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Diabetic retinopathy (DR) is the leakage and obstruction of retinal microvessels

caused by chronic progressive diabetes that leads to a series of fundus lesions.

If not treated or controlled, it will affect vision and even cause blindness. DR is

caused by a variety of factors, and its pathogenesis is complex. Pericyte-related

diseases are considered to be an important factor for DR in many

pathogeneses, which can lead to DR development through direct or indirect

mechanisms, but the specific mechanism remains unclear. Exosomes are small

vesicles of 40–100 nm. Most cells can produce exosomes. They mediate

intercellular communication by transporting microRNAs (miRNAs), proteins,

mRNAs, DNA, or lipids to target cells. In humans, intermittent hypoxia has been

reported to alter circulating excretory carriers, increase endothelial cell

permeability, and promote dysfunction in vivo. Therefore, we believe that the

changes in circulating exocrine secretion caused by hypoxia in DR may be

involved in its progress. This article examines the possible roles of miRNAs,

proteins, and DNA in DR occurrence and development and discusses their

possible mechanisms and therapy. This may help to provide basic proof for the

use of exocrine hormones to cure DR.
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bone marrow mesenchymal stem cells; TGF-b 2, transforming growth factor-b 2; VEGF, vascular

endothelial growth factor; REC, retinal microvascular endothelial cells; DKD, development of diabetic

nephropathy; IR, ischemia and reperfusion; MI, myocardial infarction; EPCs, endothelial progenitor cells.
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1 Introduction

Microvascular complications are one of the most common

complications of diabetes mellitus. Persistent high blood sugar

levels can harm a range of organs, including the heart, kidneys,

and retina. The most common complications of diabetes are

microvascular complications, particularly diabetic nephropathy

(DN) and retinopathy (1). Diabetic retinopathy (DR) is chronic

retinopathy that causes leakage and blockage of retinal blood

vessels, which can result in a range of fundus lesions, including

microangiomas, hard exudates, cotton spots, neovascularization,

vitreous hyperplasia, macular edema, and retinal detachment,

among others. In recent years, with the advancement of medical

technology, particularly the emergence of antiangiogenic drugs,

there have been more options for DR treatment; however, it

remains an important cause of impaired vision and

even blindness.

The etiology of DR is associated with several morphological

alterations, including pericyte loss, basement membrane

th icken ing , inc reased vascu la r permeab i l i t y , and

microaneurysms. Pericytes and endothelial cells (ECs) are the

most common retinal vascular cells. Communication between

these two cell types is important for microvascular stabilization

and remodeling. Pericyte loss is an early pathological feature of

DR and frequently occurs in diabetic patients and animals (2).

These two cell types share the same basement membrane on the

vessel wall. There is communication between them due to the

discontinuity of the basement membrane. ECs and pericytes

communicate through the gap junctions between PEG sockets

with other paracrine signaling factors, including growth factors,

secreted cytokines, and extracellular secretions (2–5). Because

pericytes are an abundant cell type in microvessels, their

dysfunction can result in a variety of vascular-related diseases,

including stroke and renal infarction, among others. Studies

have shown that diseases associated with the diabetic retina are

closely associated with pericytes. For example, pericytes create

cPWWP2A (circ RNAs - PWWP2A), which is subsequently

transferred to ECs via exosomes (5). CPWWP2A silencing can

exacerbate diabetic retinal microvascular damage and

dysfunction, such as pericyte loss, acellular capillary

microaneurysm, vascular leakage, and inflammation (5).

Exosomes refer to small membrane vesicles containing

complex RNAs and proteins. Under normal and pathological

conditions, many cells secrete exosomes. They are primarily

sourced in the multivesicles formed by the invagination of

intracellular lysosomal granules, and the outer membranes of

the multivesicles are released into the extracellular matrix

following fusion with the cell membrane. Exosomes are

considered to be membrane vesicles that are secreted

exclusively and play a role in intercellular communication.

Studies have shown that exosomes can maintain stable blood

sugar levels in the body through multiple mechanisms and slow
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the development of diabetes and the associated microvessel

formation, reducing the progression of this diabetic

complication. However, the specific mechanism of exosome

action remains unclear (1, 2). Many biological effects of

exosomes are expressed by microRNA (miRNA), and miRNAs

regulate different pathological alterations during DR, which

include cell proliferation, apoptosis, inflammation responses,

microcirculation impairments, oxidative stress, and cellular

death by controlling the key molecules, particularly vascular

endothelial growth factor (VEGF) (6). Therefore, miRNA

antagonists or mimics as a novel class of drugs could be

potentially helpful to control the occurrence and progression

of pathological changes during DR.

