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Abstract

Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current
glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide
association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We
replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome
Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in
GAS7 at 17p13.1 (p = 1.461028), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.661028). In a meta-analysis of 4
case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma
(p = 2.461022 for rs11656696 and p = 9.161024 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body
and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with
known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP
regulation.
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Introduction

Primary open-angle glaucoma (hereafter referred to as glauco-

ma) is a progressive optic neuropathy responsible for 12.3% of

global blindness [1]. The evidence for a genetic etiology of

glaucoma is well-established [2]. However, genes consistently

implicated so far (MYOC, OPTN, WDR36) [3–5] are relevant only

in a limited number of families and explain a small proportion of

the glaucoma cases in the general population [6–8]. So far, 3

genome-wide association studies (GWASs) for glaucoma have been

published. A study from Iceland identified a common variant near

CAV1 and CAV2 [9]. Both genes are expressed in the trabecular

meshwork as well as in retinal ganglion cells. A Japanese study

identified 3 putative loci, although none of these reached genome-

wide significance [10]. A recent study in an Australian cohort of

590 patients with severe glaucomatous visual field loss identified

susceptibility loci at TMCO1 and CDKN2B-AS1 [11]. The latter

region had already at a genome-wide significant level been

associated with vertical cup-to-disc ratio, which is an important

clinical marker of glaucoma [12]. Finally, a study in an Afro-

Caribbean population identified a genome-wide significant asso-

ciation between glaucoma and a locus on chromosome 2p by

genotyping a previously identified linkage region [13].

Intraocular pressure (IOP) is the major risk factor of glaucoma

and existing glaucoma therapies are exclusively aimed at lowering

IOP. An elevated IOP (.21 mmHg) influences both the onset and

the progression of glaucoma [14]. Genetic effects have been shown

to account for a significant proportion of the variance in IOP, with

heritability estimates ranging from 0.29 to 0.67 [15–19]. Five

genome-wide linkage studies of IOP have been performed [20–

24]. This resulted in 15 potential regions of interest, 2 of which

were genome-wide significantly linked to IOP. The first was

identified in an Australian glaucoma pedigree and was located on

10q22 [20]. The second was identified in individuals without

glaucoma in West Africa and Mongolia and was located in the

5q22-23 region, which had already been implicated in glaucoma

(WDR36 gene and GLC1M locus) [3,23–25]. Taken together,

these findings suggest that extensive heterogeneity underlies the

genetics of IOP and that the same genetic factors may possibly

affect both the variance in normal IOP and the risk and onset of

glaucoma. Thus, unraveling the genetic background of IOP may

shed light upon the pathophysiology of glaucoma. To date, no

GWAS has been reported for IOP.

To identify genetic determinants of IOP, we performed a

GWAS in 11,972 participants from 4 independent population-

based studies in The Netherlands, and we replicated our findings

in 7,482 participants from 4 additional independent cohorts of

Caucasian ancestry. We investigated whether the IOP associated

SNPs were also related to glaucoma in 1,432 glaucoma cases.

Lastly, we examined expression levels of the identified candidate

genes in human ocular tissues. We identified common variants in

GAS7 and TMCO1 that altered the susceptibility to both IOP and

glaucoma.

Results

Discovery studies
Genotypic and IOP data were available for 11,972 participants

from the Rotterdam Study cohort I (RS-I), RS-II, RS-III, and the

Erasmus Rucphen Family (ERF) Study (Table 1). Genomic

inflation factors were 1.037 for RS-I, 1.006 for RS-II, 1.015 for

RS-III, and 1.029 for ERF. QQ-plots for the observed versus

expected p-values for the individuals cohorts as well as for the

discovery meta-analysis have been provided in Figure S1. The

genome-wide association analyses in the ERF study were

performed with and without adjustment for the time of the IOP

Genetic Determinants of IOP and Glaucoma
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measurement. As this adjustment did not significantly affect the

results, the unadjusted (other than for age and sex) data were taken

forward to the meta-analysis.

Four SNPs on chromosome 17p13.1 were significantly associ-

ated with IOP in the discovery meta-analysis (p,561028;

Figure 1, Table 2). These SNPs are located in the growth arrest-

specific 7 (GAS7) gene (Figure 2) [26]. The SNP that showed

strongest association with IOP was rs11656696. The effect of the

rs11656696 alleles was consistent across all 4 discovery cohorts

(Table S1). A further 6 chromosomal loci showed more moderate

but nevertheless suggestive associations with IOP (p,161025;

Table 2, Figure S2) and were also taken to the replication phase.

Of these, rs7555523 is located in the trans-membrane and coiled-

coil domains 1 (TMCO1) gene on chromosome 1q24.1 (Figure 2)

[26], which is located 7.6 MB from MYOC. A list of all the SNPs

that were associated with IOP at a significance level of p,161025

has been provided in Table S2.

