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Abstract
Barrier mechanisms in the brain are important for its normal functioning and
development. Stability of the brain’s internal environment, particularly with
respect to its ionic composition, is a prerequisite for the fundamental basis of its
function, namely transmission of nerve impulses. In addition, the appropriate
and controlled supply of a wide range of nutrients such as glucose, amino
acids, monocarboxylates, and vitamins is also essential for normal
development and function. These are all cellular functions across the interfaces
that separate the brain from the rest of the internal environment of the body. An
essential morphological component of all but one of the barriers is the presence
of specialized intercellular tight junctions between the cells comprising the
interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid
membrane, choroid plexus epithelial cells, and tanycytes (specialized glial
cells) in the circumventricular organs. In the ependyma lining the cerebral
ventricles in the adult brain, the cells are joined by gap junctions, which are not
restrictive for intercellular movement of molecules. But in the developing brain,
the forerunners of these cells form the neuroepithelium, which restricts
exchange of all but the smallest molecules between cerebrospinal fluid and
brain interstitial fluid because of the presence of strap junctions between the
cells. The intercellular junctions in all these interfaces are the physical basis for
their barrier properties. In the blood-brain barrier proper, this is combined with a
paucity of vesicular transport that is a characteristic of other vascular beds.
Without such a diffusional restrain, the cellular transport mechanisms in the
barrier interfaces would be ineffective. Superimposed on these physical
structures are physiological mechanisms as the cells of the interfaces contain
various metabolic transporters and efflux pumps, often ATP-binding cassette
(ABC) transporters, that provide an important component of the barrier
functions by either preventing entry of or expelling numerous molecules
including toxins, drugs, and other xenobiotics.
In this review, we summarize these influx and efflux mechanisms in normal
developing and adult brain, as well as indicating their likely involvement in a
wide range of neuropathologies.
There have been extensive attempts to overcome the barrier mechanisms that

prevent the entry of many drugs of therapeutic potential into the brain. We
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prevent the entry of many drugs of therapeutic potential into the brain. We
outline those that have been tried and discuss why they may so far have been
largely unsuccessful. Currently, a promising approach appears to be focal,
reversible disruption of the blood-brain barrier using focused ultrasound, but
more work is required to evaluate the method before it can be tried in patients.
Overall, our view is that much more fundamental knowledge of barrier
mechanisms and development of new experimental methods will be required
before drug targeting to the brain is likely to be a successful endeavor. In
addition, such studies, if applied to brain pathologies such as stroke, trauma, or
multiple sclerosis, will aid in defining the contribution of brain barrier pathology
to these conditions, either causative or secondary.
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Introduction
The term blood-brain barrier has a long history. Its current usage 
describes the structural, physiological, and molecular mechanisms 
that control the exchange (entry and exit) of molecules between the 
blood and the brain. The sum of these mechanisms results in the 
characteristically stable internal environment of the brain, both dur-
ing development and in the adult. This has been an often confused 
and misunderstood field of neuroscience.

The main aim of this review is to explain what is known about brain 
barrier mechanisms and why understanding these mechanisms is 
fundamental to understanding normal brain development and nor-
mal brain function and how disorders of brain barrier mechanisms 
may contribute to a range of neuropathological conditions. We sug-
gest that the neuroscience community should pay more attention to 
this topic and we advocate the need for new researchers to move 
into this intriguing and important field, as major advances in many 
fields have often come from an influx of new people unfettered by 
the prevailing dogmas.

The other focus of this review will be to consider the clinically 
important problem of developing ways to deliver drugs to the brain 
for treating neurological and psychiatric disorders. This has been a 
major effort in the blood-brain barrier field for the past 20–30 years 
but has yielded little of practical value. We list the diverse attempts 
that have been tried, we analyze some of the possible reasons why 
they have been unsuccessful, and we suggest some alternative/new 
approaches to the problem.

What is meant by the term “blood-brain barrier”?
The use of the term “barrier” is in many ways unfortunate1, as for 
those outside the field it disguises the multiplicity of mechanisms 
involved. Perhaps this also explains the almost exclusive focus of 
people interested in pathological conditions involving the blood-
brain barrier on tests of its integrity, largely ignoring until recently 
the numerous cellular mechanisms at the various blood-brain inter-
faces that may be disrupted. Almost all of the early work on the 
blood-brain barrier involved the use of dyes, which could be visual-
ized. This field has recently been reviewed with translations from 
key oft-cited papers published in their original languages showing 
that many of the citations were incorrect2. To set the record straight, 
it was Lena Stern who was the first to coin the term blood-brain 
barrier (“barrière hémato-encéphalique”3) and not, as often cited, 
Ehrlich4, Lewandowsky5, or Goldmann6. The current understanding 
of the term “blood-brain barrier” is that it covers a number of mor-
phological entities and a plethora of cellular transport mechanisms 
both inward and outward, which we next describe briefly.