This article examines the role and possible mechanisms of

DR and the occurrence of exosomes and their possible use in its

treatment. To reverse the chronic consequences of DR, we might

use exosome substances to treat this disease, for example,

miRNA-21 and miR-200a-3p.
2 Diabetic retinopathy and pericytes

DR is characterized by a severe deterioration of the retinal

microvasculature, resulting in hypoperfusion, increased capillary

permeability, abnormal proliferation of retinal blood vessels, and

ultimately even blindness (7). DR can be classified into two types

according to fundus changes: non-proliferative and proliferative

phases (7, 8). The non-proliferative phase is confined to the

retina; blood vessels undergo microaneurysms and bleeding and

display vascular instability, macular edema, basement

membrane thickening, and vascular degeneration (9). By

comparison, the proliferative phase is characterized by

neovascularization. New blood vessels are prone to rupture,

which may eventually lead to retinal bleeding and

detachment (8).

Although DR is primarily considered to be a disease caused

by decreased EC function, there is significant evidence from

animal studies that its pathogenesis begins with pericyte loss.

Studies of diabetic complications in humans have shown that

pericyte exfoliation in DR is associated with microvascular lesion

development, including microaneurysms, acellular capillaries,

vascular distortion, increased permeability, and capillary

perfusion (4). The early pericyte loss is rapidly accompanied

by EC loss and capillary network collapse, resulting in reduced

retinal blood flow. It is proposed that the initial pericyte loss is

driven by angpt-2 (10). The regeneration and plasticity of

pericytes allow possible treatment of diseases associated with

vascular malnutrition, including muscular dystrophy, ischemic

stroke, and DR. To facilitate intercellular communication, the

tight binding of pericytes and ECs occurs through direct contact,

with ion exchange by gap junctions such as connexin43 (11) and

the exchange of other paracrine molecules such as cathepsin D
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(12) and sphingosine 1-phosphate (13). Pericytes may serve as

targets to treat microvascular diseases such as diabetic

pathological angiogenesis and complications (14).
3 Effects of exosomes on
diabetic retinopathy

Exosomes are released into the extracellular space from

many cell types. These exosomes are broadly distributed in the

body fluids. In recent years, mRNA and miRNA have been

identified in vitro, which can be absorbed by nearby or distant

cells, and regulate the receptor cells, thus playing a role in the

occurrence and development of related diseases.
3.1 Exosomes

3.1.1 Concept and classification of exosomes
Exosomes currently refers specifically to discoid vesicles with a

diameter of 40–100 nm. They are common membrane-bound

nanovesicles which transport proteins, lipids, DNA, mRNA, and

miRNA among other biomolecules. They are initially formed by

endocytosis. Above all, internalization of the cell membrane

produces endosomes. Subsequently, many small vesicles are

formed in the inner body through the invaginated part of the

inner bodymembrane. Such endosomes are termedmultivesicular

bodies (MVBs). Finally, MVBs fuse with the cell membrane,

releasing endosome vesicles outside the cell as exosomes.

Exosomes are produced by cells via exocytosis and are taken up

by target cells. They transport substances and messages between

cells through the circulation of body fluids. Therefore, exosomes

play a role in different physiological and pathological processes in

the human body (15, 16). Many biological effects of exosomes are

expressed through miRNAs. miRNAs are a class of endogenous

short non-coding single-stranded RNA molecules of 19–23

nucleotides in length which are from genome regions that do

not code for proteins (17). They can be found in human fluids in a

stable state, according to increasing data. Extracellular miRNAs

can be loaded into high-density lipoprotein or bound by

argonaute-2 protein outside vesicles, in addition to being packed

into exosomes or microvesicles. All three mechanisms protect

miRNAs against degradation and ensure their long-term stability

(16). miRNAs negatively regulate the expression levels of target

genes and confer characteristic changes on them, playing a

regulatory role in almost all cellular processes. When miRNAs

are analyzed as exosome miRNAs rather than intracellular

miRNAs, researchers discovered a new role in certain cases,

being exported inside extracellular vesicles, with Toll-like

receptor (TLR)–binding miRNA released by cells from injured

or stressed tissues able to reach the endosomal compartment and

propagate inflammatory signals in distant recipient cells (17).
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Exosomal miR-21 and miR-29a were initially revealed to have the

ability to attach to TLRs and activate immune cells, in addition to

their traditional action of targeting miRNA (18). The quantity and

composition of secreted miRNAs vary between diseased and

healthy individuals (16, 19–21). To date, hundreds of miRNAs

have been found in eye tissue, which may become a new

biomarker for the early diagnosis of non-invasive ocular

diseases (22).

3.1.2 Regulation of exosomes secretion
Exosomes are primarily derived from multivesicles formed

by the invagination of lysosomal granules in cells, and the outer

membranes of multivesicular vesicles are released into the

extracellular environment after fusion with the cell surface.

Although many cells are able to secrete exosomes under

normal or abnormal conditions, under pathological conditions,

exosome secretions may increase or their content may change.