We examined at least 416 KB of the chromosomal regions

spanning the known disease genes MYOC, OPTN, and WDR36 in

more detail in the discovery meta-analysis. None of the 1507 SNPs

assessed in total showed significant association with IOP (Figure

S3) [26]. We also evaluated 12 SNPs which had approached

genome-wide significance in earlier association studies (Table S3)

[9,10,13]. Of these, rs4236601 in the CAV1-CAV2 region,

previously identified in Caucasians, was consistently associated

with increased IOP in our discovery meta-analysis (beta = 0.19,

95%CI = 0.09–0.29, p = 1.161024) [9]. The rs4656461 locus,

identified in patients with severe glaucoma from Australia,

overlapped with the rs7555523 locus that was identified with

suggestive evidence in our study [11]. The 2 SNPs are at a

disctance of 31774 base pairs from each other and are in linkage

disequilibrium (R squared = 1). Rs4977756, the second locus that

emerged from the study in Australia, was not associated with IOP

in our discovery cohorts. Of the three regions identified in Japan,

only rs7081455 on chromosome 10 showed nominal evidence for

association with IOP (beta = 0.12, 95%CI = 0.08–0.16, p =

4.661023). Our data did not replicate the association in the

2p16 locus which was previously identified in Afro-Caribbeans.

Finally, we examined the two chromosomal regions that had

previously been identified in genome-wide linkage studies of IOP

[20,24]. Both regions showed suggestive evidence of association

with IOP in our discovery meta-analysis: Rs7894966, located in

the bone morphogenetic protein receptor 1A (BMPR1A) gene on

chromosome 10q23.2, is in the region previously identified in an

Australian linkage study of IOP (16.2 MB from the peak LOD

score) [20]; Rs216146, in the colony stimulating factor 1 receptor

(CSF1R) gene on chromosome 5q32, is close to the region that

previously showed genome-wide significant linkage to IOP in West

Africans [24]. This SNP is located at a distance of 21.0 MB to the

peak LOD score, 10.0 MB to the glaucoma locus GLC1M, and

39.0 MB to WDR36.

Replication studies
Replication of the IOP association was done in 4 additional

cohorts from the TwinsUK study (N = 2,235), the Australian Twin

study (N = 1,807), the Diabetes Control and Complications Trial/

Epidemiology of Diabetes Interventions and Complications study

(DCCT/EDIC; N = 1,304), and the Wellcome Trust Case-

Control Consortium 2 / Blue Mountains Eye Study

(WTCCC2/BMES; N = 2,136) (Text S1). The results of the

replication analyses are presented in Table 3. Although in most

studies the association did not reach nominal significance

(p,0.05), most likely explained by the low statistical power of

these relatively small studies, the directionality of the effects was

consistent across the 4 replication cohorts for most SNPs. The

exceptions were rs7894966 and rs216146 for which the effects

Table 1. Characteristics of the discovery cohorts.

Characteristic RS-I RS-II RS-III ERF

Participants with valid data (N) 5,794 2,102 2,041 2,035

Age (y), mean 6 SD (range) 68.868.9 (55–100) 64.468.0 (55–95) 55.765.8 (45–97) 48.8614.4 (18–86)

Male gender (%) 41.2 45.7 43.9 43.3

IOP (mmHg), mean 6 SD (range) 14.763.4 (5–59) 14.463.4 (7–32) 13.663.0 (5–30) 15.363.1 (6–33)

IOP$22 mmHg (%) 3.3 3.3 1.9 1.2

Participants with IOP lowering treatment (%) 2.4 3.9 1.5 0.9

Vertical cup-disc ratio, mean 6 SD (range) 0.5060.14 (0.00–0.89) 0.5060.14 (0.05–0.87) 0.4260.17 (0.00–1.00) 0.4360.16 (0.00–0.83)

Disc area (mm2), mean 6 SD (range) 2.4260.48 (0.58–5.44) 2.3260.48 (1.06–6.20) 1.9260.45 (0.70–7.20) 1.9060.35 (1.07–3.95)

IOP = intraocular pressure; SD = standard deviation; RS = Rotterdam Study; ERF = Erasmus Rucphen Family study.
doi:10.1371/journal.pgen.1002611.t001

Author Summary

Glaucoma is a major eye disease in the elderly and is the
second leading cause of blindness worldwide. The numer-
ous familial glaucoma cases, as well as evidence from
epidemiological and twin studies, strongly support a
genetic component in developing glaucoma. However, it
has proven difficult to identify the specific genes involved.
Intraocular pressure (IOP) is the major risk factor for
glaucoma and the only target for the current glaucoma
therapy. IOP has been shown to be highly heritable. We
investigated the role of common genetic variants in IOP by
performing a genome-wide association study. Discovery
analyses in 11,972 participants and subsequent replication
analyses in a further 7,482 participants yielded two
common genetic variants that were associated with IOP.
The first (rs11656696) is located in GAS7 at chromosome
17, the second (rs7555523) in TMCO1 at chromosome 1.
Both variants were associated with glaucoma in a meta-
analysis of 4 case-control studies. GAS7 and TMCO1 are
expressed in the ocular tissues that are involved in
glaucoma. Both genes functionally interact with the
known glaucoma disease genes. These data suggest that
we have identified two genes involved in IOP regulation
and glaucomatous neuropathy.