Morphology of blood-brain barrier interfaces
There are six interfaces to be considered. Figure 1 illustrates their 
sites and main morphological features. An essential component of 
all interfaces with barrier properties is the presence of specialized 
junctions between the cells of the interface. In most of the barri-
ers, these junctions are tight junctions; they restrict the movement 
of molecules between the endothelial and the epithelial cells. As 
a direct consequence of this restriction, the intercellular junctions 
have the important functional effect of allowing the numerous 
transporters within individual cells to operate over the large surface 

of the barrier interfaces; without this permeability restriction, the 
inward and outward transporter mechanisms would be ineffective. 
In recent years, it has become increasingly apparent that there is 
a much greater complexity involved in the structural organiza-
tion of the brain barriers; in the case of the blood-brain barrier 
itself, this includes astrocytes, pericytes, basement membrane, and 
extracellular matrix (Figure 1). However, there is much to be learned 
about the precise role of individual morphological components of 
the brain barriers and their interactions in normal and pathologi-
cal brains7–10. We shall now consider each barrier interface in turn: 
(a) the meningeal barrier, shown in Figure 1(a), is structurally the 
most complex of all the brain barriers and is situated at the menin-
ges (pia, arachnoid, and dura mater). The barrier-forming cells are 
the outer layer of the arachnoid membrane (the arachnoid barrier 
cells), which have tight junctions between adjacent cells forming a 
physical barrier between the outer cerebrospinal fluid (CSF) in the 
subarachnoid space and more superficial dural layers (dural border 
cells and the dura mater). The blood vessels in the subarachnoid 
space have tight junctions with similar barrier characteristics as cer-
ebral blood vessels, although lacking the surrounding pericytes and 
astrocytic end-feet11–13. In contrast, blood vessels within the dura 
mater are fenestrated; other important components of the barrier 
are the basement membrane and glia limitans. (b) The blood-brain 
barrier, shown in Figure 1(b), is situated at the level of cerebral 
blood vessels between the lumen of the vessel and brain paren-
chyma. Tight junctions are present between the endothelial cells 
restricting permeability of the paracellular cleft (11 and Text Box). 
A basement membrane and extracellular matrix14 surround both the 
endothelial cells and the pericytes15,16. End feet from astroglial cells 
progressively encircle cerebral blood vessels during development17. 
These cellular structures are known collectively as the neurovas-
cular unit18. (c) The blood-CSF barrier, shown in Figure 1(c), is 
situated in the choroid plexus within each brain ventricle. In con-
trast to other cerebral blood vessels, the endothelial cells form-
ing choroid plexus blood vessels are fenestrated and do not form 
a barrier. The barrier-forming cells are the epithelial cells, which 
have tight junctions11 at their apical (CSF) side. Choroid plexus 
cells have microvilli on their apical side, increasing their exchange 
surface to the internal CSF. (d) Circumventricular organs, shown 
in Figure 1(d). These include the median eminence, pineal gland, 
area postrema, and subfornical organ. The blood vessels have 
permeability characteristics similar to elsewhere in the body and 
have the functional property of allowing feedback penetration of 
peptide hormones controlled by the hypothalamic-pituitary axis. 
These peptides and other molecules are prevented from entering the 
CSF by tanycytes, the specialized ependymal cells of these brain 
areas, connected by tight junctions between their apices; entry into 
the rest of the brain is prevented by tight junctions between astro-
glial cells19,20. (e) Ependyma in adult brain, shown in Figure 1(e). 
Apart from areas where there are specialized tanycytes, ependymal 
cells are linked by gap junctions that do not restrict exchange of 
even large molecules, such as proteins, between CSF and interstitial 
space of brain11,21. (f) The embryonic CSF-brain barrier, shown in 
Figure 1(f). In the ventricular zone is a temporary barrier between 
the CSF and brain parenchyma21. In early brain development, strap 
junctions are present between adjacent neuroepithelial cells; these 
form a physical barrier restricting the movement of larger mole-
cules, such as proteins, but not smaller molecules22,23. At later stages 
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Figure 1. Schematic diagram (center left) of the five main barrier interfaces (a–e) in the brain and an additional one in the embryo 
(f). The barrier-forming cellular layers at each interface are colored green. (a) The meningeal barrier is structurally the most complex of all 
the brain barriers. Barrier-forming cells are the outer layer of the arachnoid membrane (the arachnoid barrier cells [ABC]); these have tight 
junctions (arrowheads) between adjacent cells forming a barrier between the outer cerebrospinal fluid (o-CSF) in the subarachnoid space 
(SAS) and more superficial dural layers (dural border cells [DBC] and the dura mater). Blood vessels (BV) in the SAS have tight junctions 
with similar barrier characteristics as cerebral blood vessels without surrounding pericytes and astrocytic end-feet11–13. Blood vessels within 
the dura mater are fenestrated (f-BV); bm = basement membrane, gl = glia limitans. (b) The blood-brain barrier is situated at the level of 
cerebral blood vessels (BV). Tight junctions (tj, arrowhead) are present between the endothelial cells (EC) restricting the paracellular cleft 
(11 and Text Box); bm = basement membrane, PC = pericytes, AE = end feet from astroglial cells. (c) The blood-CSF barrier is situated in 
the choroid plexus within each brain ventricle. Barrier-forming cells are the epithelial cells (CPE), which have tight junctions11 at their apical 
side (CSF facing, arrowheads). Blood vessels (BV) are fenestrated and do not form a barrier (arrows); apical microvilli increase exchange 
surface of epithelial cells to the internal CSF (i-CSF). (d) Circumventricular organs (including median eminence, pineal gland, area postrema, 
subfornical organ). Blood vessels have permeability characteristics similar to elsewhere in the body and have the functional property of 
allowing feedback penetration of peptide hormones controlled by the hypothalamic-pituitary axis. These peptides and other molecules are 
prevented from entering the CSF by tanycytes (TC), the specialized ependymal cells of these brain areas, connected by tight junctions 
between their apices (arrowhead); entry into the rest of the brain is prevented by tight junctions between astroglial cells (GC19,20). Away from 
the tanycyte layer, ependymal cells lining the ventricular system are linked by gap junctions that do not hinder free exchange between the CSF 
and brain interstitial fluid (broken arrow). (e) Ependyma in adult brain. Apart from areas where there are specialized tanycytes, ependymal 
cells are linked by gap junctions that do not restrict exchange of even large molecules, such as proteins, between CSF and interstitial space 
of brain (solid arrows). (f) The embryonic CSF-brain barrier. In early brain development, strap junctions (open arrowheads) are present 
between adjacent neuroepithelial cells (NE); these form a barrier restricting the movement of larger molecules, such as proteins, but not 
smaller molecules.
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of development and in the adult brain, these strap junctions are no 
longer present when this interface becomes ependyma.

