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A B S T R A C T   

Background: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for 
estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging 
(PWI) adds time and expense to the acute stroke imaging workup. We explored whether a deep convolutional 
neural network (DCNN) model trained with diffusion-weighted imaging obtained at admission could predict final 
infarct volume and location in acute stroke patients. 
Methods: In 445 patients, we trained and validated an attention-gated (AG) DCNN to predict final infarcts as 
delineated on follow-up studies obtained 3 to 7 days after stroke. The input channels consisted of MR diffusion- 
weighted imaging (DWI), apparent diffusion coefficients (ADC) maps, and thresholded ADC maps with values 
less than 620 × 10− 6 mm2/s, while the output was a voxel-by-voxel probability map of tissue infarction. We 
evaluated performance of the model using the area under the receiver-operator characteristic curve (AUC), the 
Dice similarity coefficient (DSC), absolute lesion volume error, and the concordance correlation coefficient (ρc) of 
the predicted and true infarct volumes. 
Results: The model obtained a median AUC of 0.91 (IQR: 0.84–0.96). After thresholding at an infarction prob-
ability of 0.5, the median sensitivity and specificity were 0.60 (IQR: 0.16–0.84) and 0.97 (IQR: 0.93–0.99), 
respectively, while the median DSC and absolute volume error were 0.50 (IQR: 0.17–0.66) and 27 ml (IQR: 7–60 
ml), respectively. The model’s predicted lesion volumes showed high correlation with ground truth volumes (ρc 
= 0.73, p < 0.01). 
Conclusion: An AG-DCNN using diffusion information alone upon admission was able to predict infarct volumes 
at 3–7 days after stroke onset with comparable accuracy to models that consider both DWI and PWI. This may 
enable treatment decisions to be made with shorter stroke imaging protocols.   

1. Introduction 

Since time is a key factor affecting outcomes after treatment in acute 
ischemic stroke (AIS), patients should be imaged and treated as quickly 
as possible. Currently, the diffusion-perfusion mismatch paradigm is a 
commonly used method for triaging patients to endovascular treatment 
(Nighoghossian et al., 2003), with perfusion-weighted imaging (PWI) 
giving information about tissue at risk of infarction in the absence of 
reperfusion. Unlike diffusion weighted imaging (DWI), the patient 

preparation, scanning, and post-processing procedures for PWI are 
relatively time-consuming. In addition, the injection of the contrast 
agent can cause complications for patients with advanced kidney 
dysfunction (High et al., 2007; Kuo et al., 2007). Accordingly, prediction 
of final infarct volume using only DWI acquired at stroke onset has the 
potential to save time and minimize the cost and complications related 
to contrast agent injection. 

Recently, there has been an increase in research activity surrounding 
lesion prediction using machine learning (ML) and deep learning (DL) 
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(Gillmann et al., 2021; Hakim et al., 2021; Kijowski et al., 2020; Pinto 
et al., 2018; Yu et al., 2020). Deep convolutional neural networks 
(DCNNs) have outperformed other algorithms in a variety of medical 
image analyses, including stroke lesion segmentation and prediction 
with multi-modal magnetic resonance imaging (MRI) (Bernal et al., 
2019; Cheng et al., 2017; Choi et al., 2016; Karthik et al., 2019; Pinto 
et al., 2018; Xue et al., 2020; Yu et al., 2021, 2020). More specifically, 
previous studies have predicted final infarct volume from either baseline 
CT perfusion (CTP) or DWI and PWI. Lucas et al. applied a U-Net CNN to 
the baseline CTP and reported a Dice similarity coefficient (DSC) of 0.46 
(Lucas et al., 2018). Robben et al. deployed a CNN with four input 
channels including 3D CTP, down-sampled CTP, arterial input function 
(AIF, time), and metadata. They reported a DSC of 0.48 (Robben et al., 
2020). Choi and colleagues deployed an ensemble of 3D multiscale re-
sidual U-Nets and a fully convolutional network which took DWI and 
PWI as input channels (Choi et al., 2016). Their model resulted in a DSC 
of 0.31. Pinto et al. developed a combined model of MR images (DWI 
and PWI) and clinical information for stroke lesion outcome prediction 
(Pinto et al., 2018), reporting a DSC of 0.35. Yu et al. also tried to predict 
the final ischemic stroke lesions from initial MRI (DWI and PWI) using 
an attention-gated U-Net that led to a DSC of 0.53 (Yu et al., 2020). 