Genetic Determinants of IOP and Glaucoma
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were in opposite direction compared to the discovery cohorts.

When the gene discovery and replication cohorts were combined,

two intronic SNPs reached genome-wide significance. Each copy

of the rs11656696 minor allele (A), located in GAS7, was associated

with a 0.19 mmHg IOP reduction (95% confidence interval

[CI] = 0.12–0.26 mmHg; p = 1.461028), and each copy of the

rs7555523 minor allele (C), located in TMCO1, with a 0.28 mmHg

IOP increase (95%CI = 0.18–0.37 mmHg; p = 1.661028).

Glaucoma case-control studies
We investigated the associations of the GAS7 rs11656696 minor

allele (A) and the TMCO1 rs7555523 minor allele (C) with

glaucoma in 4 case-control studies from the Netherlands and

Germany (Text S1). The results are presented in Figure 3. For

rs11656696 A we found a decreased glaucoma risk in the

Amsterdam Glaucoma Study (AGS; OR = 0.71, 95%CI = 0.51–

0.99) and the Erlangen and Tübingen study (OR = 0.82,

95%CI = 0.69–0.97), but not in RS-I and the Genetic Research

in Isolated Populations (GRIP) program. When combining the 4

case-control studies, rs11656696 A showed a decreased glaucoma

risk (OR = 0.88, 95%CI = 0.78–0.98, p = 2.461022). For

rs7555523 C, we found an increased glaucoma risk in all 4 case-

control studies. Combined, these studies showed an increased

glaucoma risk with an OR of 1.31 (95%CI = 1.12–1.53,

p = 9.161024).

Expression studies
In a first study of expression levels in human ocular tissues, we

observed moderate to high expression of GAS7, and high

expression of TMCO1 in the ciliary body (CB), the secretory

Figure 1. Results of the meta-analysis of the gene discovery cohorts.
doi:10.1371/journal.pgen.1002611.g001

Genetic Determinants of IOP and Glaucoma
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neuroepithelium that produces the aqueous humor (Table 4). Both

genes were moderately to highly expressed in the choroid, the

retinal pigment epithelium and photoreceptors. In a second,

independent study, mRNA expression profiles in human eyes of

GAS7 and TMCO1 displayed an ubiquitous expression of both

gene products, with the highest expression levels of GAS7 in the

trabecular meshwork, the lamina cribrosa, and the optic nerve,

whereas TMCO1 expression was most prominent in the trabecular

meshwork and the retina (Figure 4).

Discussion

We identified rs11656696 in GAS7 and rs7555523 in TMCO1 as

common variants associated with IOP. In a joint analysis of the

discovery and replication cohorts each copy of the rs11656696

minor allele (A; allele frequency 0.43) was associated with a

0.19 mmHg decrease in IOP (95%CI = 0.12–0.26 mmHg),

whereas each copy of the rs7555523 minor allele (C; allele

frequency 0.12) was associated with a 0.28 mmHg increase in IOP

(95%CI = 0.18–0.37 mmHg). Both variants showed marginal

evidence for association with glaucoma when combining data

from 4 case-control studies, although for rs11656696 significance

was only obtained in 2 studies.

GAS7 is located in a chromosomal region previously identified

by a linkage study of glaucoma [27]. We observed high expression

levels of GAS7 in the optic nerve, and, in particular, the lamina

cribrosa. The lamina cribrosa is the connective tissue network

through which the nerve fibers traverse to form the optic nerve,

and is assumed to be the main site for glaucomatous damage to the

optic nerve. We also observed moderate to high expression of

GAS7 in the ciliary body (CB), the secretory neuroepithelium that

produces the aqueous humor, and high expression of GAS7 in the

trabecular meshwork (TM), which is the main tissue involved in

aqueous humor outflow [28]. Together, the CB and TM largely

control IOP. Previously, Liton and colleagues already reported

significant downregulation of GAS7 expression in TM of

glaucomatous eyes [28]. In absence of the (in vivo) typical

mechanical forces on the TM, a similar effect was also observed in

cultured TM cells [28]. High GAS7 expression has previously been

shown in amacrine cells in the mouse retina, while lower

expression was found in retinal cell types which are usually not

affected by glaucoma [29]. Protein pathway analyses and evidence

from previous literature allude to functional effects of GAS7 in both

the TM and retina. GAS7 has been implicated in cell remodelling,

possibly facilitated through its capacity to associate with actin and

mediate the reorganization of microfilaments [30,31]. In neuronal

cells, GAS7 expression is critical for neurite formation [30,32].