On the one hand, it has been found that the RAB family (a

member of the RAS oncogene family) of small GTPase proteins

controls different steps of vesicle transport in cells (23), such as

vesicle budding, mobility of vesicles and organelle interaction

through the cytoskeleton, and the junction of vesicles with target

chambers to form membrane fusion (24). Since the first

proteomic study, endosomal-related members of this family

have been identified in exosomes (25). For example, RAB-11

has been implicated in the control of TfR and Hsc70 released

from exosomes in K562 cells (26).

On the other hand, in some studies, cellular stress enhanced

exosome release (27–29). For example, studies found that

radiotherapy-induced cellular senescence is associated with a

significant rise in the release of exosome-like microvesicles. In

premature aging, this new secretory phenotype depends on p53

activation. Radiation therapy can induce increased DNA

damage, such as p53-dependent vesicle increase (28). At

present, the specific mechanism of increased secretion caused

by cellular stress is unclear, but the increased secretion may act

on adjacent cells, leading to pathological changes in these cells.
3.2 Regulation of endothelial function

The two main cellular components of retinal microvessels

are pericytes and ECs. The formation, maturation, and

stabilization of microvessels require the interaction of these

two cell types. Endothelial dysfunction is among the risk

variables for DR development. Studies have shown that

pericytes activated by the hypoxia-inducible factor (HIF)

pathway can secrete exosomes under hypoxia and can regulate

ECmigration, germination, and angiogenesis (30). In addition to

those from pericytes, exosomes from neurons, glial cells, ECs,

and the circulation can modulate EC integrity and intercellular

cross-talk in the neurovascular unit under physiological and
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pathological conditions (31–33). Gong et al. found that

exosomes from mesenchymal stem cells (MSCs) were found to

facilitate the transfer of miRNA from MSCs to human umbilical

vein ECs (HUVECs) and promote angiogenesis. Their findings

demonstrated that MSCs secrete exosomes containing proteins,

cytokines, and chemicals that promote HUVEC-mediated

tubular formation, increase the bud number of HUVEC

spheroids, and attract ECs and promote their proliferation

(34). Zhu et al. found that retinal astrocytes may release

exosomes to transmit autophagy-inducing signals and regulate

EC proliferation and migration; thus, they participate in the

occurrence and development of retinal vascular-related

diseases (35).

Endothelial-mesenchymal transition (EndMT) has been

found to contribute to pathological fibrosis in proliferative DR

(PDR). Gu et al. discovered that miR-202-5p secreted by retinal

pigment epithelial cells (ARPE) can act as an important

mediator of intercellular cross-talk and transfer miR-202-5p

via the TGF/Smad pathway to inhibit EndMT (36). Cao et al.

reported that MSC-derived exosomal SNHG7 can inhibit

EndMT and tube formation by human retinal microvascular

ECs (HRMECs) stimulated by high glucose (HG) by interacting

with the miR-34a-5p/XBP1 signaling pathway, providing a

viable treatment approach for DR therapy (37).
3.3 Smooth muscle cell proliferation
and differentiation

Vascular smooth muscle cells (VSMCs) are a special cell type

with abnormal plasticity in response to environmental stressors.

Because abnormally increased VSMC proliferation is associated

with a variety of vascular disorders, controlling its phenotype may

have important implications for delaying DR development. In DR

development caused by microvascular diseases caused by

microcirculation disorders, hypoxia frequently occurs. Hypoxia

promotes VSMC growth. New research suggests that miRNAs are

key regulators of the VSMC hypoxia response. Previous studies

have shown that miR-1260b is among the more upregulated

hypoxia-related amines in VSMCs (38). GDF11-Smad–dependent

signaling mediated by miR-1260b is an important signaling method

for VSMC proliferation, and hypoxia controls this axis, which

promotes aberrant VSMC proliferation (39). The new findings

demonstrated that miR-1260b downregulation reduces VSMC

proliferation. Consequently, hypoxia-induced increased miR-

1260b expression may stimulate VSMC proliferation (39).

Research has also shown that HG can induce VSMC

calcification/aging, which in turn leads to diabetes-related vascular

calcification/aging. Studies have shown that Notch3 is abundant in

HG-stimulated HUVECs (HG-HUVEC-Exo). In addition, Notch3

expression in VSMCs was clearly increased in HG-stimulated

HUVECs compared with the HG-stimulated HUVEC treatment

group. When Notch3 inhibitors act in vivo to inhibit Notch3
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expression, the capacity of HG-stimulated HUVECs to stimulate

calcification/senescence of VSMCs is reduced (40).

