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Abstract: (1) Background: The large intestine of horses is an anaerobic fermentative chamber filled
with fibrolytic bacteria that play essential roles in digesting and absorbing nutrients for energy
production. Although Jeju horses are a prominent local breed in Korea, few studies have investigated
the gut microbiota of Jeju horses; (2) Methods: This study performed sequencing of V3 and V4
hypervariable regions of the partial 16S rRNA genes obtained from horse fecal samples and compared
the gut microbiota between Jeju and Thoroughbred horses. Thirty and 24 fecal samples were obtained
from Jeju and Thoroughbred horses, respectively; (3) Results: The gut microbiota belonged to 23
phyla and 159 families. Firmicutes and Bacteroidetes were the most abundant and predominant phyla,
followed by Verrucomicrobia, Euryachaeota, and Spirochaete. The ratio of Firmicutes to Bacteroidetes
(F/B), which is known as a relevant marker of gut dysbiosis, was 1.84 for Jeju horses, whereas it was
1.76 for Thoroughbred horses. Moreover, at the genus level, 21 genera were significantly different
between the Jeju and Thoroughbred horses (p < 0.05); (4) Conclusions: The Thoroughbred horse’s gut
microbiotas had significantly higher diversity than the Jeju horses (p < 0.05). In addition, beneficial
commensal bacteria that produce short-chain fatty acids thus providing a significant source of energy
are also more abundant in Thoroughbred horses. These results provide novel information on the
horse gut microbiota and insights for further studies related to the horse gut microbiota.

Keywords: microbial ecology; microbiota; NGS; Jeju horse; Thoroughbred horse

1. Introduction

Horses have evolved for more than 50 million years to graze large amounts of grass
constantly by absorbing nutrients from the fiber only, providing low-energy to monogastric
non-ruminant animals. Horses obtain energy effectively through fermentation by the gut
microbiota in the hindgut. The hindgut serves as a fermentation chamber, where anatomical
and physiological properties are favorable for the gut microbiota to degrade and ferment
plant-derived polysaccharides [1]. Therefore, horses can digest and metabolize a high-fiber
plant diet using the enzymes produced by the gut microbiota [2].

A wide variety of microbial ecosystems exist in the gastrointestinal tract of animals.
One gram of the content of a horse colon contains at least one billion microorganisms,
including at least seven phyla [3,4] or more than 108 genera of bacteria [5,6], as well as
protozoa, archaea, and anaerobic fungi. The intestinal microbiota perform several essential
protective, structural, and metabolic functions for host health, such as digestion of complex
host-indigestible polysaccharides, pathogen displacement, and synthesis of vitamins [7,8].
The intestinal microorganisms manufacture short-chain fatty acids (SCFAs) to produce
nutrients in the mucus and mucosal membranes and promote the regeneration of intestinal
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epithelial cells [9,10]. The composition of the horse gut microbiota is affected by various
factors, including race, gender, heredity, diet, lifestyle, geographical location, stress, obesity,
and delivery methods [9,11–13].

The study of gut microbiota has generally been conducted using culture-dependent
methods [14,15]. These methods are limited in investigating the horse gut microbiota
because approximately 70% of the microbiota cannot be cultured in the laboratory [16].
The development of next-generation sequencing (NGS) and bioinformatic tools has over-
come the limitations of traditional culture-dependent methods [4,17]. To date, there are
only limited numbers of studies on the horse microbiome using NGS compared to those
for ruminants. Although several studies were conducted to investigate the relationship
between gut microbiota and digestion [1], disease [2,3,18], and exercise [19,20], the roles of
the horse gut microbiota are not entirely understood. However, as widely acknowledged,
the microbiota play a vital role in maintaining the host’s health, including horses [18].

The Jeju horse is the only indigenous Korean horse breed since the Stone Age. They
are inherently rare. Thus, they are conserved well and designated as Korean Natural
Monument 347. Recently, Jeju horses have been used as racing horses; thus, the economic
value of Jeju horses has increased close to that of Thoroughbred horses. They have adapted
to the harsh environment of Jeju Island, such as cold weather and insufficient food for a
long time.

On the other hand, Thoroughbred horses are sprint racehorses that have adjusted to
the environment in the Jeju Island over a short period [21]. They are provided with not
only a high-qualified feed but also systematically controlled specific management. Jeju
and Thoroughbred horses are raised in different environments (i.e., feeds and exercise).
Some differences in the composition of gut microbiota affected by various external factors
are expected. The present study provides information on the fundamental differences
in gut microbiota between Jeju and Thoroughbred horses based on the 16S rRNA gene
sequence data.