Given the relative challenge of acquiring and processing PWI or CTP, 
we endeavored to determine whether it would be possible to estimate 
final lesion size from admission DWI only. If true, this could streamline 
the acute stroke imaging workup and yield insights that might be 

valuable for patient triage. To our knowledge, no prior studies have 
attempted to predict final infarct segmentations from only baseline DWI, 
which is the fundamental novelty of this paper. 

2. Materials and methods 

2.1. Study population 

In this study, a total of 520 patients were reviewed from a single 
center registry (158 cases from the University of California, Los Angeles 
[UCLA]), and three clinical trials (117 cases from imaging Collaterals in 
Acute Stroke [iCAS] (Thamm et al., 2019; Zaharchuk et al., 2015), 60 
cases from Diffusion and Perfusion Imaging Evaluation for Under-
standing Stroke Evolution [DEFUSE] (Ogata et al., 2013), and 110 cases 
from DEFUSE-2 (Lansberg et al., 2012)). All trial patients signed written 
informed consent, while the UCLA Institutional Review Board approved 
the stroke registry for retrospective data analysis. More detailed inclu-
sion and exclusion criteria of the trials can be found in Lansberg et al. 
(2012), Thamm et al. (2019), and Zaharchuk et al. (2015). After 
excluding patients without confirmed anterior circulation stroke or lack 
of follow-up imaging in the 3 to 7 days period, we were left with an 
analysis cohort of 445 patients (see Fig. 1 for a flow chart of patient 
inclusion). For DEFUSE and DEFUSE-2, the patients’ baseline scans were 
obtained within 12 h from stroke onset, while for iCAS, imaging was 
obtained within 24 h after stroke onset. In the UCLA dataset, the 

Fig. 1. Flow diagram of the study.  
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majority of patients had their baseline images within 6 h, but there were 
a few with missing data points. More detail on the cohorts can be found 
in Table 1. 

2.2. Imaging protocol 

All the subjects of this study underwent baseline DWI according to 
the specific site’s protocol. These were obtained on both 1.5 T and 3 T 
scanners, including all major vendors, with echo-planar imaging using a 
range of standard clinical parameters (TR 4000–10000 ms, TE 70–107 
ms, slice thickness 3–5 mm, FoV 20–24 cm, b = 1000 s/mm2). Three to 
seven days after stroke onset, DWI or T2-weighted fluid-attenuated 
inversion recovery (FLAIR) images were obtained. The ground truth 
(GT) final infarct lesions were segmented on the follow-up DWI or FLAIR 
by a neuroradiologist who was blinded to all clinical information. 

2.3. Image analysis and preprocessing 

All images of this study were co-registered and spatially normalized 
to Montreal Neurological Institute (MNI) template space using SPM12 
software (Statistical Parametric Mapping, The Wellcome Trust Centre 
for Neuroimaging). Spatial normalization accelerates the model training 
since the model does not require learning the brain structure and 
orientation of the individuals. For the intensity normalization of the DWI 
and apparent diffusion coefficient (ADC) images, first, all the back-
ground (non-brain) pixels were set to zero. Then, using these voxels, 

mean normalization was performed. To preserve important quantitative 
information on ADC images, a binary mask was created of voxels with 
ADC values less than 620 × 10− 6 mm2/s using simple threshold filtering. 

2.4. Neural network 

The architecture of the DCNN was a 3D attention gated (AG) U-net 
with ReLU activation function and ADAM optimizer (Kingma and Ba, 
2014). AGs highlight the relevant features of the target and suppress the 

irrelevant features of the background (Oktay et al., 2018). AGs proven to 
be specifically useful for the prediction of small abnormalities such as 
tumors and necrosis (Mathews and Mohamed, 2022). The model had 14 
convolutional layers (3x3) with ReLU activation functions followed by a 
final convolutional layer with a sigmoid activation function to obtain the 
probability values. Literature on the ISLES 2018 challenge (Hakim et al., 
2021) revealed that application of a hybrid loss function including Dice 
loss and weighted binary cross-entropy results in better performance 
and stability of the model. According to our previous experience adding 
volume loss to the hybrid loss function further improves the volume 
prediction in stroke lesions (Yu et al., 2020). 