Therefore, miR-1260b downregulation can inhibit VSMC

proliferation and Notch3 expression, which may consequently

delay VSMC calcification/aging and aid in the treatment of DR.
3.4 Macrophage activation

Inflammation is the central component of the pathogenesis

of diabetes and metabolic syndrome, particularly in the

development of complications. DR is considered a vascular

and neurodegenerative disease that develops after periods of

inadequate blood glucose control. Retinal microvascular disease

is the early pathogenesis, which is caused by low-level, persistent

leukocyte activation, resulting in recurrent capillary blockage

and gradual retinal-depleting ischemia. At the molecular level,

macrophage-restricted protein tyrosine phosphatase 1B

(PTP1B) is a critical moderator of metabolic syndrome

inflammation involving insulin resistance. PTP1B imbalance

may underlie retinal microangiopathy (41). Hyperglycemia in

patients with diabetes leads to an increased generation of

reactive oxygen species (ROS) and the accumulation of

advanced glycation or lipid oxidation end products (AGE and

ALE, respectively), affecting the physiological functions of the

retina (42). AGE and AGE receptor (RAGE) interaction induces

a pro-inflammatory phenotype in microglia, resulting in an

enhanced release of inflammatory cytokines (TNF-a and IL-6)

(43, 44). Elevated TNF-a and IL-1b levels are consistent with

increased intraretinal neovascularization in DR and increased

microvascular degeneration in ischemic retinopathy (45, 46).

Hyperglycemia could activate VEGF expression, and HIF-1 is

translocated to the extracellular signal–regulated kinase (ERK)1/

2–nuclear factor kB (NF-kB) signaling pathway in the nucleus

and microglia (47, 48). VEGF overexpression contributes to

retinal neovascularization, whereas translocation of HIF-1

increases the transcription of angiogenesis-related genes (49).
3.5 Platelet activation

Vascular fibrosis is the main pathological feature of the

proliferative stage of DR. However, the molecular mechanism of

its occurrence remains unclear. Connective tissue growth factor

(CTGF), a main fibrotic factor, is highly expressed in DR and

plays a key role in retinal endothelial membrane thickening (50).

The study showed that exosomes of platelet plasma in diabetic rats

(DM-PRP-Exos) considerably elevated Müller cell growth and

metastasis compared with exosomes of platelet plasma from

normal control rats (Nor-PRP-Exos). The above results suggest

that platelet plasma secretion–induced fibrogenesis may be

triggered by activating the phosphoinositide-3 kinase-serine/

threonine kinase (PI3K/Akt) signaling pathway (51). Therefore,
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under hyperglycemia, platelets are stimulated to produce PRP-

Exos, which activate the PI3K/Akt signaling pathway (52).

Platelet plasma exosomes (PRP-Exos) mediate hyperglycemia-

induced retinal endothelial damage via upregulating the TLR4

signaling pathway. They can transfer platelet cytokines, alter

protein expression, and cause retinal endothelial dysfunction and

early DR. A study found that the PRP-Exo levels in the circulation

of diabetic rats were significantly increased. At the same time, it was

further proved that HG effectively enhances the capacity of platelets

to produce PRP-Exos in vitro. It was shown that PRP-Exos can

promote TLR4 expression and that of its downstream proteins

MyD88, p-NF-kB/P65, and NF-kB/P65 and activate the TLR4

pathway (53). Accumulating evidence suggests that TLR4 has a

vital function in regulating retinal homeostasis and is engaged in

DR progression (54). The new study found that CXCL10 may

activate the TLR4 pathway in vitro. CXCL10 blockade can

downregulate the TLR4 signaling pathway and diminish PRP-

Exo–induced retinal inflammation. These results suggested that

CXCL10 appears to be a key regulator of PRP-Exo–derived retinal

endothelial damage in DR (53). Consequently, inhibiting the TLR4

signaling pathway provides a new therapeutic idea for reducing the

early vascular DR complications induced by PRP-Exo.
3.6 In summary

As described above, circulating exosome action on various

related cells leads to DR. Figure 1 shows the effect of exosomes

on cells associated with DR.
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4 Effects of exosomes on pericytes

Long-term hyperglycemia causes DR, a frequent

microvascular condition. Intercommunication of pericytes and

ECs is critical for maintaining vascular homeostasis and

remodeling. Hypoxia was found to upregulate circEhmt1

production in pericytes, which can subsequently be

transported to ECs by exosomes. In addition, circEhmt1

overexpression has a protective effect against HG-induced EC

damage in vitro. Mechanistically, circEhmt1, which is strongly

expressed in pericyte nuclei, upregulates NFIA (transcription

factor) levels and inhibits NLRP3-mediated inflammatory

bodies (55).

Diabetes-related stress enhanced cPWWP2A expression in

pericytes but had no effect on ECs, according to the findings.

Pericytes create cPWWP2A, which is delivered to ECs through

exosomes. In vitro studies demonstrated that cPWWP2A

directly regulates pericyte biology, whereas EC biology is

directly regulated by cPWWP2A-carrying exosomes.

CPWWP2A acts as an endogenous miR-579 sponge,

isolating and inhibiting the activity of miR-579. Diabetes-

induced retinal vascular dysfunction was reduced in vivo when

cPWWP2A overexpression or miR-579 suppression was used.