2. Materials and Methods
2.1. Horse Descriptions and Fecal Sampling

The Institutional Animal Care and Use Committee of Korea Racing Authority ap-
proved the animal protocols for this study (KRA IACUC-2009-AEC-2007). Between March
and June in 2020, fresh fecal samples were collected from healthy Jeju horses (JJ, n = 30)
with a mean age of 6.8 ± 3.3 years (10 male, 16 female, and four gelded) and healthy
Thoroughbred horses (TB, n = 24) with a mean age of 6.2 ± 3.1 years (eight male, 14 female,
and two gelded). All horses were raised on 12 different farms on the Jeju Island, Korea. All
horses had not experienced any changes in their diet and housing conditions in the recent
three months and were carefully selected for minimizing the variations in age, weight,
body condition scoring (BCS), soundness, vaccination, deworming, and medication. Jeju
horses grazed on paddocks for 24 h, while Thoroughbred horses lived in a stable at night.
The Thoroughbreds were provided with concentrated and roughage feed at 2.5 to 3% per
body weight every day.

In contrast, the Jeju horses were provided with concentrated feed at approximately 1%
per body weight and roughage feed at ad libitum every day. Fecal sampling was performed
from the rectum using rectal gloves with sterile lubrication (Kruuse, Denmark) to reduce
environmental contamination, as described previously [22]. Rectal swabs were taken from
these horses, placed in plastic sealable bags, and stored at −80 ◦C until DNA extraction.

2.2. Microbial Community Analysis

According to the manufacturers’ instructions, the fecal DNA was extracted from
swabs using the PowerFecal DNA extraction kit (Qiagen, Hilden, Germany). The V3
and V4 regions of the 16S rRNA gene were amplified by a polymerase chain reaction
(PCR) using the 341F and 806R primer sets. Two-step PCR was performed to construct
the MiSeq library. Sequencing was done at Macrogen Inc. (Seoul, Korea) according to
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the manufactures’ instructions. The sequence data were processed using MOTHUR [23]
according to the standard operational protocol (protocol as previously described online
https://mothur.org/wiki/miseq_sop/ (accessed on 14 April 2021)) with a slight modifica-
tion of adding singleton removal after the pre.cluster subroutine. Silva.nr_v132 [24] was
used for alignment, and RDP [25] version 11.5 was used for taxonomic classification. The
operational taxonomic units (OTUs) were assigned using the opti.clust algorithm [26] with
a sequence distance of 0.03. MOTHUR was also used to calculate the ecological indices
(Chao I and Shannon) for the species richness and evenness. Non-metric multidimensional
scaling (NMDS) was performed and plotted with ellipses at the 95% confidence level using
the vegan R package. PICRUSt2 [27] was used to predict the metabolic activities based on
the 16S rRNA gene sequences.

2.3. Statistics

An analysis of the molecular variances (AMOVA) was applied to investigate the
significant difference between the groups on NMDS plots. Differential abundance analysis
was performed using the Linear discriminant analysis Effect Size (LEfSe) [28] and ALDEx2
package in R for OTUs and predicted metabolic activities, respectively. A Wilcoxon rank-
sum test was applied to compare the ecological indices. Differences were considered
significant at p < 0.05.

3. Results
3.1. α-Diversity Analysis

Thirty healthy Jeju horses were compared with 24 healthy Thoroughbred horses
through 16S rRNA sequencing. Figure 1 presents the ecological indices. All samples
showed a Good’s coverage greater than 98%, suggesting that sequence depth was sufficient
to cover most of the species in the samples (Figure 1A). The results in Figure 1 show that the
number of species found in horse gut microbiota ranged from approximately 500 species to
1250 species (Figure 1B), while the evenness ranged from 3.5 to 5.5 (Figure 1C). The results
suggest that both the species richness and evenness of the gut microbiota in Jeju horses
were significantly lower than those in the Thoroughbred horses (p < 0.05).
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Figure 1. Ecological indices comparison, species richness comparison with Good’s coverage (A), Chao I (B), and species
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3.2. β-Diversity Analysis

Based on non-multidimensional scaling (NMDS) analysis (Figure 2), the β-diversity
showed that the gut microbiota of Jeju horses were significantly different from Thorough-
bred horses (p < 0.05). Thus, the microbiota structure of each group was substantially
different from the other.
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3.3. Comparison of Microbiota at the Phylum and Family Levels