Thus, we used a combination of four loss functions in the model: 
weighted binary cross-entropy, mean absolute error (L1 loss), Dice 
similarity coefficient (DSC), and volume loss. Weighted binary cross- 
entropy balances the positive and negative voxels in the brain, since 
stroke lesions are only present in a relatively small number of the overall 
brain image voxels. The weights for positive and negative voxels were 
determined based on the positive and negative ratio of the voxels across 
each training batch. Where N– and N+ are the number of negative and 
positive voxels per batch respectively. 

R0 =
1

N−

N+
+ 1  

R1 = 1 − R0   

pi is the predicted probability and yi is the ground truth value for the i 
th voxel (0 = no infarct, 1 = infarct). N is the total number of voxels. 

L1 loss =
∑N

i=0

⃒
⃒
⃒
⃒
⃒
yi − pi

⃒
⃒
⃒
⃒
⃒

Dice loss = 1 −
2NTP

2NTP + NFP + NFN 

Table 1 
Clinical data in all patinets and reperfusion groups.  

Demographic Reperfusion Status 

All 
(N = 445) 

Major 
(N = 180) 

Partial 
(N = 89) 

Minimal 
(N = 81) 

Unknown 
(N = 95) 

Male, number (%) 222 (50) 84 (46) 40 (45) 42 (51) 56 (58) 
Age, mean (SD) 67 (15) 69 (15) 73 (14) 66 (16) 66 (13) 
Hypertension, number (%) 305 (68) 121 (67) 62 (69) 57 (70) 65 (68) 
Diabetes, number (%) 115 (26) 48 (26) 22 (25) 21 (26) 24 (25) 
Dyslipidemia, number (%) 170 (38) 65 (36) 39(43) 34 (42) 32(24) 
Atrial fibrilation, number (%) 137 (31) 64 (35) 35 (39) 18 (22) 20 (21) 
Treatment methods, number (%) 

IV tPA only 
Direct thrombectomy 
Bridging therpy 
No treatment 

169  
(38)124  
(28)123  
(28)29  
(6) 

55  
(31)58  
(32)63  
(35)4  
(2) 

35  
(39)26  
(29)24  
(27)4  
(5) 

38  
(47)14  
(17)16  
(20)13  
(16) 

41  
(43)20  
(21)26  
(28)8 
(8) 

Onset to treatment time, hr, median (IQR) 6.2 (4.7–8.7) 5.9 (4.6–9.4) 5.5 (3.8–7.5) 6.2 (4.4–8.3) 6.8 (5.4–9.4) 
Baseline lesion core, mL, median (IQR) 15 (3–39) 12 (3–28) 24 (10–62) 22 (5–66) 8 (0–35) 
Baseline NIHSS, median (IQR) 13 (8–19) 14 (8–19) 16 (11–19) 13(9–18) 10 (5–15) 
Symptomatic hemorrhage 158 (35) 64 (35) 46 (51) 22 (27) 26 (27) 
Reperfusion rate, median (%) 81 (26–100) 100 (93–100) 54 (37–69) − 16 (-44–6)  
Final infarct volume, mL, median (IQR) 50 (15–123) 30 (11–73) 107 (47–186) 80 (31–225) 38 (4–101) 
90-day mRS 3 (1–4) 2(1–3) 4(2–5) 3(1–4) 3(1–4)  

Weighted binary cross entropy = −
1
N
∑N

i=0
R1 yi log (pi) +R0 (1 − yi) log (1 − pi)
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NTP,NFP, andNFN represent the number of true positives, false positive, 
and false negative respectively. The volume loss was calculated as ab-
solute sum of the difference between the predicted and true values, 
divided by the total number of voxels. 

