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Compilation of longitudinal gut 
microbiome, serum metabolome, 
and clinical data in acute myeloid 
leukemia
Armin Rashidi   1 ✉, Maryam Ebadi1, Tauseef Ur Rehman1, Heba Elhusseini1, 
Hossam Halaweish2, Thomas Kaiser2, Shernan G. Holtan1, Alexander Khoruts   3, 
Daniel J. Weisdorf1 & Christopher Staley   2

Induction chemotherapy for patients with acute myeloid leukemia (AML) is a unique clinical scenario. 
These patients spend several weeks in the hospital, receiving multiple antibiotics, experiencing 
gastrointestinal mucosal damage, and suffering severe impairments in their immune system and 
nutrition. These factors cause major disruptions to the gut microbiota to a level rarely seen in other 
clinical conditions. Thus, the study of the gut microbiota in these patients can reveal novel aspects of 
microbiota-host relationships. When combined with the circulating metabolome, such studies could 
shed light on gut microbiota contribution to circulating metabolites. Collectively, gut microbiota and 
circulating metabolome are known to regulate host physiology. We have previously deposited amplicon 
sequences from 566 fecal samples from 68 AML patients. Here, we provide sample-level details and a 
link, using de-identified patient IDs, to additional data including serum metabolomics (260 samples 
from 36 patients) and clinical metadata. The detailed information provided enables comprehensive 
multi-omics analysis. We validate the technical quality of these data through 3 examples and 
demonstrate a method for integrated analysis.

Background & Summary
The standard curative-intent chemotherapy for patients with acute myeloid leukemia (AML) is accompanied by 
major intestinal microbiota disruptions due mainly to high antibiotic pressure during several weeks of hospital-
ization1–3. The impact of dysbiosis in these patients has only partially been characterized and includes neutro-
penic fever4, bloodstream infection3,5, and increased mortality6. The involved mechanisms are even less clear and 
include intestinal domination6, gut barrier damage5, and altered microbiota-host crosstalk4. One of the reasons 
for our poor understanding of how dysbiosis may influence clinical outcomes in these patients is the inherently 
high-risk nature of mechanistic studies in this patient population. Intensive chemotherapy suppresses the bone 
marrow and the resulting decline in platelets and white blood cells make safe access to the intestinal tract and 
associated interventions challenging and often infeasible due to high bleeding and infection risk. The period of 
neutropenia typically starts during week 1 of chemotherapy and, in patients achieving a complete remission, 
ends in week 4.

With these limitations in mind, a good alternative strategy to achieve mechanistic knowledge is by analyzing 
longitudinal datasets of multi-omic data. Multi-omics data assess different but related aspects of pathogenesis 
which are often on a causal link. For example, the gut microbiota regulates and significantly contributes to 
the circulating metabolome7–9. In addition, longitudinal data provide insight into intra-individual patterns of 
change over time10 which should be distinguished from inter-individual variation due to the personalized fea-
tures of the microbiota and relevant host-specific factors11. Knowledge obtained from longitudinal multi-omics 
studies facilitates the generation of testable hypotheses for subsequent therapeutic trials12.
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Here, we provide patient- and sample-level longitudinal gut microbiota and circulating microbiome data 
from AML patients hospitalized to receive induction chemotherapy at the University of Minnesota. Since the 
initiation of our effort to collect this biorepository, we have been depositing the raw 16S amplicon sequences 
from the stool samples in the form of paired-end fastq files at the NCBI’s Sequence Read Archive13. In addition, 
we recently analyzed a subset of longitudinal serum samples obtained from the same patients for metabolom-
ics and reported them in aggregate4. Here, we provide patient- and sample-level metabolomic data and a link 
between serum and stool samples for each patient. In addition, we provide granular antibiotic exposure data 
(facilitated by the patients’ hospitalized and their closely monitored status) and other clinical metadata for each 
patient. Collectively, the user will have access to the longitudinal gut microbiome, serum metabolome, and clin-
ical metadata of each patient. This unique database will enable hypothesis generation about gut microbiota and 
circulating metabolomic changes within and between individuals over time, their possible causal connections, 
and how baseline and subsequent clinical factors may influence the microbiome and metabolome. Prolonged 
hospitalization, heavy antibiotic exposure to prevent and treat infections, severe decline in the immune system, 
cytotoxic damage to the intestinal barrier, and nutritional compromise make the patient population of interest 
in this study unique. Therefore, we expect the well-annotated multi-omics data compiled here to lead to new 
discoveries in humans experiencing severe multi-faceted perturbations.