MYOC, the major glaucoma gene previously associated with

elevated IOP cases, also affects the actin cytoskeletal structure and

neurite outgrowth [33]. Whereas MYOC has an inhibitory effect

on neurite outgrowth, GAS7 is involved in the formation of

neurites. Interestingly, experimental ischemic retinal damage in

rats, resembling retinal damage due to glaucoma, leads to

extensive remodelling of inner retinal neurons [34]. GAS7 may

also contribute to remodelling of the TM, as is the case for the

myocilin protein which has been shown to alter the actin structure

and modulate TM cell morphogenesis [35]. GAS7 interacts with

MYOC, as well as with other genes implicated in glaucoma, such as

OPTN, WDR36, CAV1, NOS2, FOXC1, APOE, APP and CLU

(Figure 5; www.ingenuity.com). The latter three genes are

primarily known for their association with Alzheimer’s Disease,

a neurodegenerative disease previously linked to glaucoma [36].

GAS7 interacts with both MYOC and CAV1 through b-catenin

(CTNNB1) and RhoA (RHOA). B-catenin anchors the actin

cytoskeleton and is part of the Wnt signalling pathway, which

has previously been implicated in trabecular outflow regulation

[37,38]. RhoA signalling regulates the intracellular levels of

phosphorylated myosin light chain, which directly influence

trabecular meshwork cellular contraction and thus aqueous humor

outflow [39]. Finally, GAS7 is regulated by transforming growth

factor (TGF) beta, which has previously been implicated in

trabecular outflow as well as in the development of the optic disc

(the primary site of neuronal damage by glaucoma) [40–42]. The

frequency of the GAS7 rs11656696 A-allele is 0.44 in the HapMap

CEU population of European ancestry whereas it is 0.12 in the

HapMap Yorubian population of African ancestry. The lower

frequency of the A-allele in the African population is consistent

with the higher prevalence of glaucoma with elevated IOP in this

population and warrants further research into the association of

rs11656696 with IOP and glaucoma in African populations.

The second variant that we found to be associated with IOP and

glaucoma was rs7555523 in TMCO1, a highly evolutionary

conserved gene of largely unknown function [43,44]. TMCO1

has recently been associated with severe glaucomatous visual field

loss, indicating that this locus may influence both the normal

variance in IOP and the risk of developing severe glaucoma [11].

These findings support the hypothesis that studies of IOP can assist

in identifying susceptibility genes for glaucoma. Rs7555523 is

located in a region which previously showed suggestive evidence

for linkage with blood pressure [45]. IOP and blood pressure have

Table 2. Results of the meta-analysis of the gene discovery cohorts: loci associated with IOP (p,1025).

SNP Chrom Position MA MAF Gene region #SNPs* Beta SE P-value

rs11656696 17p13.1 9974404 A 0.43 GAS7 4 20.26 0.05 9.8E-09

rs7894966 10q23.2 88608604 G 0.04 BMPR1A 8 0.67 0.13 1.6E-07

rs216146 5q32 149426114 T 0.39 CSF1R 2 0.22 0.05 1.4E-06

rs2117760 3p13 70933151 A 0.32 FOXP1 1 0.22 0.05 4.1E-06

rs7555523 1q24.1 163985603 C 0.12 TMCO1 11 0.30 0.07 5.7E-06

rs1826598 16q23.1 76130456 A 0.11 ADAMTS18, NUDT7 1 0.32 0.07 6.0E-06

rs9841621 3p24.3 18384081 G 0.01 SATB1 5 20.81 0.18 8.9E-06

SNP = single nucleotide polymorphism; Chrom = chromosome; MA(F) = minor allele (frequency); SE = standard error.
*number of SNPs with p,1025 in the region.
According NCBI build 37.1, rs11656696 is located at position 10033679 in the growth-arrest-specific gene GAS7 while an earlier build allocated the SNP at 9974404
(http://www.ncbi.nlm.nih.gov).
doi:10.1371/journal.pgen.1002611.t002
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already been shown to correlate [46]. TMCO1 is highly expressed

in the human TM and CB, which together regulate IOP, and in

the retina [28]. TMCO1 interacts with CAV1 via VHL (Figure 5). A

homozygous frameshift mutation in TMCO1 has been associated

with a genetic syndrome involving multiple organ systems,

including renal agenesis and hydronephrosis [43]. Extensive

Figure 2. Regional association plots of the 17p13.1 and 1q24.1 regions in the discovery meta-analysis.
doi:10.1371/journal.pgen.1002611.g002
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ophthalmic examination was not reported, however a high

incidence of strabismus was noticed.

No previous GWASs of IOP have been conducted to date.

When comparing our findings to those of association studies of

glaucoma, we found an overlap with 3 regions. First, we replicated

the association with the TMCO1 region, as has been described in

the previous paragraph. Second, rs4236601 in the CAV1-CAV2

region, previously identified in Caucasians, was consistently

associated with increased IOP in our discovery meta-analysis

[9]. Our findings in this region did not reach genome-wide

significance. However, multiple testing adjustment by using a

Bonferroni correction for the 12 SNPs evaluated (Table S3) yields

a criterion for significance of p,461023. Thus, our findings

strongly support an association between the CAV1-CAV2 region

and IOP, despite the fact that the original report that identified

CAV1-CAV2 did not find evidence for a stronger relation to high

pressure glaucoma. Third, a locus on chromosome 10p, which had

previously been identified in Japan, also passed this Bonferroni

threshold [10]. Similar to Nakano and coworkers, we could not

assign a specific glaucoma disease gene to this region. The

replication of this locus in our study is remarkable as most

glaucoma patients in Japan present with normal tension glaucoma

(i.e., glaucoma with IOP#21 mmHg).