Volume loss =
⃒
⃒
∑N

i=0pi −
∑N

i=0yi
⃒
⃒

N+

When combining the loss functions, we assigned a weight of 0.5 to 
DSC loss and volume loss since these two loss functions penalize the 
weights of the DCNN model for the same parameter. By assigning an 
index of 0.5 to these two loss functions, they were adjusted to the same 
scale as the weighted cross-entropy loss and the L1 loss. 

Loss = Weighted binary cross entropy+ L1 loss+ 0.5 × DSC loss+ 0.5

× Volume loss 

The network received 3 input channels; DWI, ADC, and thresholded 
ADC. We also examined the performance of the network when only DWI 
or ADC (but not both) were used as inputs. The model was trained over 
80 epochs with a batch size of 32 and learning rate of 0.0005. Dropout 
ratio of 0.25 was used in our network to reduce overfitting and to speed 
up training (Srivastava et al., 2014). For data augmentation, images 
were mirrored around the midline. The goal was to predict the binary 
masks of the final infarct lesions delineated on the 3–7 day follow-up 
images. The model’s output was a probability map of voxel values 
ranging from 0 to 1 with values close to 1 indicating a higher probability 
that the voxel is part of the final infarct. We applied a threshold of 0.5 to 
classify the voxels into either lesion or non-lesion tissue. More detail 
about the network architecture can be found in Fig. 2. 

2.5. Performance evaluation 

To utilize all available data and to test the generalizability of the 
model performance across all subjects, five-fold cross-validation (CV) 
was performed so that in each iteration the model was trained on 4 folds 
and tested on the fifth fold (see Supplementary Materials for a break-
down of the different trials into the 5 different folds). No patients were 
simultaneously in the training and test sets. To measure the ability of the 
model to distinguish infarct from non-infarcted regions, area under the 
curve (AUC) was calculated. AUC has a range between 0 and 1 with 
higher values showing better performance of the network in dis-
tinguishing the classes, in this case, infarcted vs non-infarcted tissue. 
Using a probability threshold of 0.5, we calculated sensitivity, speci-
ficity, DSC, volume error, absolute volume error, and Youden index. DSC 
was calculated as: 

Dice similarity coefficient =
2NTP

2NTP + NFP + NFN 

DSC has a range of 0 to 1 with higher DSC values corresponding to a 
better overlap of the two segmentations. Lesion volume error and ab-
solute lesion volume error were calculated as the difference and absolute 
difference between the volumes of the predicted lesion and the ground 
truth lesion. Youden index (sensitivity + specificity –1) is a statistic that 
reports on the performance of a dichotomous test, ranging from 0 (no 
value) to 1 (perfect prediction). 

After five-fold cross-validating the model across the whole dataset, 
we analyzed its performance once across all subjects and once across 
patient subgroups based on their documented reperfusion status at 24 h 
following stroke, which was assessed using the reperfusion rate (Bivard 
et al., 2013; Yu et al., 2020), defined as: 

Reperfusion Rate = 100 × 1 −
Tmax24hr > 6 seconds lesion

Tmaxbaseline > 6 seconds lesion  

where Tmax represents the time to the peak of the residue function as 
measured by PWI (RAPID, Ischemaview, Redwood City, CA, USA). A 
reperfusion rate of > 80 % was considered as major reperfusion, > 20 % 
and < 80 % as partial reperfusion, and < 20 % as minimal (Bivard et al., 
2013). Patients with missing follow-up reperfusion status were catego-
rized as “unknown”. 

We further analyzed the model performance in subgroups based on 
the time interval between the stroke onset to treatment with tissue 
plasminogen activator (t-PA) and stroke onset to imaging. In this anal-
ysis, the median of the time intervals was considered as the cut-off value 
to create two groups of short-time period and long-time periods for each 
paradigm. Finally, while the primary analysis focused on a probability 
threshold of 0.5, performance was also evaluated with other thresholds 
ranging between 0.1 and 0.9. 