Methods
Participants and clinical metadata.  Sample collection and analysis was approved by the University of 
Minnesota Institutional Review Board (ClinicalTrials.gov Identifier: NCT03316456). All participants provided 
signed informed consent. Clinical metadata was obtained by reviewing the electronic medical records. In the 
first step, 3 of the investigators independently collected data. In the second step, a fourth investigator compared 
the findings between the reviewers and resolved any conflicts. All identifiable data were removed. Patient_ID is a 
non-identifiable indicator that can be used to link clinical metadata to omics sample data. All dates are relative to 
the first day of chemotherapy, which itself will remain confidential. This protocol was initiated in 2017 and closed 
in 2021. This article includes all data from the study.

Sample collection and fecal 16S rRNA gene sequencing.  Serum and stool sample collection started 
with hospital admission and continued twice weekly (Mon/Thu + /− 2 days) until day 28 of chemotherapy or dis-
charge (whichever occurred first). Serum samples were collected twice weekly (Mon/Thu; preprandial) between 
6–8 AM in standard red-top tubes, split in 250 μL aliquots, and stored at −80 °C within 2 hours of collection. 
Stool samples were collected in 95% ethanol-filled sterile tubes and stored at −80 °C. DNA from the stool samples 
was extracted using the DNeasy PowerSoil DNA isolation kit (QIAGEN, Hilden, Germany). qPCR was used to 
quantify 16S rRNA gene content in each sample. The V4 hypervariable region of the 16S rRNA gene was ampli-
fied on an Illumina MiSeq platform (2 × 300 paired-end mode)14. Adaptor trimming was done using SHI715, and 
the resulting demultiplexed fastq files were used as input to DADA216 to infer exact amplicon sequence variants 
(ASVs) (dada2 package v1.18.0 in R). For filtering, we used DADA2 default parameters (PHRED score threshold 
of 2, maximum number of expected errors of 2 for both forward and reverse reads) and truncation lengths of 220 
(forward) and 150 (reverse). De-replication, de-noising, merging, and chimera removal were done using DADA2 
default parameters. Taxonomic assignment was done by the naive Bayesian classifier implemented in DADA2 
and the SILVA non-redundant v138.1 training set17. Clinical metadata and ASV abundances were merged into a 
phyloseq object in R (R Foundation for Statistical Computing, Vienna, Austria) for analysis.

Serum metabolome profiling.  Serum samples were sent to Metabolon (Morrisville, NC) for untargeted, 
ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS).

Sample preparation.  Samples were prepared using the automated MicroLab STAR® system from Hamilton 
Company. A total of 100 μL of sample was extracted under vigorous shaking for 2 min (Glen Mills GenoGrinder 
2000) with methanol 80%, containing the following recovery standards: DL-2-fluorophenylglycine, tridecanoic 
acid, d6-cholesterol, and DL-4-chlorophenylalanine. The resulting extract was divided into 5 fractions: two 
for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 
ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, and one for analysis by 
HILIC/UPLC-MS/MS with negative ion mode ESI. The remaining aliquot was reserved for backup. Samples 
were placed briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were stored 
overnight under nitrogen before preparation for analysis.

