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Abstract: A normally-off GaN double-implanted vertical MOSFET (DMOSFET) with an atomic layer
deposition (ALD)-Al2O3 gate dielectric film on a free-standing GaN substrate fabricated by triple ion
implantation is presented. The DMOSFET was formed with Si ion implanted source regions in a Mg
ion implanted p-type base with N ion implanted termination regions. A maximum drain current of
115 mA/mm, maximum transconductance of 19 mS/mm at a drain voltage of 15 V, and a threshold
voltage of 3.6 V were obtained for the fabricated DMOSFET with a gate length of 0.4 µm with
an estimated p-type base Mg surface concentration of 5 × 1018 cm−3. The difference between
calculated and measured Vths could be due to the activation ratio of ion-implanted Mg as well as
Fermi level pinning and the interface state density. On-resistance of 9.3 mΩ·cm2 estimated from the
linear region was also attained. Blocking voltage at off-state was 213 V. The fully ion implanted GaN
DMOSFET is a promising candidate for future high-voltage and high-power applications.
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1. Introduction

Wide-bandgap-based vertical power devices with normally-off operation have been developed
in recent years [1–8]. The vertical devices are essential parts for power electronics in electric vehicles,
data centers, smart grids, and renewable energy processes [9,10]. Silicon carbide (SiC) vertical
MOSFETs are widely used in power applications. The early SiC power MOSFETs were vertical
trench MOSFETs (UMOSFETs), in which the base and source regions were formed epitaxially, without
the need for ion implantation [2]. One of the disadvantages of the trench MOSFETs is the problem with
oxide breakdown at the trench corners. The planar double-implanted vertical MOSFETs (DMOSFETs)
were developed to avoid critical electric field at the trench corners [11]. The p-type base and the
n-type source regions are formed by successive ion implantation and high-temperature annealing
procedures. Gallium nitride (GaN) is an ideally suitable material for applications in high-power,
high-frequency, and high-temperature devices due to its remarkable properties [12]. Except for the
applications of using GaN in photonics [13–15], the electric power devices with normally-off operation
have progressed rapidly in recent years [5,7]. In conventional GaN technology, p-type and n-type layers
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are formed by impurity doping during epitaxial growth [16–18]. Thus, recent GaN vertical power
transistors have trench gate structures and low-resistance source regions utilized two-dimensional
electron gas (2DEG) produced by polarization charges at the hetero-interface [19]. Ion implantation is
a widely used doping technology for Si and SiC MOSFETs but it has been difficult to form a p-type
doping layer using ion implantation technology for GaN device fabrication process until recently.
To obtain a high-quality p-type layer using ion implantation, an annealing procedure with temperatures
higher than the epitaxial growth temperature of the GaN layer on a GaN or sapphire substrate is
required. Though the formation of a p-type GaN layer and a p-n junction by Mg ion implantation
have been reported [20–22], there have been a few reports about vertical devices fabricated in the
Mg ion implanted layer [23]. In this paper we demonstrate GaN DMOSFETs with atomic layer
deposition (ALD)-Al2O3 gate dielectric films fabricated on free-standing GaN substrates for the first
time, by incorporating Si ion implanted regions into Mg ion implanted regions.

2. Double Ion Implantation into GaN

Prior to device fabrication, the properties of damage recovery on Mg ion implanted p-type layers
were investigated. Schematic cross sections of implanted layers are shown in Figure 1. Mg + Si
ions were implanted into free-standing GaN substrates. After Mg ion implantation at an energy of
150 keV with a dose of 1 × 1014 cm−2, Si ions at an energy of 50 keV with a dose of 1 × 1015 cm−2

were then successively implanted, followed by annealing at 1230 ◦C for 1 min in N2 gas ambient.
Implanted Mg and Si profiles measured by secondary ion mass spectrometry (SIMS, EAG Laboratories,
Sunnyvale, CA, USA) in free-standing GaN substrate before/after annealing are shown in Figure 2.
Mg profiles before/after annealing did not change. The background of Si concentration included in
free-standing GaN substrate was about 2 × 1018 cm−3. The depth of the p-n junction fabricated by
Si ion implantation in the Mg-doped p-type layer was estimated at 100 nm. Transmission electron
microscope (TEM, EAG Laboratories, Sunnyvale, CA, USA) images of the Mg implanted layer and
the double (Mg and Si) ion implanted layer are shown in Figure 3. Many defects were still present in
the Si implanted layer after high-temperature annealing, but it seems that the defects that were more
clearly seen after annealing in the Mg ion implanted layer were due to the localization of Mg atoms.
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Figure 1. Mg ion implantation and double ion implantation of Mg and Si.
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3. Device Structure and Fabrication