Transport mechanisms at barrier interfaces
Control of the interstitial ionic environment of the brain
This is absolutely critical for normal function of the brain. As Hugh 
Davson once put it (paraphrased), without this control our sensory 
experience would be limited to a series of flashes and bangs. The 
ionic composition of the interstitial fluid is usually taken to be 
synonymous with the composition of CSF24. This, plus the obvi-
ous practical point that it is relatively easy to sample CSF, has led 
to a focus on CSF and the choroid plexus in both the adult25 and 
the developing26 brain; however, CSF composition generally does 
not reflect blood-brain barrier function (see Text Box). There is 
a good correlation between expression levels of transporters and 
ionic concentrations at different ages, at least in the rat (Figure 2 
and Figure 3).

Influx mechanisms
These have been extensively studied only at the blood-brain bar-
rier itself and at the blood-CSF barrier (choroid plexuses). A limita-
tion of early studies with radiolabeled molecules, such as glucose 
and amino acids, was that it was difficult to distinguish between 
brain entry and incorporation of labeled molecules into metabolic 
pathways. This problem was solved by Oldendorf27 with his short 
pass technique. In general, essential amino acids were transported 
into the brain to a greater extent than non-essential amino acids; 
there was also a high uptake of D-glucose27. The molecular basis 
for these inward transport mechanisms has been extensively inves-
tigated using gene expression techniques to study the blood-brain 
barrier itself28–30 and also the choroid plexuses26,31–33. These studies 
have revealed a plethora of genes, particularly those classed as sol-
ute linked carriers (SLCs)34. These are summarized in Figure 4 for 
transporters identified in both the transcriptome and the proteome in 
human endothelial cells29. Some of these carriers will transport only 
compounds that closely resemble endogenous substrates, as they 
exhibit high substrate specificity (e.g. GLUT1). Many others (e.g. 
organic anion transporters [OATs], OAT polypeptides [OATPs], and 
large amino acid transporter [LAT1]) will accept a broader range of 
substrates; they provide a potential route of entry into the central 
nervous system (CNS) for exogenous compounds. Members of the 
OAT family of solute carriers (SLC) are known to transport a wide 
range of drugs, such as aspirin, ibuprofen, and various antibiotics, 
and pesticides (e.g. 2,4-D-dichlorophenoxyacetic acid [2,4-D]).  
The plant-derived neurotoxin β-N-methylamino-L-alanine (MeAA) 
and the drug L-DOPA both have amino acid structures that allow 
entry via the amino acid transporter LAT1. Some environmen-
tal toxins are also able to gain entry into the CNS by attaching 
themselves to an endogenous substrate to be co-transported; for 
example, methyl-mercury (MeHg) and lead (Pb2+) attached to 
cysteine enter via amino acid transporters specific for this amino 
acid, e.g. SLC1A5 and SLC7A10.