Mass spectrometry.  All methods utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive 
high-resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source 
and Orbitrap mass analyzer operated at R = 35,000 mass resolution. The sample extract was dried then recon-
stituted in solvents compatible to each of the four methods. For each sample, two aliquots of each sample were 
reconstituted in 50 μL of 6.5 mM ammonium bicarbonate in water (pH 8) for the negative ion analysis and 
another two aliquots of each were reconstituted using 50 μL 0.1% formic acid in water (pH ~3.5) for the posi-
tive ion method. Each reconstitution solvent contained a series of standards at fixed concentrations to ensure 
injection and chromatographic consistency. The internal standards consist of a variety of deuterium labeled 
or halogenated biochemicals specifically designed both to cover the entire chromatographic run and to not 
interfere with the detection of any endogenous biochemicals. Authentic standards of d7-glucose, d3-leucine, 
d8-phenylalanine, and d5-tryptophan were purchased from Cambridge Isotope Laboratories (Andover, 
MA). d5-hippuric acid, d5-indole acetic acid, and d9-progesterone were procured from C/D/N Isotopes, Inc. 
(Pointe-Claire, Quebec). Bromophenylalanine was provided by Sigma-Aldrich Co. LLC. (St. Louis, MO) and 
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amitriptyline was from MP Biomedicals, LLC. (Aurora, OH). Recovery standards of DL-2-fluorophenylglycine 
and DL-4-chlorophenylalanine were from Aldrich Chemical Co. (Milwaukee, WI). Tridecanoic acid was pur-
chased from Sigma-Aldrich (St. Louis, MO) and d6-cholesterol was from Cambridge Isotope Laboratories 
(Andover, MA). Standards for the HILIC dilution series of alpha-ketoglutarate, ATP, malic acid, NADH, and 
oxaloacetic acid were purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO) while succinic acid, pyruvic acid 
and NAD + were purchased from MP Biomedicals, LLC. (Santa Ana, CA). Limit of detection (LOD) for stand-
ards analyzed in a dilution series using reverse phase chromatography is available in Table 1.

One aliquot was analyzed using acidic positive ion conditions (LC pos), chromatographically optimized 
for more hydrophilic compounds. In this method, the extract was gradient eluted from a C18 column (Waters 
UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid 
(PFPA) and 0.1% formic acid (FA) at pH = 2.5. Elution was performed at 0.35 mL min−1 in a linear gradient 
from 5% to 80% of methanol containing 0.1% FA and 0.05% PFPA over 3.35 min. A second aliquot was also ana-
lyzed using acidic positive ion conditions; however, it was chromatographically optimized for more hydrophobic 
compounds. In this method, the extract was gradient eluted from the same aforementioned C18 column using 
methanol 50%, acetonitrile 50%, water, 0.05% PFPA, and 0.01% FA at pH = 2.5 and was operated at an overall 
higher organic content. Elution was performed at 0.60 mL/min in a linear gradient from 40% to 99.5% over 
1 min, hold 2.4 min at 99.5% of methanol 50%, acetonitrile 50%, 0.05% PFPA, and 0.01% FA. A third aliquot was 
analyzed using basic negative ion-optimized conditions with a separate dedicated C18 column (LC neg). The 
basic extracts were gradient eluted from the column using methanol 95% and water 5%, with 6.5 mM ammo-
nium bicarbonate at pH 8. Elution was performed at 0.35 mL min−1 with a linear gradient from 0.5% to 70% of 
methanol 95%, water 5% with 6.5 mM ammonium bicarbonate over 4 min, followed by a rapid gradient to 99% 
in 0.5 min. The sample injection volume was 5 μL and a 2 × needle loop overfill was used. Separations utilized 
separate acid and base-dedicated 2.1 mm × 100 mm Waters BEH C18 1.7 μm columns held at 40 °C. The fourth 
aliquot was analyzed via negative ionization following elution from an HILIC column (LC HILIC) (Waters 
UPLC BEH Amide 2.1 × 150 mm, 1.7 µm, held at 40 °C) using a gradient consisting of water (15%), methanol 
(5%), and acetonitrile (80%) with 10 mM ammonium formate, pH 10.16. Elution flow rate was 0.5 mL/min with 
a linear gradient from 5% to 50% in 3.5 min, followed by a linear gradient from 50% to 95% in 2 min, of water 
(50%), acetonitrile (50%) with 10 mM ammonium formate, pH 10.6. The MS analysis alternated between MS 
and data-dependent MSn scans using dynamic exclusion. The scan range varied slightly between methods but 
covered 70–1000 m/z.