Our study design had three potential limitations. First, we did

not measure central corneal thickness (CCT) in the majority of the

participants of the discovery cohorts. CCT is an important

determinant of IOP measurements and may be an IOP-

independent risk factor for glaucoma [47,48]. The genes involved

in CCT may also associate with IOP and glaucoma. CCT has

previously been reported to account for 1–6% of the variance in

IOP measured with Goldmann applanation tonometry [49–52].

Heritability estimates of CCT range from 0.68 to 0.95 [53–55],

implying that this trait is even more heritable than IOP. Because

we did not include CCT as a covariate in our discovery analyses,

the identified SNPs may determine CCT rather than IOP. To test

this hypothesis, we assessed whether the identified SNPs were

associated with CCT in a randomly selected subpopulation of 784

participants from RS-I for whom CCT data were available. None

of the 7 SNPs identified in the discovery meta-analysis was

associated with CCT (p.0.24). The results for rs11656696

(p = 0.28) and for rs7555523 (p = 0.31) suggest that the associations

of these SNPs with IOP were not explained by CCT. Further-

more, in a recent GWAS conducted in the Australian twins and

TwinsUK cohorts, these SNPs were not associated with CCT [56].

We also assessed the associations of rs11656696 and rs75555623

with IOP in the TwinsUK cohort after including CCT as a

covariate in the multivariate model. The association changed from

20.316 (95%CI = 20.536–20.096) to 20.400 (95%CI = 20.620

–20.180) for rs11656696 and from 0.242 (95%CI = 20.048–

0.532) to 0.220 (95%CI = 20.080–0.520) for rs7555523 after

correction for CCT, suggesting that the controlling for CCT only

produces relatively minor changes with respect to effect size and

significance of association.

Second, in the gene discovery analyses, the initial IOP levels

were not known for the participants who received IOP lowering

medication or who had a history of IOP lowering surgery. We

imputed these IOPs, because (particularly in the elderly population

of RS-I) participants with extreme IOPs, which are likely to be

genetically determined, are otherwise excluded. Similar approach-

es have been applied to research of blood pressure, where an

analogous problem occurs: those with the higher blood pressures

are otherwise excluded [57,58]. Although the imputations for IOP

lowering medication are based on a large meta-analysis [59], the

justification for the imputations for IOP lowering surgery is not
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Figure 3. Association of rs11656696 and rs7555523 with glaucoma.
doi:10.1371/journal.pgen.1002611.g003
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based on empirical evidence. Exclusion of any participants who

received IOP lowering treatment or who had received this

treatment in the past (either by medication or surgically), did not

substantially change the betas for rs11656696 and rs7555523 (see

Text S1). However, for rs11656696, it did result in a loss of

statistical power, as the participants on treatment had a

significantly (p = 8.161026) lower frequency of the protective A-

allele (odds ratio = 0.58, 95%CI = 0.45–0.74).

Third, some replication cohorts differed from the discovery

cohorts with respect to their age, sex or disease status. The

participants of the Australian Twin study and DCCT/EDIC were

evidently younger than the participants of the other cohorts were.

Aging has previously been associated with an increase in the

accumulation of extracellular material in the trabecular meshwork,

as well as a decrease in trabecular meshwork cells [60]. A different

genetic mechanism underlying aqueous humor dynamics in

different age categories may therefore explain the lack of

association of IOP with rs11656696 and rs7555523 in these

younger cohorts. In the TwinsUK cohort, 97.5% of the

participants were women. Sex was not significantly related to

IOP in the discovery cohorts. Moreover, the results from the

TwinsUK strongly replicate the association of IOP with

rs11656696, and are also supportive for the association with

rs7555523. We therefore believe that the differences in sex have

not substantially influenced our results. Finally, DCCT/EDIC

comprised only participants with type I diabetes mellitus. DCCT/

EDIC was the only cohort that showed an inconsistent effect for

rs11656696. The reduced association in the joint analysis when

compared to the discovery analysis (p-value increased from

9.861029 to 1.461028) was mainly driven by DCCT/EDIC.

When DCCT/EDIC was not included, the association in the joint

analysis became stronger than it was in the discovery (p-value

decreased from 9.861029 to p = 1.161029). Although the

association of type 1 diabetes with IOP is controversial, any

Figure 4. Expression levels of GAS7 and TMCO1 in human ocular tissues. Quantitative determination of GAS7 and TMCO1 mRNA expression
levels in human ocular tissues by using real-time PCR technology (n = 4). The expression levels were normalized against GAPDH and the results are
expressed as copynumber/mg RNA. Co, cornea; Tr, trabecular meshwork; Ir, iris; Le, lens; Ci, ciliary body; Re, retina; Ch, choroid; La, lamina cribrosa; Op,
optic nerve.
doi:10.1371/journal.pgen.1002611.g004

Table 4. Gene expression levels in human ocular tissues.