Many more Slc genes have been identified in the transcriptome 
of mouse endothelial cells28. A large number was also identified 
in mouse lateral ventricular choroid plexuses33. For comparison 
between the two interfaces, see 34. It is striking that the expres-
sion of some Slc genes in brain barriers is much higher in the 

developing brain28,35; this correlates with limited information of 
greater transport of some labeled amino acids and glucose into the 
developing brain, suggesting that the high expression levels cor-
relate with transporter function (reviewed in 36). Probably several 
Slcs are responsible for the transport of the same molecules, indi-
cating a significant degree of redundancy.

Efflux mechanisms
Of particular importance in relation to drug entry into the brain, 
or rather the failure of most drugs to enter the brain, are the ABC 
efflux transporters37,38. There are 49 members of the ABC protein 
superfamily (http://nutrigene.4t.com/humanabc.htm). Many of 
these are efflux transporters. At the blood-brain barrier interface 
(Figure 5), the efflux transporters that have been shown to be 
expressed and present and appear to be of particular functional 
importance are ABCB1 (also known as P-glycoprotein [PGP] or 
MDR1) and ABCG2 (breast cancer resistance protein [BCRP]). 
ABCC2 (multidrug resistance protein 2 [MRP2]) and ABCC4 
(MRP4) have also been demonstrated at this interface39. At the 
blood-CSF interface (Figure 5), ABCC1 (multidrug resistance 
protein 1 [MRP1]) appears to be the predominant efflux transporter, 
but ABCC4 (MRP4) and ABCG2 (BCRP) have also been shown to 
be present39,40. In cerebral capillary endothelial cells (blood-brain 
barrier), PGP41–43, BCRP44,45, MRP246, MRP446, and MRP547 are 
localized to the luminal membrane, where they export compounds 
into the blood. In choroid plexus epithelial cells (blood-CSF bar-
rier), MRP1, MRP4, and BCRP are localized to the basolateral 
membranes where they export compounds into the stroma of the 
plexus40,48,49. The subcellular localization of PGP in choroid plexus 
is not clear. Some studies report staining too low to be able to 
determine localization40,48 or positive staining, but localization was 
not able to be determined50,51. Other studies report cytosolic52 or 
subapical localization42. One study has reported apical membrane 
localization in cultured choroid plexus epithelial cells53. A common 
feature of these outwardly directed efflux transporters is a broad 
substrate specificity and considerable overlap between transporters 
(see 54). PGP is unusual in that it intercepts lipid-soluble com-
pounds (red symbols, Figure 5) as they pass through the inter-
nal leaflet of the plasma membrane and returns them to the 
extracellular fluid55, whereas BCRP and the MRPs bind their 
substrates from within the cell cytoplasm. Compounds can be 
exported from the cell by one or more of these efflux pathways. 
For example, a lipid-soluble compound that manages to avoid 
interception by PGP as it passes into the cell may then be metab-
olized by phase I enzymes (e.g. cytochrome P450 oxidases), 
conjugated by phase II enzymes (sulfotransferases [SULTs], 
uridine-diphospho-glucuronosyltransferase [UGT], or glutathione 
S-transferase [GST]), and exported by BCRP and/or MRP.

There are probably species differences in the level of expression and 
function of these various efflux transporters, and it is known that 
their expression changes with age during brain development at both 
interfaces28,35,40,56,57. No doubt with further studies other members 
of this large group of transporters will be found to be functional at 
one or more of the brain barrier interfaces. ABC transporters that 
have been identified at different brain barriers are shown in Figure 5, 
together with an indication of differences in mechanisms of their 
function.
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Figure 2. Transporters and ion channels in choroid plexus epithelial cells. Data for the localization of transporters and ion channels are from 
Damkier et al.25 and Brown et al.96. CSF secretion results from coordinated transport of ions and water from basolateral membrane to cytoplasm, 
then sequentially across apical membrane into ventricles25. The genes for many of these transporters and ion channels are differentially 
expressed in the embryo compared to the adult. This is represented in the three panels. It is emphasized that this represents differential 
expression, not the absence of a gene at one age (details are in 35). On the plasma-facing membrane is parallel Cl-/HCO3

- exchange (AE2 
[Slc4a2] > in adult and AEI [Slc4a1], AE3 [Slc4a3] > in embryo) and Na+/HCO3

- co-transport (NBC1 [Slc4a4] > in embryo) with net function 
bringing Cl- into cells in exchange for HCO3