Furthermore, suppressing cPWWP2A or overexpressing miR-

579 can exacerbate microvascular dysfunction by inhibiting the

cPWWP2A-mediated signaling pathway. This study suggests

that intervention at the level of cPWWP2A or miR-579

expression could provide an opportunity for the treatment of

diabetic microvascular complications (2).
FIGURE 1

Effects of exosomes on diabetic retinopathy-related cells. High-glucose environment and hypoxia alter circulating exosomes and play a key role
in DR development. Therefore, stem cell exosomes may be an effective treatment for DR. Hypoxia-induced increased secretion of hypoxia-
inducible factors can lead to endothelial dysfunction (ED) and promote endothelial cell permeability in vitro. Hypoxia also leads to changes in
circulating exosomes (such as miR-1260b), resulting in the proliferation of vascular smooth muscle cells. A high-glucose microenvironment also
leads to a greater generation of reactive oxygen species (ROS) and the build-up of advanced glycation or lipid oxidation end products (AGE or
ALE), which in turn leads to inflammatory increased cytokines (TNF-a, the secretion of IL-6) and thus to inflammation and exacerbates the harm
of DR. PRP-Exos participate in early DR formation via mediating hyperglycemia-induced retinal endothelial damage by upregulating the TLR4
signaling pathway.
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Exosomes reduce pericyte migration by downregulating NF-

kB p65 signaling, thereby maintaining the function of the blood

spinal cord barrier (BSCB). Studies have found that bone

marrow MSC–derived extracellular vesicles prevent pericyte

migration by inhibiting the activation of the NF-kB signaling

pathway. This improves the integrity of the BSCB (56).

Pericyte activation is a key pathogenic characteristic of

interstitial fibrosis (RIF). It was found that MSC-derived

exosomes deliver the miR-34c-5p by inhibiting core focusing

(CF) to reduce cellular activation and help exosomal miR-34c-5p

enter pericytes through the RIFcd81–epidermal growth factor

receptor (EGFR) ligand receptor complex. The findings of this

study offer a potential therapy option for renal fibrosis (57).
5 Possible mechanisms
of exosome-mediated
diabetic retinopathy

Although studies have demonstrated exosome involvement

in DR progression, including multiple cascades and

interconnections, the specific processes remain unknown. The

mechanisms associated with exosomes and DR are mainly

hypoxia, inflammation, and stress intensification. As

mentioned above, exosomes are extensively involved in DR

development and progression. Next, we will attempt to explain

the signaling pathways and molecular mechanisms by which

exosomes, mainly through miRNAs, may be involved in DR

development and progression.
5.1 TGF-b–mediated pathways

TGF-b and TGF-b–mediated signaling pathways play an

exacerbating role in DR pathogenesis (58). Further research has

revealed that they are essential regulators of cell growth and mid-

differentiation. For example, as key inducers of tissue fibrosis,

they can promote fibroblast proliferation, ultimately leading to

tissue fibrosis (59, 60). Lou et al. reported that the miR-21

expression level in the retina of rats with DR was considerably

higher than the normal rats, implying that abnormal retinal

miR-21 expression may participate in DR pathogenesis.

Moreover, the analysis results of this study showed that TGF-b
signaling pathway inhibitors greatly reduced the effect of miR-21

in DR in rats and improved ocular hemodynamics in these

animals. This suggests that miR-21 controls the TGF-b signaling

pathway involved in the pathogenesis of DR. Therefore, TGF-b
signaling pathway regulation by miR-21 affects hemodynamics

in rats with PDR (61). Li et al. found that inhibiting the TGF-b2/
Smad pathway increased miR-200a-3p, which prevented DR

development. It was also found that miR-200a-3p was

significantly downregulated in both ARPE-19 cells and retinal
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tissues of rats with DR after HG treatment, whereas TGF-b2
expression was upregulated. Subsequently, miR-200a-3p

overexpression greatly accelerated cell proliferation, decreased

apoptosis, and reduced the level of secreted inflammatory

cytokines and VEGF in HG-injured ARPE-19 cells. MiR-200a-

3p overexpression attenuated HG-induced damage in ARPE-19

cells, decreased the secretion of inflammatory cytokines, and

downregulated VEGF expression through inactivation of the

TGF-b2/Smad pathway. In vivo, miR-200a-3p upregulation

improved retinal angiogenesis and inflammation in DR in rats,

thus providing a novel target for DR therapy. However, it is

unclear how miR-200a-3p expression was upregulated in

vivo (62).
5.2 PI3K/Akt signaling pathway

The PI3K/Akt signaling pathway is a downstream signal of a

variety of cell-surface receptors that regulate cell proliferation,

survival, and death (63). Zhang et al. discovered that miR-183

was markedly upregulated in a rat model of DR with activation

of the PI3K/Akt/VEGF signaling pathway. It was observed that

miR-183 expression was upregulated and BTG1 expression was

downregulated in retinal tissue in DR in rats. MiR-183

overexpression activated the PI3K/Akt/VEGF signaling

pathway to inhibit BTG1 and promote EC proliferation but

inhibit apoptosis. According to the findings, miR-183 inhibition

could inhibit vascular EC proliferation and angiogenesis by

downregulating BTG1 and inactivating the PI3K/Akt/VEGF

signaling pathway (64).