Quality assurance and quality control (QA/QC).  Several types of controls were analyzed in concert with the 
experimental samples: a pooled matrix sample generated by taking a small volume of each experimental sample 
served as a technical replicate throughout the platform run; extracted water samples served as process blanks; 
and a cocktail of QC standards (carefully chosen not to interfere with the measurement of endogenous com-
pounds) spiked into every analyzed sample allowed instrument performance monitoring and aided chroma-
tographic alignment. Tables 2–4 describe QC samples and standards. Instrument variability was determined 
by calculating the median relative standard deviation (RSD) for the internal standards that were added to each 
sample prior to injection into the mass spectrometers (median RSD = 3–4%). Instruments are calibrated at least 
weekly in the utilized polarity using thermo and mass accuracy is monitored at the batch level for the internal 
standards. A batch fails QC if any of the internal standards are more than 5 ppm away from the theoretical mass. 
Overall process variability was determined by calculating the median RSD for all endogenous metabolites (i.e., 

Standard HRAM LOD ng/mL UMR LOD ng/mL

d7-glucose 1.0 50.0

d3-leucine 0.25 5.0

d8-phenylalanine 0.25 3.0

d5-tryptophan 0.25 25.0

d5-hippuric acid 0.25 5.0

Br-phenylalanine 0.25 3.0

d5-indole acetic acid 3.0 25.0

amitriptyline 0.5 3.0

d9-progesterone 1.0 25.0

Table 1.  Limit of detection (LOD) for standards in a dilution series using reverse-phase chromatography.

Type Description Purpose

CMTRX Pool created by taking a small aliquot from 
every customer samples.

Assess the effect of a non-plasma matrix on the Metabolon process and 
distinguish biological variability from process variability.

PRCS Aliquot of ultra-pure water Process Blank used to assess the contribution to compound signals from the 
process.

SOLV Aliquot of solvents used in extraction. Solvent Blank used to segregate contamination sources in the extraction.

Table 2.  Description of metabolon QC samples.
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non-instrument standards) present in 100% of the pooled matrix (MTRX) samples, which are technical repli-
cates created from a large pool of extensively characterized human plasma. The median RSD for MTRX samples 
was 9–10%. Five MTRX samples and three process blank samples were processed per every batch of 30 samples. 
Experimental samples were randomized across the platform run with QC samples spaced evenly among the 
injections, as outlined in Fig. 1. All studies include the analysis of a technical replicate of a sample pooled from 
the experimental samples. This pool was analyzed 16 times over the course of the analysis of the experimental 
samples in the present study.

Compound identification and quantification.  Raw data were extracted, peak-identified, and QC processed 
using Metabolon pipelines. Compounds were identified by comparison to library entries of purified standards 
or recurrent unknown entities18,19. Briefly, Metabolon maintains a library based on authenticated standards 
(analyzed using the same methodology as the experimental samples) that contains the retention time/index (RI), 
mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all molecules present 
in the library. Furthermore, biochemical identifications are based on three criteria: retention index within a 
narrow RI window of the proposed identification (typically within a 5 second window), accurate mass match 
to the library ± 10 ppm (typically well within a 5 ppm window), and the MS/MS forward and reverse scores 
between the experimental data and authentic standards. The MS/MS scores are based on a comparison of the 
ions present in the experimental spectrum to the ions present in the library spectrum. While there may be sim-
ilarities between these molecules based on one of these factors, the use of all three data points can be utilized 