-97. Also basolaterally located is an Na-dependent Cl-/HCO3
- exchange (NCBE [Slc4a10] > in adult) 

that modulates pH and perhaps CSF formation98. Apical Na+ efflux by NHE5 (Slc9a5 > in embryo) and ATB1 (Atb1b1 [Na+/K+-ATPase] > 
in adult) maintains a low cell Na+ that sets up a favorable basolateral gradient to drive Na+ uptake99. Na+ is extruded into CSF mainly via 
the Na+/K+-ATPase pump (ATB1 [Atb1b1]) and, under some conditions, the Na+/K+-Cl- co-transporter NKCC1, Slc12a2 (see 100 for review). 
Aquaporin (AQP1/3/4) channels on CSF-facing membrane mediate water flux into ventricles101. Polarized distribution of carbonic anhydrase 
(CAR) and Na+/K+-ATPases, and aquaporins, enable net ion and water translocation to CSF (see 100 and 102 for reviews). CLCKA (CLCK1) is 
an inwardly rectifying chloride channel; its gene (Clcnka) in embryonic choroid plexus is expressed many orders of magnitude higher than in 
the adult. Clcnkb is expressed at a higher level in the adult. CAR2 has an intracellular distribution and is functionally important for catalyzing 
the equilibrium that generates H+ and HCO3

-, which is an important part of the mechanism secreting CSF. There are many more channels that 
show age-related differential expression in choroid plexus, the functions of which are unclear26.
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Figure 3. Ion gradients between CSF and plasma in developing and adult rat brain. A characteristic of CSF is its stable ionic composition 
that differs from that of plasma to an extent that cannot be explained by ultrafiltration, as was once thought24. Data for CSF and plasma 
(m-equiv/L water) are from 103 and for intracellular ions (mmol/L water) from Figure 8 in 104. The gradients are the consequence of the 
complex interactions between enzymes (notably carbonic anhydrase) ion transporters and ion channels, as illustrated in Figure 2. The CSF 
secretion rate in the embryo and newborn is much lower than in the adult105–107, which is perhaps explained by the much lower expression of 
carbonic anhydrase and ATPases in the developing choroid plexus. 

Figure 4. Summary of inward transporter mechanisms in cerebral endothelial cells. Individual transporters shown are ones identified in 
human material29. Tight junctions (tj) between adjacent cells prevent the paracellular passage of hydrophilic compounds. R-M = receptor-
mediated, GLUT = glucose transporters, NTs = nucleoside transporters, AAs = amino acid transporters (includes LAT), OATP = organic anion 
transporting polypeptides, OAT = organic anion transporters, OCT = organic cation transporters, MCT = monocarboxylate transporters, 
FATP = fatty acid transport protein. Many of these transporters are solute linked carriers (SLCs). Both SLC designations and the original 
abbreviations are included here. SLC1A2/EAAT2, SLC1A3/EAAT1 high-affinity glutamate, SLC1A4/ASCT1 glutamate/neutral amino acids, 
SLC2A1/GLUT1, SLC2A3,14/GLUT3 glucose, SLC3A2/4F2hc amino acid transporter heavy chain, SLC6A12/BGT1 neurotransmitter, 
SLC7A1/CAT1 cationic amino acid, y+ system, SLC7A5/LAT1 amino acid light chain, L system, SLC10A1/NTCP sodium/bile acid cotransporter. 
SLC16A1/MCT1, SLC16A2/MCT8 monocarboxylates, SLC19A1/RFC folate, SLC22A1/OCT1 organic cations, SLC22A3/OCTN3 organic 
cations, SLC22A5/OCTN2 organic cation/carnitine, SLC27A1/FATP1 fatty acid, SLC29A1/ENT1 equilibrative nucleosides, SLCO2B1/OATP2B1 
organic anions, SLCO1B1/OATP1B1 organic anions. Examples of receptor-mediated transporters are insulin receptor (INSR), transferrin 
receptor (TFR1), leptin receptor (LEPR), low-density lipoprotein receptor (LDLR), and insulin-like growth factor receptor (IGFR).
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Figure 5. Efflux pathways in barrier-forming cells. The main efflux transporters at the blood-brain and blood-CSF interfaces are 
P-glycoprotein (PGP, MDR1, ABCB1), breast cancer resistance protein (BCRP, ABCG2), and several members of the multidrug resistance 
protein subfamily (MRP1 ABCC1, MRP2 ABCC2, MRP4 ABCC4, MRP5 ABCC5). In cerebral capillary endothelial cells (blood-brain barrier), 
PGP41–43, BCRP44,45, MRP246, MRP446, and MRP547 are localized to the luminal membrane where they export compounds into the blood. In 
choroid plexus epithelial cells (blood-CSF barrier), MRP1, MRP4, and BCRP are localized to the basolateral membranes where they export 
compounds into the stroma of the plexus40,48,49. The subcellular localization of PGP in choroid plexus is not clear. Some studies report 
staining too low to be able to determine localization40,48 or positive staining, but localization was not able to be determined50,51. Other studies 
report cytosolic52 or subapical localization42. One study has reported apical membrane localization in cultured choroid plexus epithelial 
cells53. A common feature of these outwardly directed efflux transporters is a broad substrate specificity and considerable overlap between 
transporters (see 54). PGP is unusual in that it intercepts lipid-soluble compounds (red symbols) as they pass through the internal leaflet of 
the plasma membrane and returns them to the extracellular fluid55, whereas BCRP and the MRPs bind their substrates from within the cell 
cytoplasm. Compounds can be exported from the cell by one or more of these efflux pathways. For example, a lipid-soluble compound 
that manages to avoid interception by PGP as it passes into the cell may then be metabolized by phase I enzymes (e.g. cytochrome P450 
oxidases), conjugated by phase II enzymes (sulfotransferases [SULTs], uridine-diphospho-glucuronosyltransferase [UGT], or glutathione 
S-transferase [GST]), and exported by BCRP and/or MRP.
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Some dogmas and controversies