Gene CB-PE CB-NPE Choroid RPE Photoreceptors TM*

GAS7 55 (1.3) 57 (2.0) 73 (5.1) 76 (1.7) 78 (8.6) 78 (3.1)

TMCO1 93 (1.5) 93 (1.0) 86 (2.5) 88 (1.9) 88 (2.4) 88 (1.5)

The two genes are ranked by increasing expression, calculated by the mean percentiles (SD) of the expression levels. Gene expression of CB-PE and CB-NPE (n = 4),
choroid (n = 3), photoreceptors (n = 3) and RPE (n = 6) were performed on Agilent Human 44k microarray of post-mortem donor eyes without glaucoma or any other
ocular diseases.
*Data from Liton et al., performed on Affymetrix Human U133 microarray, showing mean percentiles (SD) of human gene expression levels in TM tissue from 3 healthy
eyes [28].
CB-PE = ciliary body, pigmented epithelium; CB-NPE = ciliary body, non-pigmented epithelium; RPE = retinal pigment epithelium; TM = trabecular meshwork.
doi:10.1371/journal.pgen.1002611.t004
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changes in IOP may have different origins, which may explain the

inconsistent replication results in this cohort.

In conclusion, this genome-wide association study in 8

independent Caucasian cohorts identified rs11656696 in GAS7 at

chromosome 17p13.1 and rs7555523 in TMCO1 at chromosome

1q24.1 as common genetic variants associated with IOP. The

variants were also marginally associated with glaucoma. GAS7 and

TMCO1 are expressed in ocular cells and tissues implicated in

glaucoma. Biochemical protein interactions with known glaucoma

disease genes, as well as functional data support the involvement of

these genes in aqueous humor dynamics and glaucomatous

neuropathy.

Materials and Methods

Ethics statement
All participating studies adhered to the tenets of the Declaration

of Helsinki and were approved by their Medical Ethics Commit-

tees. Written, informed consent was obtained from all participants.

Outline of the study
For the gene discovery phase, we combined data of 11,972

participants derived from 4 large, independent population-based

cohort studies in The Netherlands: the Rotterdam Study cohort I

(RS-I), RS-II, RS-III, and the Erasmus Rucphen Family (ERF)

Study. Replication of the findings was sought in 4 independent

populations: the TwinsUK Adult Twin study, the Australian Twin

Study, the Diabetes Control and Complications Trial / Epidemi-

ology of Diabetes Interventions and Complications study (DCCT/

EDIC) [61], and the Wellcome Trust Case-Control Consortium 2

/ Blue Mountains Eye Study (WTCCC2/BMES). Clinical

relevance of the identified loci was assessed by evaluating

associations between the variants and glaucoma. To this end, we

performed case-control analyses using 4 different glaucoma

cohorts from The Netherlands and Germany. Finally, we

examined the expression levels of the identified candidate genes

in ocular tissues.

Discovery studies
Participants. The RS-I is a prospective population-based

cohort study of 7,983 residents 55 years of age and older living in

Ommoord, a suburb of Rotterdam, The Netherlands [62]. Baseline

ophthalmic examinations took place from 1991 to 1993, follow-up

examinations from 1997 to 1999 and from 2002 to 2006. The RS-II

is an independent cohort of another 3,011 new respondents in the

same age range as RS-I [62]. Baseline examinations were

performed from 2000 to 2002 and follow-up examinations from

2004 to 2005. The RS-III was based on the same protocol as RS-I

and RS-II, and included 3,932 residents with a different age range,

being 45 years and older. Baseline examinations took place from

2006 to 2009. Finally, ERF is a family-based cohort study in a

genetically isolated population in the southwest of The Netherlands

Figure 5. Biochemical and functional interactions between (putative) glaucoma disease genes. Ingenuity diagram of biochemical and
functional interactions between the newly identified GAS7 and TMCO1 disease genes implicated in elevated IOP and glaucoma, and previously
known glaucoma disease genes (WDR36, MYOC, OPTN, CAV1). Functional relationships in the knowledge database Ingenuity (www.ingenuity.com)
are a compilation of all known gene-relevant biochemical and functional data of in vivo and in vitro experiments involving (molecules, cells and
tissues of) rats and mice and man, as well as data from zebrafish and Drosophila and ongoing clinical trials in man. The query genes/proteins GAS7
(including it’s drosophila homologue MLL) and TMCO1 are presented in red. Known glaucoma disease genes are given in blue. Blank genes/
molecules are generated by the knowledge database to construct a functional network under the criteria specified by the investigator. The diagram
was generated using the function ‘‘Path Explorer’’. In general, solid lines indicate a direct, experimentally verified, physical relationship between two
molecules, for example a physical protein-protein interaction, or an enzym-DNA interaction, etc. Dotted lines refer to the existence of an indirect
functional relationship, such as co-upregulation in cell cultures under specific experimental conditions. WDR36 = WD Repeat-containing protein 36;
OPTN = optineurin; MYOC = myocilin; GAS7 = growth arrest-specific 7; MLL = myeloid/lymphoid or mixed-lineage leukemia; TMCO1 = transmembrane
and coiled-coil domains 1; CAV1 = caveolin 1; TGFB1 = transforming growth factor beta 1; CTNNB1 = catenin (cadherin-associated protein) beta 1;
RHOA = ras homolog gene family, member A; E2F6 = E2F transcription factor 6; VHL = von Hippel-Lindau; HTT = huntingtin; NOS2 = nitric oxide
synthase 2; LOXL1 = lysyl oxidase-like 1; APOE = apolipoprotein E; APP = amyloid beta (A4) precursor protein; CLU = clusterin. As shown, GAS7 (MLL)
and TMCO1 interact multiple times and in several ways with previously known glaucoma disease genes. For a specific description of these
interactions, see text.
doi:10.1371/journal.pgen.1002611.g005
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with over 3,000 participants 18 years of age and older [18,63].