It is known that, in PDR, miR-21 expression is increased and

can promote retinal pigment epithelial cell proliferation and

migration (65). Lu et al. found that miR-21 may be a target for

DR therapy because it has the potential to block DR.

Downregulation of miR-21 disrupts the survival of retinal

vascular ECs (RVECs), inducing apoptosis of these cells, and

attenuates angiogenesis by inhibiting the PI3K/Akt/VEGF

signaling pathway and upregulating phosphatase and tensin

homolog (PTEN). The results indicated that miR-21

overexpression may activate the PI3K/Akt/VEGF signaling

pathway by inhibiting PTEN expression, thereby stimulating

RVEC activity and angiogenesis in DR in rats, suggesting that

miR-21 may be a target of DR treatment (66).

According to Wang et al., HG decreased the relative miR-

199a-3p expression level in HRMECs and apre-19 cells but

increased VEGF expression. Upregulation of miR-199a-3p not

only significantly alleviated HG-induced cell proliferation and

migration but also significantly inhibited the PI3K/Akt signaling

pathway and HG-induced angiogenesis. MiR-199a-3p

upregulation can control the PI3K/Akt pathway by

suppressing VEGF and promoting HG-induced angiogenesis

in HRMECs (67).
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5.3 p38 MAPK signaling pathway

The MAPK signaling pathway is present in many cells,

delivering extracellular stimuli that elicit biological responses. The

P38 signal transduction pathway (MAPK pathway) regulates a wide

range of biological functions (68). Li et al. found that miR-141-3p

inhibited retinal angiogenesis in glaucoma mice by preventing

activation of the docking protein 5 (DOK5)–mediated MAPK

signaling pathway. The DOK5 gene was repressed by miR-141-

3p, which activated the MAPK pathway. The findings revealed that

miR-141-3p reduced the proliferation and angiogenesis of retinal

vascular epithelial cells and promoted RGC apoptosis (69). Chen

et al. found that MSC-derived exosomes prevented hypoxia-

induced cell death by carrying miR-21 and inhibiting p38 MAPK

signaling (70). MSC exosomes may aid patients with diabetes,

according to their findings. Dai et al. reported that baicalin (BAI)

inhibited the activation of the NF-kB and p38 MAPK pathways by

upregulating miR-145 and had a protective effect on HG-induced

injury of human retinal pigment epithelial cells (71).
5.4 NF-kB pathway

NF-kB functions primarily in biological processes, including

the inflammatory response and immunity. It was demonstrated to

be activated in the diabetic retina in numerous studies, its

activation increasing capillary apoptosis (72), which is a

precursor to the development of DR characteristics. The activity

of the NF-kB signaling pathway has been reported to be enhanced

in diabetic rat studies. In turn, NF-kB p65 expression upregulation

increases ROS production, which leads tomicroaneurysms, retinal

neovascularization, and vitreous hemorrhage in diabetic rats, and

promotes DR progression (73, 74).

According to Li et al., the number of pericytes in retinal

capillaries of miR-874 mimics-treated DR in rats rose, whereas

EC proliferation was reduced. MiR-874 inhibitor exacerbates DR

in diabetic rats after treatment. The results showed that miR-874

overexpression suppressed NF-kB signaling pathway expression

and alleviated DR in diabetic rats (75). Li et al. demonstrated low

miR-486-3p expression and high TLR4 and NF-kB expression in

HG-treated Müller cells. TLR4 is the action site of miR-486-3p.

In HG-treated Müller cells, miR-486-3p upregulation or TLR4

downregulation prevented oxidative damage, inflammation, and

apoptosis while promoting proliferation. This study highlighted

that the protective role of exosomal-induced miR-486-3p

upregulation in DR mice is by TLR4/NF-kB axis inhibition (76).

Hui et al. found that miR-145 was downregulated in HG-

treated retinal microvascular ECs (RECs), while miR-145

overexpression suppressed enhanced TLR4 expression and NF-kB
p65 nuclear translocation in HG-treated RECs. More importantly,

miR-145 overexpression reduced REC apoptosis, oxidative stress,

and inflammatory cytokine release in HG environments. These
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findings revealed that miR-145 may exert antioxidant and anti-

inflammatory effects in DR (54). Ye and Steinle reported decreased

miR-146a expression in human RECs cultured with HG.

Overexpression of miR-146a with a miR-146a mimic reduced

TLR4/NF-kB and TNF expression in RECs induced by HG.