Condition Internal standards

LC neg

d7-glucose

d3-methionine

d3-leucine

d8-phenylalanine

d5-tryptophan

Br-phenylalanine

d15-octanoic acid

d19-decanoic acid

d27-tetradecanoic acid

d35-octadecanoic acid

d2-eicosanoic acid

LC HILIC

d35-octadecanoic acid

d5-indole acetic acid

Br-phenylalanine

d5-tryptophan

d4-tyrosine

d3-serine

d3-aspartic acid

d7-ornithine

d4-lysine

LC pos

d7-glucose

d3-methionine

d3-leucine

d8-phenylalanine

d5-tryptophan

Br-phenylalanine

d4-tyrosine

d5-indole acetic acid

d5-hippuric acid

amitriptyline

d9-progesterone

d4-dioctylphthalate

Table 4.  Quality control internal standards.

Type Description Purpose

RS Recovery Standard Assess variability and verify performance of extraction and instrumentation.

IS Internal Standard Assess variability and performance of instrument.

Table 3.  Metabolon QC standards.
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to distinguish and differentiate biochemicals. The QC and curation processes were designed to ensure accu-
rate and consistent identification of true chemical entities, and to remove those representing system artifacts, 
mis-assignments, and background noise. Metabolon data analysts use proprietary visualization and interpre-
tation software to confirm the consistency of peak identification among the various samples. Library matches 
for each compound were checked for each sample and corrected if necessary. Peaks were quantified using 
area-under-the-curve. A data normalization step was performed to correct variation resulting from instrument 
inter-day tuning differences. Essentially, each compound was corrected in run-day blocks by registering the 
medians to equal 1 and normalizing each data point proportionately. Metabolites were assigned to pathways 
based on three publicly available key chemical information resources: PubChem, HMDB and KEGG pathway 
database.

Data Records
Raw sequences from the stool samples were deposited at the NCBI’s Sequence Read Archive13. The following 
data were compiled and deposited in Figshare20:

MetabolitesIDTable: A table containing all detected serum metabolites

•	 Metabolite_ID: metabolite identifier
•	 Metabolite: scientific name of the metabolite. Compounds for which no authentic standards were availa-

ble for confirmation are marked with an “*” after the compound name to designate these as Metabolomics 
Standards Initiative level 2/321. All other metabolites were identified at level 1. The Metabolomics Standards 
Initiative has provided a consensus classification and notation for the level of confidence in metabolite iden-
tification. Level 1 indicates the highest level of confidence in the identity of the compound where at least 2 
orthogonal properties of an authentic chemical standard are compared to experimental data acquired in the 
same laboratory with the same analytical methods. More than 3300 commercially available purified standard 
compounds have been acquired by Metabolon and registered for analysis on all platforms for determination 
of their analytical characteristics. Levels 2 and 3 indicate reasonable confidence in metabolite identification 
despite lack of an authentic standard. Specifically, level 2 (putative identification) reveals probable structure 
using fragmentation data from literature and/or libraries and databases, while level 3 (tentative structural 
identification) includes a unique match with data searched through literature and/or libraries and databases. 
Most such identifications are based on the experimental signature having the same characteristics as the com-
pound class. For example, sphingomyelins all have a conserved fragmentation spectrum and so have a highly 
diagnostic pattern in order to permit the identification of the experimental signature as a sphingomyelin.

