gelatinase-associated lipocalin (NGAL), 
an early marker of renal tubular damage, was elevated in 
adults with malaria-associated AKI [10]. Oxidative stress 
and injury due to cell-free haemoglobin and haem from 
malaria-induced haemolysis may also contribute to tubu-
lar damage in malaria. In children with severe malaria, an 
increase in the haem to haemopexin ratio was observed 
over hospitalization in children with severe AKI (Stage 
3 AKI) [26]. In adults with severe malaria, reduced red 
blood cell deformability, and increased cell-free haemo-
globin and lipid peroxidation (indicative of oxidative 
stress) were associated with AKI [45].

While the mechanisms leading to severe malaria-asso-
ciated AKI are not well understood, it is likely a hetero-
geneous syndrome characterized by reduced renal blood 
flow due to dehydration, hypotension, and impaired 
microcirculatory function as a result of parasite seques-
tration and reduced bioavailable nitric oxide. A subset 
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of children may be at risk of developing direct tubular 
damage as a result of prolonged ischaemia, endothe-
lial activation, inflammation, and cell-free haemoglobin 
and haem-mediated injury. In this cohort, an increase 
in CHI3L1 was associated with significant increases in 
creatinine, Cystatin C, and BUN by linear regression, 
and the relationship between CHI3L1 and Cystatin C 
remained significant following adjustment for creatinine. 
CHI3L1 levels also correlated with markers of immune 
activation (CRP, sTREM-1, CXCL10/IP-10), endothe-
lial activation (Ang-2, sICAM-1), and haemolysis (LDH, 
haem, haemopexin), pathways of injury that are well 
described in paediatric severe malaria [26–28, 46–48]. As 
CHI3L1 is produced by tubular cells in response to injury 
and remodelling [35], it may represent a novel biomarker 
of AKI in pediatric severe malaria. Additional studies 
are needed to delineate between CHI3L1 as a marker 
of inflammation versus AKI by comparing CHI3L1 lev-
els to other established biomarkers of kidney injury (e.g. 
NGAL) that are well characterized in association with 
changes to kidney function. Further, additional research 
is needed to evaluate CHI3L1 over time as it relates to 
renal recovery and repair in both plasma and urine.

In this study elevated CHI3L1 levels at admission were 
a risk factor for in-hospital and all-cause 6 month mor-
tality independent of kidney function and treatment 
group. These results are consistent with reports from 
adults where CHI3L1 is an independent predictor of all-
cause mortality in type II diabetes [49, 50], heart failure 
[51], and sepsis [52]. Although CHI3L1 was strongly 
associated with AKI, which is an established risk factor 
for mortality in severe malaria, the relationship between 
CHI3L1 and increased risk of death was independent of 
AKI status suggesting CHI3L1 is not simply a biomarker 
of kidney function.

This study has several strengths including a rand-
omized trial design with detailed clinical follow up and 
daily assessment of renal function and plasma CHI3L1 
levels. Further, the majority of children were followed 
up to 6  months allowing us to evaluate the association 
between CHI3L1 and post-discharge mortality in chil-
dren with severe malaria. Limitations include a lack of 
data on renal recovery and long-term renal function in 
the children. Further, urine was not collected to evaluate 
plasma versus urine levels of CHI3L1.

Conclusions
In this study, CHI3L1 was validated as an independ-
ent biomarker of morbidity and mortality in children 
with severe malaria that is associated with the pres-
ence and severity of AKI. This provides further evidence 
that AKI is an important complication in children with 
severe malaria associated with endothelial activation and 

inflammation. Additional studies to evaluate the long-
term implications of AKI on kidney function in surviving 
children are urgently needed.
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