Dogmas And Controversies In Brain Barriers Biology

FACT CHECK

(i) The blood-brain barrier in the embryo and newborn is absent or “leaky”. Incorrect. Widely believed and stated, usually without 
experimental basis and in spite of much evidence to the contrary2.

(ii) Induction of tight junctions in early brain development depends on astrocytes. Incorrect. Functionally effective tight junctions are 
present well before the differentiation of astrocytes15,117.

(iii) The paracellular pathway (intercellular space) in blood-brain barrier and choroid plexuses is the route for water, small molecules, 
and ion exchange between blood, brain, and cerebrospinal fluid (CSF). Most likely not correct. It is based on transepithelial 
resistance measurements118 with no direct evidence, as water, ions (e.g. Na+), and small lipid-insoluble molecules (e.g. sucrose) 
cannot yet be visualized with sufficient resolution. Recent methods using visualizable, similar small molecules have shown transfer 
through epithelial cells of choroid plexus and not via paracellular pathway119. Other limitations of Frömter & Diamond118 are discussed 
in Ek et al.119.

(iv) Increased penetration of molecules into brain parenchyma in pathological conditions is due to the breakdown of tight junctions at 
the barrier interfaces. Probably not correct in many cases. Most studies do not use electron microscopy (EM) required to define state 
of tight junctions. Evidence is emerging that in e.g. stroke, tight junctions are intact and transfer may be intracellular across cells 
forming the barrier (e.g. Krueger et al.120); some studies have shown ultrastructural changes in both cellular constituents and tight 
junctions121. In addition, regulation of various transporters may change in some pathologies122,123.

(v) Evans blue binds tightly and specifically to plasma albumin and can be used to measure penetration of albumin into brain in 
barrier dysfunction. Incorrect. Evans blue binds to multiple proteins in plasma and to cells and tissues in reversible equilibrium124.

(vi) Lack of lymphatics in brain. Incorrect. Evidence going back many years suggesting drainage pathway via cervical lymphatics is 
now supported by evidence from 2-photon microscopical studies125.

(vii) Brain extracellular space (ECS) volume. Controversial. Decades-long discrepancy between EM measurements (negligible ECS) 
and physiological measurements (approx. 15%) has been resolved by cryo-fixation-EM126. Important for interpretation of blood-brain 
barrier transfer studies.

(vii) Concentration of markers in the CSF is a measure of blood-brain barrier permeability. Untrue. Commonly used, especially in 
human studies, but is misleading because concentration of any molecule in the CSF does not necessarily reflect transfer across the 
blood-brain barrier127 and is influenced by its transfer through blood/CSF barrier and only indirectly and variably via the blood-brain 
barrier128; also CSF drainage, uptake into the brain across ependyma24, and possibly lymphatic drainage125 all influence levels in the 
CSF.

(viii) The brain is a site of immune privilege. Recent findings of a functional and classical lymphatic system suggest this concept 
needs further study129.

Drug targeting to the central nervous system
This has been a major field of endeavor over the past 20–30 years. 
It has been largely unsuccessful in that few of the proposed methods 
appear to have been independently replicated, and we are not aware 
of any neuropharmaceutical drugs that have been identified using 
these methods. There are several comprehensive reviews of the 
methods that have been developed58–60. Here, we provide only a list 
of these methods (Table 1), with some observations on their limita-
tions. We deal in more detail with methods designed to allow entry 
of drugs into the brain by disruption of the blood-brain barrier. This 
is the only method of drug delivery that has translated to clinical 
practice, albeit on a limited basis. Newer, more focal methods hold 
promise of significant advances using this approach.

The following drug delivery approaches have been tried:

(i) In vitro blood-brain or blood-CSF barrier models (see reviews 
in 61–64)

The hallmarks of success of such systems are generally held to be 
a high transendothelial resistance (TEER) and limited permeability 
to barrier integrity markers such as 14C-sucrose64. The only in vivo 
TEER values that have been measured are for pial blood vessels65. 