2.6. Statistical analysis 

The statistical analyses of this study were performed in Python 3.7.0, 
using Scipy package (1.5.1) (Virtanen et al., 2020). For the comparison 
of DSC and absolute volume error between different reperfusion groups, 
the Kruskal-Wallis equality of populations rank test was performed. 
Paired-sample Wilcoxon tests were performed to compare the perfor-
mance of the deep learning model and a simple ADC thresholding model, 
where final infarct was considered to be tissue with ADC < 620 × 10− 6 

s/mm2 at baseline. In this comparison, we examined whether the per-
formance of the proposed model was better than a simple model that 
only considered baseline abnormal DWI as the final infarct. 

Fig. 2. The block diagram of the attention-gated U-net, as well as the network’s input and output.  
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Concordance correlation coefficient (ρc) and Bland-Altman plots were 
used to analyze the relationship of the lesion volumes predicted by the 
neural network and the ground truth. To analyze the relationship be-
tween the model performance in terms of DSC and the baseline lesion 
volume size, the Spearman correlation coefficient was calculated. We 
also evaluated model performance based on reperfusion status and on 
ground truth lesion size. All tests were two-sided, and after Bonferroni 
correction for multiple comparisons (n = 7) in reperfusion groups, a p- 
value of less than or equal to 0.007 was considered as statistically 
significant. 

3. Results 

The evaluation metrics of the DCNN model including AUC, sensi-
tivity, specificity, Youden Index, DSC, volume error, and absolute vol-
ume error are summarized in Table 2 for all the subjects and in 
subgroups. The DCNN model showed a median AUC of 0.91 (IQR: 
0.84–0.96). Using a probability threshold of 0.5, median sensitivity, 
specificity, and Youden Index were 0.60 (IQR: 0.16–0.84), 0.97 (IQR: 
0.93–0.99), and 0.50 (IQR: 0.21–0.70) respectively. Comparing the 
predicted lesions to the ground truth resulted in a median DSC of 0.50 
(IQR: 0.17–0.66), volume error of 0 ml (IQR: − 22 to 30 ml), and an 
absolute volume error of 27 ml (IQR: 7–60 ml) (Table 2). Subgroup 
analysis of the results based on the time interval between the stroke 
onset and t-PA, and the time between stroke onset and imaging did not 
reveal any significant differences (see Supplementary Materials). The 
model performance using different probability thresholds ranging from 
0.1 to 0.9 are summarized in Table 3. 

The DCNN model predicted the final stroke lesions significantly 
better than the simple ADC thresholding method, with a median DSC of 
0.50 compared to 0.18 (p < 0.01). Similar findings were seen for 

absolute volume error, with a median absolute volume error of 27 ml 
compared to 64 ml, p < 0.01) (Table 4). Examples of final lesion pre-
diction using the DCNN model and simple thresholding model are 
illustrated in Fig. 3. 

The volumes predicted by the model showed a high correlation of 
0.73 with the ground truth lesion volumes (p < 0.001) (Fig. 4). Direct 
comparison of the model outputs and ground truth was performed using 
Bland-Altman plot with 95 % limits of agreement (Fig. 5), with bias close 
to zero except for the minimal reperfusion group, where a bias of 
approximately 20 ml was seen. Finally, as shown in Fig. 6, there was a 
strong correlation between the model accuracy and lesion size (ρ = 0.64, 
p < 0.01). 

In 43 cases, the model predicted a lesion volume of zero. These 
subjects had significantly smaller baseline lesions (median baseline 
lesion size of 0 ml vs 18 ml, p < 0.01), final lesions (median final lesion 
size of 3.2 ml vs 59.5 ml, p < 0.01), and milder strokes (median baseline 
NIHSS of 6 vs 14, p < 0.01) compared to the rest of the subjects. In 
addition, there were 94 cases in our dataset without any admission DWI 
lesion as determined by thresholding criteria. The performance of the 
model as measured by DSC was significantly lower in this group 
compared with cases with non-zero admission DWI lesions (median DSC 
of 0.10 vs 0.55, P < 0.01). 

Finally, we examined performance of this model (that used both DWI 
and ADC inputs) with models that used one or the other (but not both). 
In general, we found reduced performance, particularly for DSC when 
using these models. Further information can be found in the Supple-
mentary Materials. 