A schematic cross section of the device structure of an ion-implanted GaN DMOSFET on
a free-standing GaN substrate is shown in Figure 4. The channel regions were fabricated in the
Mg ion-implanted layers and the gate length was self-alignedly defined by the difference in the depths
between Mg and Si implanted regions. The fabrication process of the DMOSFET is illustrated in
Figure 5. The GaN layer (5 µm) with a Si density of 5 × 1016 cm−3 was grown by metal-organic vapor
phase epitaxy (MOVPE) on a free-standing GaN substrate with a low threading dislocation density
of 106 cm−2. Mg ions were implanted to form contact regions of the p-base regions at first. Mg ion
implantation at a tilt angle of 30◦ was then carried out to form deep retrograde p-base regions in which
channel and n-type source regions were formed. Mg ions were implanted for the left hand-side and
right hand-side of the photoresist (OFPR-800, 2 µm-thick) mask region at three different energies of
200, 100, and 50 keV with doses of 1.0 × 1014, 3.2 × 1013, and 1.5 × 1013 cm−2 (single side total dose:
1.47 × 1014 cm−2) through 30-nm-thick SiNx film, respectively. The junction field effect transistor (JFET)
gap (LJ), defined by the distance between two adjacent p-bases, was determined by the photoresist
mask dimension. After Mg ion implantation, Si ions were successively implanted at an energy of
50 keV with a dose of 1 × 1015 cm−2 to form source regions. Then, the SiNx film was removed and
a 50 nm-thick SiNx film was deposited again, followed by Mg and Si activation annealing at 1230 ◦C
for 1 min in N2 gas ambient. N ions were then implanted to form edge termination regions [24] at
an energy of 100 keV with a dose of 1.2 × 1015 cm−2. After the SiNx film was removed, Al2O3 gate
dielectric films of 45 nm were deposited by atomic layer deposition (ALD) at a temperature of 260 ◦C.
Ohmic contacts were formed by depositing Ti/Al (50/300 nm) layers, followed by post metallization
annealing at 550 ◦C for 1 min. Finally, gate electrodes were also formed by depositing Ni layers.
Implanted Mg and Si profiles measured by SIMS after annealing are shown in Figure 6. The simulated
impurity profiles of the implanted Mg and Si calculated by the stopping and range of ions in matter
(SRIM) simulation are also shown. The channel regions were self-aligned to the left hand-side and
right hand-side of the photoresist mask region during ion implantation to introduce the respective
dopants, as shown in Figure 5. Lateral expansion of Mg and Si profiles were simulated using SIMS
profiles. The channel length (Lg) of 0.4 µm was determined by the difference in lateral extension of
the Mg implanted p-base (p/n junction) and the Si implanted n-type source region (n+/p junction) at
the surface after annealing, as shown in Figure 7. Mg surface concentration at the DMOSFET channel
regions was also estimated as 5.0 × 1018 cm−3. The C-V curve of 45 nm Ni/ALD-Al2O3/n-GaN MOS
capacitors measured at frequencies ranging from 50 Hz to 1 MHz is shown in Figure 8. Frequency
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dispersion was not observed in this frequency range. The dielectric constant of 8.5 and MOSFET
capacitance of 1.71 × 10−7 F/cm2 were measured.
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Figure 8. The C-V characteristics of Ni/Al2O3/n-GaN MOS capacitors measured from 50 Hz to 1 MHz.

4. Device Performances and Discussion

Plane view of the fabricated single GaN DMOSFET with a gate length of 0.4 µm, JFET gap (LJ)
of 3 µm, and gate width of 50 µm is shown in Figure 9. The cell pitch of the power DMOSFET was
40 µm for the gate width of 100 µm (Figure 9, right side). A low sheet resistance of 139 Ω/square and
a contact resistance as low as 0.53 Ω·mm for the n+ source regions were obtained [25]. Ohmic contact
to the surface of the Mg ion-implanted regions could not be formed, because the carrier concentration
of the Mg ion-implanted contact layer was estimated to be below 1 × 1018 cm−3 due to an Mg acceptor
level as deep as 200 meV [26]. Therefore, it is considered that Mg ion implanted p-base regions were
kept at a floating potential or connected as a Schottky contact to the source electrodes.