Examinations took place from 2002 to 2005.

IOP measurement. In all discovery cohorts, the IOP was

measured with Goldmann applanation tonometry (Haag-Streit,

Bern, Switzerland), which is the international standard for IOP

assessment in ophthalmic research and clinical practice. A drop of

fluorescein sodium was instilled in each eye. The tonometer was set

at 10 mm Hg, and the prism was carefully applied to the corneal

surface of the right eye. Without looking at the scale, the examiner

rotated the dial until the inner margins of the two semicircles

touched each other. The examiner then moved the slit lamp away

from the eye and read the IOP. The tonometer was set at 10 mm

Hg, and the measurement was repeated. If the two measurements

differed, a third measurement was performed, and the median value

was recorded. The procedure was repeated for the left eye [18,64].

The IOP measurement was part of a comprehensive ophthalmic

examination, including the assessment of visual acuity, refraction,

keratometry, fundus photography, and imaging of the optic disc.

Genotyping. In the RS-I, RS-II and RS-III cohorts, DNA

was genotyped with the Illumina Infinium II HumanHap550 chip

v3.0 array. In the ERF study, DNA was genotyped on 4 different

platforms (Illumina 6k, Illumina 318K, Illumina 370K and

Affymetrix 250K), which were then merged. Genotype data were

imputed by using HapMap CEU build 35 as the reference

population, resulting in over 2.5 million SNPs. For details please

see Text S1.

Replication studies
SNPs showing strongest association in the discovery phase were

carried forward and assessed for association with IOP in 2,235

participants from the TwinsUK Study, 1,807 from the Australian

Twin Study, 1,304 from the DCCT/EDIC Study, and 2,136 from

the WTCCC2/BMES Study. The TwinsUK , Australian Twin

and WTCCC2/BMES were also population-based studies, and

participants were ascertained regardless of their phenotypes or

clinical status. The DCCT/EDIC study comprised only patients

with type 1 diabetes included in a preventive trial. Descriptions of

the study populations, clinical examinations, and genotyping

methods of the replication cohorts are provided in Text S1 and

Table S4.

Glaucoma case-control studies. SNPs showing the strongest

associations in the discovery and replication phase were also

evaluated in 4 series of glaucoma patients. The first series included

188 participants from RS-I in whom the technician measuring IOP

was completely ignorant of the presence of glaucoma. Controls were

healthy participants of RS-I. The second case-control study was an

independent series of 104 glaucoma cases from an isolated

population (Genetic Research in an Isolated Population [GRIP]

study), with the ERF population as a control group. The third study

included 152 cases and 141 controls recruited from all over The

Netherlands as part of the Amsterdam Glaucoma Study (AGS). The

last case-control study comprised a series of 988 glaucoma cases and

378 controls ascertained in Erlangen and Tübingen, Germany.

Details of the clinical evaluation and glaucoma diagnosis in these

studies are described in Text S1 and Table S5.

Statistical analyses
Discovery analysis. Analyses were performed for the mean

IOP of both eyes or for one eye if data on the other eye were

missing. In the gene discovery analyses, IOP levels were imputed

for those who received IOP lowering medication or had a history

of IOP lowering surgery, because the initial IOP levels were

unknown. Based on a reported average of a 30% IOP reduction

caused by IOP lowering medication, estimated in a meta-analysis,

IOP values of those receiving this medication were divided by 0.7

to estimate pre-treatment IOP [59]. In participants with a history

of IOP lowering surgery, pre-treatment IOP was assumed to be at

least 30 mmHg. The data were also analyzed after exclusion of

any participants who received IOP lowering treatment or had a

history of IOP lowering surgery. The results of these analyses have

been presented in Text S1.

Associations between IOP and genome-wide loci were assessed

with linear regression models under the assumption of an additive

model for the effect of the risk allele. Analyses were adjusted for

age and sex. In the ERF study, the analyses were also performed

with additional adjustment for the time of the IOP measurement.