4. Discussion 

Using only baseline DWI acquired at stroke onset, we demonstrate 

Table 2 
Model performance in all patients and reperfusion groups.  

Metrics Reperfusion Status 

Median 
(IQR) 

All patients 
(n = 445) 

Major 
(n = 180) 

Partial 
(n = 89) 

Minimal 
(n = 81) 

Unknown 
(n = 95) 

P-value 

AUC 0.91 
(0.84–0.96) 

0.92 
(0.83–0.95) 

0.91 
(0.86–0.95) 

0.92 
(0.84–0.96) 

0.89 
(0.76–0.96) 

0.45 

Sensitivity 0.60 
(0.16–0.84) 

0.61 
(0.15–0.84) 

0.65 
(0.36–0.83) 

0.60 
(0.37–0.70) 

0.41 
(0.01–0.80) 

0.04 

Specificity 0.97 
(0.93–0.99) 

0.97 
(0.94–0.99) 

0.95 
(0.90–0.98) 

0.96 
(0.93–0.99) 

0.98 
(0.94–0.99) 

< 0.007 

Youden Index 0.55 
(0.13–0.76) 

0.58 
(0.12–0.78) 

0.62 
(0.33–0.74) 

0.58 
(0.25–0.76) 

0.35 
(0.01–0.73) 

0.05 

DSC 0.50 
(0.17–0.66) 

0.46 
(0.12–0.62) 

0.58 
(0.37–0.70) 

0.56 
(0.33–0.70) 

0.36 
(0.01–0.60) 

< 0.007 

Volume error, ml 0 
(–22–30) 

4 
(-10–30) 

2 
(-35–48) 

− 7 
(-54–20) 

0 
(–22–31) 

0.03 

Absolute volume error, ml 27 
(7–60)  

20 
(6–41) 

39 
(17–77) 

39 
(11–76) 

20 
(4–68) 

< 0.007 

P-value listed represents the significance of differences between any of the groups (minimal, major, partial, and unknown). 

Table 3 
Summary of the model performance using different probability thresholds ranging from 0.1 to 0.9.  

Threshold Sensitivity Specificity Youden Index DSC Volume error 
(ml) 

Absolute volume error  
(mL)  

0.1  0.71  0.95  0.63  0.45 17 39  
0.2  0.66  0.96  0.61  0.46 9 33  
0.3  0.63  0.97  0.60  0.48 3 30  
0.4  0.61  0.97  0.56  0.49 2 28  
0.5  0.59  0.98  0.55  0.50 0 27  
0.6  0.57  0.98  0.52  0.49 0 25  
0.7  0.54  0.98  0.50  0.48 − 1 24  
0.8  0.51  0.98  0.47  0.47 − 3 22  
0.9  0.45  0.99  0.42  0.46 − 7 21 

*Values are presented as median. 
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that an attention-gated DCNN can accurately predict the final infarct 
volume 3–7 days after stroke onset in a large dataset of 445 AIS patients. 
The main highlight of the study is that neither the PW images nor the 
reperfusion status of patients were considered when training the DCNN 
model. The model, however, shows comparable accuracy in terms of 
DSC when compared to prior studies that used both DWI/PWI or CT 
perfusion images as input (DSC of 0.24–0.53 as compared to 0.50 in our 

study) (Lucas et al., 2018; Pinto et al., 2018; Robben et al., 2020; Yu 
et al., 2020). As PWI can extend the scan time and cost of the initial 
stroke imaging workup and may be contraindicated for some patients, 
this suggests an alternative method using only diffusion information 
might be useful for prediction of the final infarct size (High et al., 2007; 
Kuo et al., 2007). 

Comparing the performance of the model in different reperfusion 

Table 4 
Comparison of the deep learning model and ADC-thresholding model performance in all patients using a probability threshold of 0.5.  