Figure 10 shows the Ids-Vgs and gm-Vgs characteristics of the fabricated GaN DMOSFET at
a drain voltage of 0.1 V. The Vth of the DMOSFET obtained from extrapolation of linear portion
of Ids-Vgs characteristics using the extrapolation in the linear region (ELR) method [27] was about
3.6 V. The calculated Vth of 16 V from the flat band without surface state and trap densities was
obtained from the equation, Vth = 2ψB +

√
2εGaNqNA(2ψB)/Cg [28], where ψB is the Fermi level

from the intrinsic Fermi level in the Mg-doped layer, εGaN is the dielectric constant of GaN, q is the
unit electronic charge, NA is the acceptor concentration, and Cg is gate capacitance. The surface Mg
concentration of 5 × 1018 cm−3, ψB of 1.66 eV, and gate capacitance of 1.7 × 10−7 F/cm2 were used
for the Vth calculation. The difference between calculated and measured Vths could be due to Fermi
level pinning at the p-GaN surface [29,30], the Dit, and the activation ratio of ion-implanted Mg in
the channel region. The Fermi level of the p-GaN surface at the Mg concentration of 1.3 × 1018 cm−3

was pinned at about 2.4 eV above the Ev and about 1.0 eV below Ec [30]. Vth was reduced by both
2.4 V for Fermi level pinning and 1.94 V for the Dit calculated from the subthreshold characteristics
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described below. The acceptor concentration depends on Mg atoms substituting for Ga sites in the
GaN lattice, and is determined by the activation ratio of implanted Mg atoms by annealing condition
and Mg doses [22]. When the activation ratio of 20% and the acceptor concentration of 1 × 1018 cm−3

instead of 5 × 1018 cm−3 were used, a Vth of 8.9 V was calculated and the influence on Vth reduction
was predicted to be dominant. Therefore, one of the major reasons for the Vth difference is considered
to be acceptor concentration. The field effect mobility of 7.1 cm2/(V·s) was extracted by gm-Vgs

characteristics. This value is close to that of the GaN MOSFET fabricated in a p-type epilayer grown on
sapphire substrate [31]. Though the Vth shifted in a negative direction, the mobility increased up to 11.0
cm2/(V·s) as total implanted Mg doses decreased to 3.65 × 1013 cm−2. The crystalline quality of the Mg
ion-implanted GaN with higher mobility would be restored by higher-temperature annealing [32,33].
Subthreshold characteristics of the device at a drain voltage of 0.1 V are shown in Figure 11. Interface
state density (Dit) estimated from a subthreshold slope of 264 mV/dec [34] was 2.1 × 1012 cm−2·eV−1,
which was in good agreement with recessed gate GaN-FETs with ALD-Al2O3 gate dielectrics [35]. IOFF

and ION were measured at Vgs = 0 V and Vgs = 3.6 V, respectively. The ION/IOFF ratio was about 1 ×
103 (Vds = 0.1 V, Von − Voff = 3.6 V). Idsm and gmmax at Vgs of 13.5 V were 115 mA/mm and 19 mS/mm
at Vds of 15 V, respectively, as shown in Figure 12. Figure 13 shows the Ids-Vds characteristics of the
DMOSFET. The specific Ron obtained from the linear region at Vds of 0.5 V and Vgs of 15 V was 46.4
Ω·mm, which was estimated to be equivalent to 9.3 mΩ·cm2. The simulated electron current flow of
the DMOSFET with an LJ of 3 µm is shown in Figure 14. The electron current flow spread around
the Mg-implanted p-type regions and the JFET component resistance in on-resistance (Ron) seemed
to become dominant when LJ was below 2 µm. Figure 15 shows the LJ dependence of the measured
Ron. The measured Rons ranged from 40 to 50 Ω·mm, which were nearly in good agreement with
numerically simulated results. Lower Ron could be achieved by reducing the sheet resistivity of the
n-type epitaxial layer and the cell pitch of the DMOSFET. Figure 16 shows the on-state and off-state
pulsed Ids-Vds characteristics of the fabricated GaN DMOSFET measured at pulse width/period of
5/120 ms. Blocking voltage at the off-state was 213 V, which is lower than the expected value for
the epitaxial layer thickness of 5 µm. It seems that blocking voltage was limited by the source-drain
electric field at the Mg-implanted p-base peripheral cylindrical regions and the gate-drain electric
field at the N-implanted edge termination regions. Higher blocking voltage would be attained by
fabricating deeper Mg ion implanted regions.

The self-aligned GaN DMOSFETs fabricated by tilted angle Mg and Si ion implantations
were demonstrated. These results exhibited that the n-type regions were successfully formed in
the Mg ion-implanted p-base layers, and an innovative performance was achieved. Additionally,
these indicate a definite availability of normally-off GaN DMOSFET for power device applications.
Further improvement of the Vth control and blocking voltage can be expected by refining Mg ion
implantation, activation annealing procedures, surface treatment of the deposition of gate dielectrics,
and optimization of device structure using field plate electrodes. Moreover, further miniaturization of
the device layout will enable a much lower RON to be obtained.
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