•	 SuperPathway: superpathway containing the metabolite
•	 SubPathway: subpathway containing the metabolite
•	 HMDB: The Human Metabolome Database identifier for the metabolite22

•	 KEGG: The Kyoto Encyclopedia of Genes and Genomes identifier for the metabolite23

•	 PUBCHEM: PubChem identifier for the metabolite24

AntibioticsTable: A table containing antibacterial antibiotic exposure data between hospital admission and 
day 28 of chemotherapy or discharge (whichever occurred first)

•	 Patient_ID
•	 AntibacterialABx: antibiotic name
•	 StartDayRelativeToD1Chemo: initiation date of the antibiotic relative to day 1 of chemotherapy
•	 StopDayRelativeToD1Chemo: end date of the antibiotic relative to day 1 of chemotherapy

CMTRX: Technical 
replicates created from 
an aliquot of all client 

study samples 

Client samples 1st injec�on
Study samples randomized and balanced

Client samples CMTRX

Final 
injec�on

Process 
Blank

Day 1

Day 2

Fig. 1  Preparation of client-specific technical replicates. A small aliquot of each sample (colored cylinders) 
is pooled to create a CMTRX technical replicate sample (multi-colored cylinder), which is then injected 
periodically throughout the platform run. Variability among consistently detected biochemicals can be used to 
calculate an estimate of overall process and platform variability.

https://doi.org/10.1038/s41597-022-01600-2


6Scientific Data |           (2022) 9:468  | https://doi.org/10.1038/s41597-022-01600-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Route: route of administration

SerumMetabolitesRawTable: A table containing metabolite levels in serum samples (260 samples from 36 
patients)

•	 Patient_ID
•	 SampleDayRelativeToD1Chemo: serum sample collection date relative to day 1 of chemotherapy
•	 Columns C and later: raw metabolite levels, with column name corresponding to Metabolite_ID in the 

MetabolitesIDTable file

SerumMetabolitesNormalizedTable: A table containing batch normalized (by median) metabolite levels in 
SerumMetabolitesRawTable

StoolSamplesTable: A table containing stool sample data (566 samples from 68 patients)

•	 Accession_Number: SRR accession number for each sample
•	 Patient_ID
•	 SampleDayRelativeToD1Chemo: stool sample collection date relative to day 1 of chemotherapy
•	 Quality: quality control data. A minimum threshold of 1000 copies/mL of 16S rRNA gene quantified by qPCR 

is considered adequate by the University of Minnesota Genomics Center. Smaller values should be treated 
with caution.

PatientMetadata: A table containing patient metadata (68 patients)

•	 Patient_ID
•	 Age
•	 Sex
•	 Disease_Phase: disease phase
•	 Chemotherapy: induction chemotherapy regimen.
•	 FirstNFDayRelativeToD1Chemo: day of the first neutropenic fever relative to day 1 of chemotherapy
•	 DiarrheaStartDayRelativeToD1Chemo: beginning of diarrhea relative to day 1 of chemotherapy
•	 DiarrheaEndDayRelativeToD1Chemo: end of diarrhea relative to day 1 of chemotherapy
•	 FirstCDiffDayRelativeToD1Chemo: day of the first positive test for Clostridioides difficile infection relative to 

day 1 of chemotherapy

Technical Validation
We have previously published on both the gut microbiome and serum metabolome of these patients as interim 
analyses2,4,5,25. The material provided in this article contains all data from the entire study. For technical val-
idation, we use the subset of patients from whom we analyzed both stool and serum samples. We perform 3 
analyses to support the technical quality of data. In the first analysis, we evaluate the microbiota database. In the 
second analysis, we evaluate the metabolomic database. In the third analysis, we integrate the two databases.