A comparison of the fecal microbial communities was at the bacterial phylum and fam-
ily levels (Figure 3). At the phylum level (Figure 3A), the bacterial community compositions
were similar in the Jeju and Thoroughbred horses. It is consistent with a previous equine mi-
crobiota study showing that Firmicutes and Bacteroidetes are predominant phyla [3,4,29,30].
In this study, Firmicutes (39.2 ± 7.9% and 40.9 ± 6.6%) and Bacteroidetes (21.2 ± 7.6% and
23.2 ± 5.3%) were the abundant and predominant phyla in Jeju and Thoroughbred horses,
respectively, followed by Verrucomicrobia, Euryachaeota, and Spirochaete. Firmicutes are
critical players in cellulose degradation, and they represent the most common phylum in
all mammalian species [31]. Bacteroidetes are reduced in human obesity [9]. These five
phyla accounted for at least 86% of the gut microbiota found in 26 phyla in this study.

At the family level (Figure 3B), there was no significant difference between the gut mi-
crobiota of the Jeju and Thoroughbred horses. Lachnospiraceae and Bacteroidetes_unclassified
were the predominant families, followed by Methanobacteriaceae, Streptococcaceae, Ru-
minococcaceae, Prevotellaceae, Subdivision 5_unclassified, and Spirochaetacea. These
eight families accounted for approximately 60% of the total gut microbiota composed of
170 families in this study.
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3.4. Comparison of Microbiota at the Genus Level

The relative abundance of each genus in both groups was compared to identify the
populations responsible for this difference using the Linear discriminant analysis Effect
Size (LEfSe) (Figure 4). The results indicated significant differences for 21 genera (p < 0.05).
At the genus level, the relative abundance of the 17 genera was significantly lower in Jeju
horses than in Thoroughbred horses. These genera included in a genus Fibrobacter, which is
vital in rumen fiber digestion [15], while the Jeju horses appeared to have more pathogenic
bacteria genus (i.e., Synergistaceae_unclassified) than Thoroughbred horses.
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Further, the relative abundance of some of the predominant commensal intestinal
bacteria, such as Fibrobacter, Lachnospiraceae_unclassified, Clostridiales_unclassified, and
Oscillibacter, was significantly higher in the Thoroughbred horses. At the same time, op-
portunistic bacterial pathogens, including Spirochaetaceae_unclassified and Sphaerochaeta,
were also more abundant. On the other hand, the genera significantly less abundant in the
Jeju horses included butyrate-producing bacteria (i.e., Clostridium_XIVa and Oscillibacter).
At the same time, significantly higher abundance was observed for some of the oppor-
tunistic pathogens, such as Synergistaceae_unclassified, Eubacteriaceae_unclassified, and
Akkermansia, is known to increase with gut inflammation (p < 0.05). These results suggest
that Thoroughbred horses are more suitable for sprint racehorses because of the high diver-
sity and abundance of beneficial bacteria producing SCFAs, including acetate, butyrate,
and propionate. In contrast, Jeju horses showed a tendency to have more pathogens than
Thoroughbred horses.

4. Discussion

While the hindgut itself serves as a fermentation chamber, the gut microbiota play vital
roles in digesting and absorbing nutrients for the host energy production and synthesizing
Vitamin B and K. Moreover, the gut microbiota regulate gene expression in the intestinal epithe-
lial tissues of the host and maintain several diseases, including gastrointestinal diseases [32].

The composition of gut microbiota is affected by various factors, such as surrounding
environments, diet, gestation and hospitalization period, antibiotics use, and the mode
of delivery [18]. In cold climates, horses are usually provided with low-quality feed,
which may adjust their gut microbiota to ferment fibers [33]. This study showed that the
bacterial community compositions among Jeju horses were significantly different from
those of Thoroughbred horses. Moreover, Jeju horses had lower species diversity than
Thoroughbred horses.

Significant differences in bacterial compositions were not observed between Jeju and
Thoroughbred horses at the phylum and family levels. Although Jeju and Thoroughbred
horses are provided different feed and are raised differently, the proportion of Firmicutes (JJ,
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21.2 ± 7.59%; TB, 23.2 ± 5.34%) and Bacteroidetes (JJ, 21.2 ± 7.59%; TB, 23.2 ± 5.34%) were
similar among the two groups, which is also consistent with previous studies [3,6]. The
ratio of Firmicutes to Bacteroidetes (F/B), which is a relevant marker of gut dysbiosis for
humans and mice, was 1.84 and 1.76 for Jeju and Thoroughbred horses, respectively. These
ratios were similar for Mongolian horses (F/B = 1.6) but different in Irish Thoroughbred
horses (F/B > 2) [17,30], suggesting that Jeju horses may be more similar to Mongolian
horses. Hence, the predominant Firmicutes phylum is not surprising because most of them
are plant cellulose degraders [15,34].