It is unclear whether these reflect the properties of vessels within 
the brain. The type of endothelial cells isolated in preparation of the 
cultures is often not clear66. But perhaps the biggest limitation of 
these systems is that few attempts have been made to characterize at 
the molecular level the barrier and transport properties in vitro com-
pared to those in vivo. This would seem to be particularly impor-
tant given the propensity for cells to transform in culture. Where 
attempts have been made, the extent to which the in vivo properties 
are retained is limited67.

(ii) Receptor-mediated and adsorptive-mediated transcytosis (see 
Table 1)

Lajoie and Shusta60 review a number of more recent developments 
using alternative targets on cerebral endothelial cells, but it is too 
soon to tell whether these will be more successful than earlier 
developed methods.

(iii) Influx transporters

As indicated above, there are numerous influx transporters in brain 
endothelial cells. In the case of only a few, it has been possible to 
use these to achieve penetration of a therapeutic compound into the 
brain. The best known, and one of the earliest to be described, is 
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L-DOPA for the treatment of Parkinson’s disease, e.g. 68. Its intro-
duction transformed the treatment of this condition, but, after pro-
longed experience, it is clear that it has serious clinical limitations.

(iv) Inhibition of efflux transporters (see above, 69, and Table 1)

The number of ABC transporters that have been shown to be func-
tionally effective at the blood-brain barrier is only a small propor-
tion of the known total of 49. A huge number of drugs and other 
xenobiotics are excluded from the brain70, which explains the lack 
of specificity of ABC transporters. Unless some way could be found 
to limit the effect of the inhibitor to cerebral endothelial cells, and 
preferably only those in the neurological target area of the brain, 
this is unlikely to be a viable method of promoting drug entry to 
the brain.

(v) Modulation of integrity of the blood-brain barrier

Three methods have been tried − osmotic opening, ultrasound, and 
electrical stimulation (Table 2).

Reversible osmotic opening of the blood-brain barrier was first 
demonstrated in animals by Rapoport et al.71 using a variety of 
hypertonic electrolyte and non-electrolyte solutions. Brightman 
et al.72 showed that barrier opening to horseradish peroxidase was 
due to opening of cerebral vessel tight junctions. Since 1979, Neu-
welt has pioneered the use of osmotic opening of the blood-brain 
barrier as a means of delivering chemotherapeutic agents to treat 
brain tumors73. He has built up an impressive array of animal and 
patient imaging techniques, which allowed careful evaluation of the 
use of hypertonic solutions to open the barrier under well-controlled, 
carefully monitored conditions and to develop methods for mitigat-
ing some of the potentially devastating side effects74,75. Reversible 

osmotic opening of the blood-brain barrier is the only technique 
for improving drug delivery to the brain that has successfully 
translated to the clinic. It is not widely used, probably because it 
requires repeated hospital admissions and general anesthesia, as 
well as being associated with increased risk of stroke and epileptic 
seizures76 and other surgical and neurological problems75.

Focused ultrasound disruption of the blood-brain barrier in labora-
tory animals was first investigated in the 1950s77. In that study and 
in subsequent ones, it was necessary to perform a craniectomy in 
order to achieve sufficient ultrasound energy to produce effects in 
the brain (e.g. 78). A major advance was to combine intravenous 
injection of gas bubbles, previously developed as a contrast agent 
for ultrasound imaging, with focused ultrasound79; this reduced the 
ultrasound power required to disrupt the blood-brain barrier and 
was shown to be effective through the intact skull in rabbits. Sub-
sequent studies have evaluated the safety of the procedure80, effects 
of different anesthetic agents80, and feasibility in large animals81. 
The mechanism of the interaction between the micro-bubbles and 
the focused ultrasound beam is unclear. Several possibilities are 
discussed by Burgess and Hynynen82 and by Timbie et al.83. The 
advantages of this approach compared to osmotic disruption of the 
blood-brain barrier are that (a) it is non-invasive (does not require 
craniotomy), (b) it can be targeted to a specific lesion, e.g. tumor, 
or region of neurological disorder such as the basal ganglia in 
Parkinson’s disease, (c) it is transient, although the estimates of 
duration barrier opening have varied from 6 to 24 hours in different 
studies, and (d) under well-defined conditions of ultrasound param-
eters, there appears to be no evidence of ischemia, apoptosis, or cog-
nitive dysfunction (tested in primates82). Investigations so far have 
concentrated on the mechanical disruptive effects of the method, 
but studies are needed to investigate possible effects on cellular 

Table 1. Drug targeting to the central nervous system.