Alpha diversity in the gut microbiota.  The distribution of the 5 most abundant phyla among the samples 
is shown in Fig. 2a, with Firmicutes and Bacteroidetes being the two most abundant phyla. Previous studies have 
shown a decrease in alpha diversity during induction chemotherapy in AML patients3,26,27. We evaluated whether 
our dataset captures this pattern. After removing samples with < 1000 copies/mL of 16S rRNA gene or < 5000 
reads, we used scaling with ranked subsampling (SRS package)28 with normalization to the lowest sequenc-
ing depth (5,021 reads) to adjust for sample depth variability. We aggregated ASVs at the genus level. Using 
the Shannon index29 to estimate alpha diversity (package vegan), a decline in diversity over time was apparent 
(Fig. 2b). To quantify this decline while accounting for the longitudinal nature of data (i.e., multiple timepoints 
per patient), we built a linear mixed effect model (lme4 package in R) in the form of Shannon index ~ (1|patient 
ID) + day, where patient ID was considered a random effect and day was the sample collection day relative to day 
1 of chemotherapy. After controlling for patient ID, there was a significant decline in alpha diversity over time 
(regression line in Fig. 1a). The regression coefficient for “day” was −0.025, with a 95% confidence interval of 
−0.034 to −0.017, indicating a negative slope (p < 0.01 from 200 bootstraps using bootMer).

Citrulline dynamics in the serum metabolome.  Citrulline is an amino acid produced exclusively by 
intestinal epithelial cells30, with circulating levels indicating total functioning enterocyte mass. Citrulline has 
been established as a biomarker for intestinal epithelial health30–32, with lower levels indicating intestinal epithelial 
cell loss. Between 10–14 days after starting mucotoxic chemotherapy, citrulline levels reach a nadir, followed by 
gradual recovery31,33. We evaluated whether our metabolomic dataset captures this pattern. Preprocessing of the 
metabolomic database included removing metabolites present in fewer than 50% of the samples and zero impu-
tation using the half minimum of the observed values for each remaining metabolite. Rank-based inverse normal 
transformation was used for normalization. Using a loess smoother, we found a marked decline in citrulline until 
about day 12, after which citrulline slowly rose towards baseline (Fig. 2c). Week 2 of chemotherapy corresponds 
with maximal cytotoxic damage to the intestinal epithelium, thus supporting the validity of our database.
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Integration of multi-omics data.  A unique feature of the present study is the multi-omics nature of data 
in patients with AML. Many microbial metabolites are normally found in the blood7,8. Examples include micro-
bial derived metabolites of dietary tyrosine and tryptophan, with important effects on host physiology. We iden-
tified 139 same-patient pairs of serum and stool samples, with the stool sample collected within 24 hours prior 
to the serum sample. Using these pairs, we evaluated whether biologically meaningful connections can be found 
between the gut microbiota and next-day serum metabolites. We chose a 24 hour interval between samples in 
each pair to minimize intervening events and to account for the short half-life of many circulating metabolites. 
Preprocessing of the microbiota database included removing samples with < 1000 copies/mL of 16S rRNA gene 
or < 5000 reads, removing ASVs present in < 10% of the samples, and removing genera with a mean relative 
abundance < 0.005. This process yielded 33 genera for further analysis. Taxon abundances were centered log-ratio 
transformed to account for data compositionality34. Preprocessing of the metabolomic database was similar to the 
previous technical validation using citrulline dynamics and yielded 632 metabolites. The 33 genera were used as 
predictors of the 632 metabolites in sparse canonical correlation analysis (sCCA, PMA package, function CCA)35.

sCCA is a method to integrate multi-omics datasets with the ability to select more biologically relevant sets 
of features. sCCA identifies strongly associated metabolite-microbe groups by finding linear combinations of 
variables from each dataset maximally correlated with each other while simultaneously thresholding variable 
specific weights to induce sparsity and performing variable selection. This procedure applies L1-penalized 
matrix decomposition of the cross-product matrix similar to a LASSO regression problem36, thus variables are 
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Fig. 2  Gut microbiota taxonomic distribution, alpha diversity, and serum citrulline dynamics. (a) Distribution 
of the 5 most abundant phyla among samples. (b) Shannon index on the gut microbiota over time. The 
regression line was derived from a mixed effect model with patient ID as a random effect. (c) Serum citrulline 
levels over time. Citrulline levels are after rank-based inverse normal transformation.
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selected based on their importance to the overall microbe-metabolite covariance. As a result, taxa and metab-
olites with non-zero loading coefficients are those driving the overall correlation between the two datasets. 
Hyperparameter tuning was done through 50 permutations (CCA.permute function) and the best set of penalty 
values for each dataset were used to fit the final model. An overall correlation coefficient between the two data-
sets was also estimated using the correlation coefficient in the first canonical variable. The 99% confidence inter-
val for the correlation coefficient was estimated from 1000 bootstraps. Pairwise Pearson correlation coefficients 
were calculated between each selected genus and metabolite and the correlogram was visualized by a heatmap 
(pheatmap package).