Overexpression of miR-146a in RECs reduced MyD88-dependent

and -independent signaling under HG conditions. The results

showed that miR-146a suppressed TLR4/NF-kB and TNF-a, the
potential site of action for reducing REC inflammation (77).
5.5 Summary

Exosomes have multiple mechanisms of action in DR, but the

specific mechanisms remain unclear. However, exosomes might

have a critical role in this process and its treatment. Figure 2 shows

the possible signaling pathways and molecular mechanisms

involving miRNA in DR formation and development. Table 1

shows exosome-derived proteins and RNA involved in DR.
6 Exosomes and diabetes-related
cardiovascular and cerebrovascular
events

The vascular complications of diabetes include macrovascular

and microvascular complications. In recent years, many studies

have proved that miRNA has a good therapeutic effect in the

treatment not only of DR but also of other complications of

diabetes. There is increasing evidence that exosomes change in

the blood of patients with diabetes and are implicated in the

progression of diabetes, including microvascular complications,

inflammation, and changes in coagulation (78, 79). Next, we

briefly introduce the role of miRNA in the treatment of other

complications of diabetes. Figure 3 shows the exosomes related to

cardiovascular and cerebrovascular risk events, such as DN,

myocardial infarction (MI), and stroke.
6.1 Diabetic nephropathy

It was found that rapamycin (mTOR) is a core component of

cell growth signaling, and, when its activity is enhanced, it can

promote protein translation and autophagy. Autophagy protects

against renal injury induced by hyperglycemia (80). Ebrahim

et al. found that BMSC-derived exosomes enhanced autophagy

via blocking the mTOR signaling pathway in a model of DR. In

addition, they found that when using MSC-derived exosomes to

treat mice with DN, the histological morphology of the kidneys

was restored and fibrosis markers were reduced (81).

The development of DN is also associated with podocyte

injury (82). VEGF produced by podocytes is not beneficial in
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treating DN (83). MiR-16-5p could reduce VEGF expression.

Hyperglycemia reduces podocyte miR-16-5p production and

stimulates VEGF release. Following miR-16-5p overexpression

in human embryonic stem cells, exosomes might deliver it to

HG-treated podocytes, reducing the degree of podocyte

apoptosis and expressing VEGF, thereby delaying the

occurrence and development of DN (84).
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6.2 Ischemic myocardial infarction

MI is a major cause of mortality in all cardiovascular diseases.

Ischemia and reperfusion damage is an inevitable adverse reaction

after MI. There is presently no effective treatment to reduce the

damage to the heart from MI. Recent research has shown that

miRNAs in the heart and circulation are markedly altered after MI
TABLE 1 List of exocrine derived proteins and RNA involved in diabetic retinopathy.

Classification Component Effect Reference

Protein SNHG7 EndMT ↓ (37)

Notch3 Calcification/aging of VSMCs ↓ (40)

RNA miR–202–5p EndMT ↓ (36)

miR–1260b Abnormal VSMC proliferation ↑ (39)

miR–21 Proliferation and migration of RPEC↑ (65)

miR–200a–3p Cell proliferation↑ Apoptosis↓, Inflammatory cytokines ↓ VEGF ↓ (62)

miR–183 Endothelial cell proliferation ↑
Apoptosis↓

(64)

miR–199a–3p Neovascularization ↓ (67)

miR–141–3p Retinal neovascularization ↓ (69)

miR–145 RECs Apoptosis↓ oxidative stress↓
Inflammatory cytokines↓

(54, 71)

miR–874 Number of retinal capillary pericytes↑
Endothelial cell proliferation↓

(75)

miR–486–3p Oxidative stress↓ inflammation ↓
Apoptosis↓

(75)

miR–146a REC inflammation↓ (77)
fro
FIGURE 2

Possible exosome-mediated signaling pathways in DR. Exosomes are synthesized in various cells. Under physiological or pathological
conditions, their carriers may change and participate in the formation of the collective pathological state. They may activate TGF-b, the signaling
pathway that mediates the hemodynamics of individuals with PDR. By blocking TGF-b, the activation of the signaling pathway promotes cell
proliferation and reduces apoptosis and the inflammatory response. Exosomes (such as miR-141-3p) may also inhibit retinal neovascularization
by preventing the activation of the p38/MAPK signaling pathway. Exosomes can also be detected by the PI3K/Akt signaling pathway, which can
induce vascular endothelial cell proliferation while preventing cell apoptosis, as well as cell proliferation and migration of the retinal pigment
epithelium cell. The stimulation of the signaling system may also aid in the reduction of HG-induced cell proliferation, migration, and
angiogenesis. In diabetic rats, the activity of the NF-kB signaling pathway rose dramatically, and inhibiting the NF-kB signaling pathway can
reduce inflammation, apoptosis, and oxidative stress.
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(85). For example, Cheng et al. found significantly increased miR-1