Metrics’ median (IQR) AUC Sensitivity Specificity DSC Volume error, (ml) Absolute volume error, (ml) 

DCNN 0.91 
(0.84–0.96) 

0.60 
(0.16–0.84) 

0.97 
(0.93–0.99) 

0.50 
(0.17–0.66) 

0 
(–22–30) 

27 
(7–60) 

ADC-thresholding 0.62 
(0.56–0.69) 

0.26 
(0.12–0.40) 

0.98 
(0.97–0.99) 

0.18 
(0.10–0.35) 

7 
(–54–66) 

64 
(25–96) 

P-value < 0.001 < 0.001 < 0.001 < 0.001 0.50 < 0.001  

Fig. 3. Examples of CNN model prediction 
compared with ADC thresholding in different 
reperfusion groups including major (A), 
minimal (B), partial (C), and unknown (D). 
The Dice similarity coefficients (DSC) shown 
below the images were calculated compared 
to the ground truth in all slices. Green area 
shows true positives, blue area false nega-
tives, and red area false positives. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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groups based on Bland-Altman plots (Fig. 5), we found a bias of about 
20 ml for the minimal reperfusion group, suggesting that the DCNN 
model underestimated the final lesion size in this group. This was not 

surprising since the model trained in this study does not consider the 
PWI or reperfusion status of the patients during training, and larger 
lesion growth would be expected in patients with minimal reperfusion 

Fig. 4. The correlation of lesion volumes from the model prediction and ground truth manually delineated infarct size at 3–7 days after stroke, plotted using the cube 
root of the lesion sizes (ρc = 0.73, p < 0.01). In each subset, the solid lines represent the best linear fit function and the colored areas represent the 95 % confi-
dence interval. 

Fig. 5. Bland-Altman plots for patients in different reperfusion groups including major (A), minimal (B), partial (C), and unknown (D). The X-axis represents the 
mean volume, and the Y-axis represents the volume difference between the predicted and ground truth lesions. The solid line represents the bias, and the dashed lines 
represent the upper and lower 95% limits of agreement. Note that the error increases for larger lesions. 
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(Wheeler et al., 2015). Considering this, the model could be pretrained 
on partial and unknown reperfusion groups and fine-tuned separately 
for minimal and major reperfusion groups in future investigations if the 
goal is to predict best and worst case outcomes from endovascular 
therapy, as in a recent study that included PWI information (Yu et al., 
2021). 

The DCNN model performed significantly better than simple ADC 
thresholding. As Fig. 3 shows, the DCNN model was more robust to false 
positives and false negatives, resulting in higher DSC (Table 4). The 
DCNN model produced fewer false negatives than the ADC threshold 
method, which confirms that the DCNN model does not just segment the 
baseline ADC lesions, but improves its prediction of the final lesion size 
and location. Moreover, the DCNN produced fewer false positives, 
indicating it was not susceptible to low-intensity ADC image artifacts 
that can affect thresholding methods relying solely on ADC intensity. It 
is possible that the model performs better than simple ADC thresholding 
by identifying subthreshold ADC decreases that may extend into the 
classically defined penumbra or patterns of ADC decrease within the 
visible regions that may provide information about growth patterns 
(Hevia Montiel et al., 2008; Oppenheim et al., 2001). Prior non-DL 
models such as the “region-growing principal” method have been pre-
viously described (Hevia Montiel et al., 2008; Rosso et al., 2009), with 
similar performance for predicting final lesion volume, but have not 
proven to be robust enough for clinical use. Finally, model performance 
was highly correlated with baseline lesion size. This was an expected 
finding which was also reported by previous studies that investigated 
stroke lesion prediction and/or segmentation (Nazari-Farsani et al., 
2020; Perez Malla et al., 2019; Yu et al., 2020) and reflects the funda-
mental challenge of predicting very small lesions accurately. This im-
plies that these methods could be used with more confidence in patients 
with larger baseline lesions. 

We examined the largest over- and underestimations between the 
predictions and the ground truth. Most model underestimations 
occurred in the minimal and unknown reperfusion group, which makes 
sense given the expectation that the lesions would tend to grow more 
with poor reperfusion. Similarly, that overestimation of the model was 
primarily seen in subjects with major reperfusion group was not also 
surprising. It was difficult to assess the precise reason for the remainder 
of the outliers in the partial and unknown reperfusion groups, as they 
might have been affected by confounding factors such as reperfusion or 

collateral status of the patients. However, a concrete conclusion cannot 
be made as we do not have access to precise reperfusion or collateral 
flow information. 