Eleven genera and 201 metabolites drove the association between the gut microbiome and serum metab-
olome. The overall correlation coefficient between the two datasets was 0.79 (99% confidence interval: 0.71–
0.83, p < 0.001). The heatmap in Fig. 3a visualizes univariate correlations between these taxa and metabolites, 
and MicrobiomeMetabolomeHeatmap deposited in Figshare20 details them in tabular format. There was a 
clear separation of genera into two groups based on their metabolite associations. The first group contained 
obligate anaerobic commensal genera in the Clostridia class (Faecalibacterium, Subdoligranulum, Blautia, 
and an Oscillospiraceae genus UCG-002) with a plethora of beneficial effects such as butyrate production and 
anti-inflammatory properties37–39. The second group contained genera with frequently pathogenic species in 
patients with cancer including Enterococcus, Pseudomonas, Rothia, and Veillonella. These 2 groups showed stark 
differences in the metabolic pathways of their positively associated metabolites (Fig. 3b). Metabolites associated 
with the first group were enriched in amino acid and xenobiotic pathways, while the second group metabolites 
were enriched in the lipid pathway. Among metabolites in group 1 were known microbial metabolites of dietary 
tryptophan (indoleacetate40) and tyrosine (p-cresol sulfate41) as well as butyrate/isobutyrate.
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Fig. 3  Integrated multi-omics. (a) Heatmap correlogram showing Pearson correlation coefficient between each 
final gut microbiota genus and each final serum metabolite remaining in the final results of sparse canonical 
correlation analysis. UCG-002 is a genus in the Oscillospiraceae family. (b) Distribution of metabolites in groups 
1 and 2 in panel (a) in different metabolic pathways.
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Usage Notes
We present repositories for a longitudinal dataset of gut microbiota and serum metabolomics from hospitalized 
patients with AML receiving induction chemotherapy at the University of Minnesota. These data, combined 
with the curated clinical metadata presented here, provide a unique opportunity for hypothesis generation. 
As an example, we illustrated how the microbiome and metabolome datasets can be integrated to identify 
novel associations for further testing in future studies. To our knowledge, this is the first public, patient- and 
sample-level, multi-omics database offering the interested user access to raw amplicon sequences, metabolomic 
data, and detailed clinical metadata in patients with AML receiving induction chemotherapy. In our multi-omics 
example, and by providing access to the code, we have provided a step-by-step tutorial on how sCCA may be 
used to integrate microbiome and metabolomics data while accounting for data compositionality and sparsity.

One limitation of this work is the lack of curated dietary data as an important determinant of both gut 
microbiota42 and serum metabolome9,43. In addition, although antibacterial antibiotic prophylaxis in this patient 
population utilizes fluoroquinolones in most centers44, it is not universal. Therefore, specific patterns of micro-
biota change may not be generalizable worldwide. Similarly, microbiome-metabolome associations found here 
are likely not fully generalizable to healthy individuals because of the multitude of insults to the intestinal barrier 
and gut microbiota in patients with AML. Finally, species-level inferences cannot be reliably made from short 
amplicon data45, a limitation that can be overcome by shotgun sequencing.

Code availability
The custom R code is available in Figshare20.
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