and miR-208 levels in the urine of patients with acute MI and in the

circulating blood of rats after acute MI (86). Mao et al. found that

KLF3-AS1 mediates Sirt1 expression by serving as a ceRNA to

sponge miR-138-5p, thereby regulating cardiomyocyte pyroptosis

and MI progression (87). Furthermore, miR-125b-5p inhibited p53

and BAK1 production, which reduced apoptosis. In addition,

increased miR-125b-5p expression in macrophages alleviated

hypoxia/reperfusion-induced cellular damage. Enhanced miR-

125b-5p production in the myocardium significantly reduced the

size of the MI (88, 89). The findings of Zhu et al. showed a unique

method, whereby cell-free hypo-exo promotes ischemic heart repair

via anti-apoptotic miR-125b-5p (89). The role of exosomes in MI is

increasingly recognized, but the mechanisms involved and their role

in improving cardiac function remain unclear (90).
6.3 Stroke

Reflex mechanisms are engaged to protect cerebral perfusion

in early hemorrhagic strokes, such as intracerebral hemorrhage

and subarachnoid hemorrhage, but the corresponding secondary

injury and malfunction can lead to cerebral ischemia, hypoxia,

and ultimately neuronal cell death (91). Recent evidence suggests

that exosomes may perform various functions in brain repair and

as biomarkers for stroke (92). In a previous research, exosome

extraction from MSCs was reported to ameliorate specific brain

tissue damage in an experimental animal model (93). Exosomes

generated by endothelial progenitor cells (EPCs) have been shown

to protect ECs from hypoxia/reoxidation injury, which is partially
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due to the role of miR-210 (94). According to Liu et al., miR-137

upregulation promoted EPC proliferation and angiogenesis in

mice with ischemic stroke by the Notch pathway (95). Taken

together, exosomes are implicated in the occurrence and

progression of stroke through various mechanisms, providing

new ideas for stroke treatment.
7 Conclusion and prospects

In recent years, exosomes have been studied as a new biological

entity engaged in intercellular communication in a variety of

physiological and pathological processes. Ongoing technological

and experimental advances have the potential to uncover cellular

and molecular mechanisms of intercellular communication, organ

homeostasis, and disease, enhancing our ability to use these

mechanisms as therapeutic and diagnostic tools. DR increases the

risk for blindness in those with diabetes. Previous studies have

found that exosomes may play a role in both the pathogenesis and

treatment of DR. Earlier studies have found that circulatory

miRNAs are differentially expressed in subjects with diabetes (96),

suggesting that miRNAs could be used as new biomarkers for

detecting or predicting the overall progression of the disease, as well

as the progression of retinopathy from mild to sight-threatening

(97–99). For example, miR-221, an antiangiogenic miRNA found in

blood as a biomarker for DR in individuals with T2DM and PDR,

was found to be implicated in the physiopathology of T2DM and

macrovascular problems (100–102). RNA sequencing has

established the potential biomarkers let-7a and miR-151 in serum

for early-stage and late-stage DR in patients with T2DM. The
FIGURE 3

Exocrine-related complications of diabetes. During the development t of diabetes mellitus, changes in the microenvironment also lead to
alterations in exocrine bodies, which are involved in cardiovascular and cerebrovascular risk events, such as diabetic nephropathy, myocardial
infarction, and stroke. Ever-increasing evidence suggests that the level of exosomes in the blood of patients with diabetes is elevated and is
involved in the pathophysiology of diabetes-related diseases. Therefore, we concluded that the overexpression and downregulation of specific
miRNA might be a new method to treat diabetes and its related complications.
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previous study has discovered that using multiple miRNAs and

anti-miRNAs in a combinational therapy is a unique method that

involves targeting numerous pathways with different drugs andmay

provide a synergistic angiostatic effect that can help to prevent DR

pathologic angiogenesis problems. Overexpression of miR-216a, for

example, protected against HRMEC damage in DR by inhibiting

the NOS2/JAK/STAT axis in the DR rat retina (103).

Simultaneously, miRNA-29b-3p increases HRMEC apoptosis in

DR by inhibiting SIRT1 (104). Upregulation of miR-203a-3p, which

targets VEGFA and HIF-1, may decrease retinal neovascularization

in the oxygen-induced retinopathy rat model (105). In DR

development, the involvement of exosomes and the role of

pericytes have separately been widely studied. However, limited

studies have investigated the role of pericyte-related exosomes in the

occurrence and development of DR, particularly its biological

mechanism. Consequently, future studies should focus on the

effect of exocytosis on pericytes and thus its potential role in DR.

The use of stem cell exosomes for the treatment of DR requires

further basic and clinical research.

In conclusion, exosomes, particularly their miRNAs, are

involved in the pathophysiological process of DR and establish

multilevel connections. Exosomes have broad application

prospects in the treatment and prognostic evaluation of DR.
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