There are several limitations to this study. A limited number of pa-
tients was used to train and test our model. Although this dataset was 
gathered from multiple institutions with different scanners and inclu-
sion of patients with a variety of clinical data, it is possible that the 
results may not generalize to specific stroke cohorts, particularly those 
composed of primarily non-LVO strokes. Second, the model in this study 
was trained only on DWI (and ADC images derived from DWI). We did 
investigate the effect of adding magnetic resonance angiography (MRA) 
images as an extra input channel to the model, but the model perfor-
mance did not improve. We also tried combining the image data with 
clinical information including stroke sidedness, but again, this did not 
improve performance, possibly suggesting that information about stroke 
sidedness and clinical severity is already encoded to some extent in the 
DWI lesion’s location and severity. Lastly, we did not attempt to create 
PWI maps from the DWI maps using image translation methods (Yu 
et al., 2022). This might improve performance and potentially help 
explaining lesion growth in some patients. Given the black-box nature of 
most AI systems (including this one), a method that helped explain why 
some lesions are predicted to grow while others are not would be 
valuable to inspire confidence and improve adoption of these types of 
models. 

5. Conclusion 

Using only baseline DWI without PWI, deep learning can predict final 
infarction volume with relatively good accuracy in stroke patients. 
Avoiding the need for PWI to assess stroke patients’ final lesion volume 
may yield multiple benefits, among them shorter imaging studies and 
faster patient triage times. 

6. Source of funding 

This work was partially supported by the Stanford Spectrum SPADA 
grant for the “Personalized Care for Large Vessel Occlusive Ischemic 
Stroke using a Deep Learning Triage Tool” project and NIH grant 
R01NS075209. Dr. Nazari-Farsani thanks the Finnish Academy of Sci-
ence and Letters for the financial support of her postdoctoral fellowship 

Fig. 6. The correlation between the DSC and cubic-root baseline lesion volumes (ρ = 0.64, p < 0.01). The best fit to an exponential function is indicated as a 
black curve. 

S. Nazari-Farsani et al.                                                                                                                                                                                                                        



NeuroImage: Clinical 37 (2023) 103278

9

at Stanford University. Dr. Duarte Armindo was supported by the Luso- 
American Development Foundation [Grant: 2020/A-210498]. 

7. Disclosure 

Dr. Greg Zaharchuk reported receiving research support from GE 
Healthcare and Bayer AG, non-financial support from Nvidia Corpora-
tion, being on the scientific advisory board for Biogen, and being a 
cofounder in Subtle Medical, Inc, outside the submitted work. Dr. David 
Liebeskind is a consultant as Imaging Core Lab for Cerenovus, Gen-
entech, Medtronic, Stryker, Rapid Medical. Dr. Gregory Albers is a 
consultant for and has equity in iSchemaView. Other co-authors declare 
no conflict of interest. 

CRediT authorship contribution statement 

Sanaz Nazari-Farsani: Writing – original draft, Writing – review & 
editing, Methodology, Software, Validation, Formal analysis, Visuali-
zation. Yannan Yu: Writing – original draft, Writing – review & editing, 
Methodology, Software, Visualization. Rui Duarte Armindo: Writing – 
original draft, Writing – review & editing, Data curation. Maarten 
Lansberg: Writing – original draft, Writing – review & editing, Data 
curation. David S. Liebeskind: Writing – original draft, Writing – re-
view & editing, Data curation. Gregory Albers: Writing – original draft, 
Writing – review & editing, Data curation. Soren Christensen: Writing 
– original draft, Writing – review & editing, Data curation. Craig S. 
Levin: Writing – original draft, Writing – review & editing, Funding 
acquisition. Greg Zaharchuk: Conceptualization, Resources, Writing – 
original draft, Writing – review & editing, Funding acquisition, Super-
vision, Data curation, Investigation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The data that has been used is confidential. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2022.103278. 

References 

Bernal, J., Kushibar, K., Asfaw, D.S., Valverde, S., Oliver, A., Martí, R., Lladó, X., 2019. 
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