At the family level, Lachnospiraceae and Ruminococcaceae are the core microbiota in
the human intestine and are referred to as healthy microbiota [35]. Lachnospiraceae are
gram-positive anaerobes that assist in the digestion of indigestible polysaccharides and the
production of short-chain fatty acids (SCFAs) butyrate and propionate. SCFAs help prevent
colon cancer and improve intestinal health [36,37]. Ruminococcaceae also breaks down fiber
effectively in the intestine of herbivores [29] and produces butyrate in the gut [38]. Prevotel-
laceae is abundant in ruminant animals (i.e., cattle) and degrades proteins and carbohydrates,
which iss abundant in horses living in pastures [39]. Spirochaetaceae and Streptococcaceae
are known opportunistic pathogens. They are indicative of intestinal dysbiosis.

At the genus level, several genera with differential abundances were observed. Thor-
oughbred horses had a higher abundance of various beneficial commensal bacteria than
Jeju horses, such as Clostridium_XIVb and Lachnospiraceae_unclassified, which produce
butyrate as the primary energy source for colonocytes [40,41], Fibrobacteres which digest
plant fibers in the herbivore intestine [15], and Ruminococcus2 from the Ruminococcaceae
family, a cellulose-degrading bacterium in human intestine [42].

The previous study reported that the abundance of Clostridium_XlVb and Bacteroides
increased, but Ruminococcaceae decreased in the horses fed a high concentrated diet [43].
However, in this study, even though Thoroughbred horses were fed more concentrated
feed than Jeju horses, the abundance of Ruminococcaceae increased significantly in Thor-
oughbred horses (p < 0.05). Kim et al. suggested that the increased abundance of Clostrid-
ium_XIVa could adversely affect the abundance of other polysaccharide-utilizing bacteria,
such as Lactobacillus [44], due to competition over the substrate availability.

In this study, an increase in Lactobacillales_unclassified was observed among Jeju
horses. These bacteria may represent some probiotic strains. On the other hand, several op-
portunistic pathogens, such as Eubacteriaceae_unclassified and Synergistaceae_unclassified,
were also higher in Jeju horses. The genus Akkermansia from Verrucomicrobia increase
is speculated to result from inflammation because of its potential to induce the immune
regulatory response [45]. A decrease in bacterial richness and diversity in Jeju horses com-
pared to Thoroughbred horses was one of the main findings of this study. Thoroughbred
horses also showed more significant variability between individuals in species richness
and diversity than Jeju horses. These differences in gut microbiota could be owing to
types of breeds, feed, and management program [30,46]. Previous studies have reported
that parasite, exercise, age, and stress significantly shifts horse gut microbiota [19,47–49].
Exercise and aging increased the abundance of Firmicutes while stress decreases the abun-
dance of Firmicutes [19,20,49]. Various factors could affect the abundance of several genera.
Although we minimized these factors by selecting horses similar in physiology, it is recom-
mended that future studies include a bigger sample size and various physiological and
environmental parameters.

In this study, we collected horse feces. Although feces were rectally collected using
rectal gloves [22] and stored immediately on ice, storage conditions may have affected the
microbial community, as previously reported [50]. Moreover, multiple sampling of the
same horses could minimize inter-individual deviation.

5. Conclusions

This study compared the compositions of the gut microbiota in Jeju and Thoroughbred
horses living on the Jeju Island in Korea. The results showed that the bacterial community
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composition in Jeju horses was substantially different from that of Thoroughbred horses.
Thoroughbred horses had more species and a more diverse bacterial population than Jeju
horses do. Several genera were found to be differentially abundant at the genus level
between the two groups, where Thoroughbred horses appeared to have more beneficial
bacteria than Jeju horses.

Thoroughbred horses receive a relatively large amount of concentrated feed under
considerable stress because people manage them. In contrast, Jeju horses freely graze in
a vast paddock and live their lives in their natural habit. Nevertheless, Thoroughbred
horses appeared to have better gut microbiota than Jeju horses. This might be because of
the high-quality diet supplied to Thoroughbred horses. The diet contained well-adjusted
and balanced nutrients with essential vitamins, which were consistently provided. Overall,
this study presented some insights into the association of gut microbiota with the breed,
feed, and management conditions.
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