Method & Key 
References

Rationale Limitations

In vitro barrier systems61–64 Potential for high-throughput 
screening

In vitro transformation of cell properties. Only 
limited gene expression of in vivo characteristics

Receptor- or adsorptive-
mediated transcytosis60,108

Uses known receptors (e.g. Tf, 
insulin) & cellular mechanisms

Not restricted to brain; only about 15% reaches 
brain. Limited capacity

Influx transporters

SLC transporters109 Naturally occurring transporters 
that also transport wide range 
of drugs

Many of the transporters are ubiquitously 
expressed, widespread effects likely. Limited 
transport capacity. Drugs may also be substrates 
for ABC efflux transporters

Efflux transporters

Inhibition of efflux 
transporters110

ABC transporters are major 
reason for drugs not reaching 
brain

Not restricted to brain, widespread side effects 
likely from both drug entry into other organs and 
entry of other xenobiotics that may be present

Modulation of  integrity of  the blood-brain barrier

See Table 2

Bypassing the barriers

Convection-enhanced 
delivery111

Localized delivery to site of 
pathology

Invasive. Potential damaging effect not yet fully 
evaluated

Injection into CSF112 Bypasses barriers Invasive, requires repeated administration or 
infusion, not targeted to sites of pathology
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transport across cerebral endothelial cells84. Also, it needs to be 
considered whether the effects might be different in pathological 
brains.

What next?
The concentration in the past 25 years on developing in vitro 
systems for testing barrier permeability to drugs and the various 
drug delivery methods outlined above has been at the expense of 
fundamental research aimed at better understanding of brain bar-
rier mechanisms. We list here some major questions, the answers 
to which might aid the development of more effective drug deliv-
ery strategies as well as our understanding of the involvement 
of brain barrier mechanisms in a wide range of neuropsychiatric 
conditions.

(i) Different approaches to drug development

Given the overwhelming importance of efflux transporters in 
excluding drugs from the brain, we need better understanding of 
the molecular nature of their mechanism(s) of action, as this would 
allow the development of drugs that evade these mechanisms. 
However, there would still be a need to develop ways of target-
ing the drugs not just to the cerebral vasculature but also to spe-
cific brain regions. This might come from better knowledge of the 
molecular characteristics of cerebral endothelial and peripheral 
endothelial cells as well as identifying such differences in different 
brain regions, as suggested by Pachter’s work66,85.

(ii) Rapid high-throughput screening of drugs with potential for 
neurotherapeutic treatments

In the past, most such drugs have been developed in vitro but failed 
as useful agents in vivo because of inability to cross the blood- 
brain barrier86. Two plausible approaches, on which a start has 
been made, are (a) to use in initial screens organisms that are eas-
ily available in large numbers, e.g. flies87,88 and zebrafish89,90. These 
organisms utilize ABC efflux transporters as in mammals, although 
the morphological sites at which they function are different in 
invertebrates87 and the actual ABC transporters that are function-
ally important may be different in different species. Also, (b) we 
require a better understanding of the ABC transporters in human 
brain barriers (adult and developing) and their level of function. 

It should then be possible to devise appropriate cell-based screens 
using fluorophore-tagged drugs and competitors91.

(iii) What is the risk to the developing brain of drugs administered 
to pregnant women?

As indicated above, several ABC transporters are expressed at high 
levels in embryonic brain both in blood vessels and in the choroid 
plexuses28,35. However, it is uncertain if expression levels can be 
equated to functional exclusion of drugs from the brain. If this 
can be shown, then coupled with similar transporter activity in the 
placenta, this suggests that the developing brain may be much better 
protected than is implied by the discredited but still current dogma 
that the blood-brain barrier in the embryo is unformed or “leaky” 
(see Text Box). Nevertheless, the loss of the placental protection in 
prematurely born infants may mean that they are more vulnerable to 
the ill effects of drugs than their full-term counterparts.

(iv) Involvement of barrier mechanism in brain disorders

The literature on possible involvement of blood-brain barrier 
mechanisms is too extensive to cover in this review. Recent papers 
describing different aspects of the pathobiology of brain barrier 
mechanisms are 92, which is particularly comprehensive, and 
69,93–95. For decades, the focus has been on dysfunction defined 
by supposed disruption of the blood-brain barrier often defined with 
unsuitable markers (see Text Box). Only comparatively recently has 
attention turned to the possibility that transporter dysfunction may 
be involved. It is usually unclear whether barrier dysfunction is a 
cause or a consequence of a particular neurological disorder. This is 
an area in which further research with modern technology is likely 
to be fruitful.

Competing interests
The authors state that there are no conflicts of interest in the 
authorship of this review.

Grant information
The author(s) declared that no grants were involved in supporting 
this work.

Table 2. Modulation of integrity of blood-brain barrier as method of drug delivery to the brain.

Method and Key References Level of Preclinical 
Evaluation

Invasive In Clinical Use

Reversible osmotic opening73–76 Substantial Yes Yes, in small 
number of centers

Focused ultrasound + micro-bubbles79,81,83,84 Substantial No No

Electrical stimulation

Non-thermal electroporation76 Limited Yes No

Pulsed electromagnetic stimulation113

Sphenopalatine ganglion stimulation114,115 Limited Yes No

Electric field application116 Limited No No

Convection-enhanced delivery111 Limited Yes No
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