Genomic inflation factors (l) were calculated to evaluate any

population stratification. Analyses were performed with the

ProbABEL package from the ABEL set of programs (http://

mga.bionet.nsc.ru/yurii/ABEL/) [65]. To adjust for familial

relationships of participants in ERF, the score test for relatives

was applied by using the genomic kinship matrix as implemented

in the GenABEL package of R statistical software (http://cran.r-

project.org) [65–67].

The results from the 4 cohorts were subjected to an inverse

variance meta-analysis. Genomic control was used to correct the

standard errors of the effect estimates before pooling [68]. The

genome-wide threshold for statistical significance was set at a p-

value of 561028 to adjust for multiple testing [69]. Meta-analyses

were performed with METAL software (http://www.sph.umich.

edu/csg/abecasis/metal/index.html).

Results of the discovery meta-analysis were also used to

explore regions in the immediate vicinity of the known

glaucoma genes (MYOC, OPTN, WDR36) as well as the regions

which had approached genome-wide significance in previous

GWASs of glaucoma and previous linkage studies of IOP

[9,10,13,20,24].

Replication analysis. Loci which were suggestive

(p,161025) of association with IOP in the discovery meta-

analysis were taken forward to the replication phase. If two or

more significantly associated SNPs within a locus were in

linkage disequilibrium (LD), only the SNP with the best

probability of association (lowest p-value) was selected. Linear

regression analyses adjusted for age and sex were performed

under the assumption of an additive effect of the risk allele. The

results from the discovery and replication cohorts were

combined by using an inverse variance meta-analysis (METAL

software).

Glaucoma case-control analysis. SNPs that were genome-

wide significantly associated with IOP in the meta-analysis of the

discovery and replication cohorts were assessed in the 4 glaucoma

case-control studies. Logistic regression analyses adjusted for age and

sex were performed (SPSS version 15.0 for Windows; SPSS,

Chicago, IL) and a pooled effect estimate was calculated (Rmeta

software [http://cran.r-project.org/web/packages/rmeta/index.

html]). Considering the difference in mean age between the cases

and controls of the GRIP and ERF studies, the analyses were

repeated after excluding any control subjects younger than 51 years

of age from the ERF study. As this did not substantially change the

odds ratios (from 0.99 [95%CI = 0.70–1.41] to 0.99 [95%CI = 0.70–

1.42] for rs11656696, and from 1.78 [95%CI = 1.21–2.62] to 1.72

[95%CI = 1.15–2.57] for rs7555523), we only report the results of

the initial analyses including all participants of the ERF study.

Protein pathway analyses. Protein pathway analysis was

conducted in Ingenuity Knowledge Base (Ingenuity Systems,

www.ingenuity.com). We looked for functional links between GAS7

(MLL in rodents) and TMCO1 and molecules known to play a role

in glaucoma.
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Expression studies
Two independent expression studies were performed. In the

first, retinal expression data were obtained essentially as described

by Booij and colleagues [70]. Human healthy donor eyes (n = 4)

were collected in collaboration with the Dutch Cornea Bank and

snap frozen. History of the donor eyes revealed no glaucoma or

other eye diseases. Cryosections (20 mm) of the CB were cut and

mounted on PEN membrane slides (Carl Zeiss MicroImaging).

With the use of laser dissection microscopy, the CB epithelium was

cut out. RNA isolation (RNeasy Micro Kit, Qiagen) and

amplification (Amino Allyl MessageAmp II aRNA Amplification,

Ambion Applied Biosystems) were conducted according to the

manufacturers’ protocols. After labelling of experimental aRNA

with Cy5 and reference aRNA (composed of RPE and choroid)

with Cy3, we performed hybridization on catalogue human 4644k

microarrays (Agilent Technologies). Mean expression intensity

data were normalized with R software (R Development Core

Team, 2009). The mean expression data were further subdivided

based on percentiles in Windows Excel. We used the 90th, 50th and

10th percentile of the mean expression intensity to categorize our

data into groups with high (.90th), moderate (50th–90th), low

(10th–50th) and very low (,10th) expression.

In the second expression study, ocular tissues were obtained for

quantitative real-time PCR from four donor eyes (age: 81.264.5

years, 2 female, 2 male) without any known ocular disease. These

eyes were obtained at autopsy and were processed within 8 hours

after death. Informed consent to tissue donation was obtained

from the donors or their relatives, and the protocol of the study

was approved by the local Ethics Committee and adhered to the

tenets of the Declaration of Helsinki for experiments involving

human tissue. Total RNA was extracted from various ocular

tissues by using the RNeasy kit (Quiagen, Hilden, Germany)

including an on-column DNase I digestion step. First strand cDNA

synthesis was performed by using 0.1 mg of total RNA, 200 U

Superscript II reverse transcriptase (Invitrogen; Karlsruhe, Ger-

many), and 500 ng oligo dT primers (Roche Diagnostics;

Mannheim, Germany) in a 20 ml reaction volume. Quantitative

real-time PCR was performed by means of the MyIQ thermal

cycler and software (Biorad, Munich, Germany). PCR reactions

(25 ml) contained 2 ml of first-strand cDNA, 0.4 mM each of

upstream- and downstream-primer, 3.0 mM MgCl2, and 16
SsoFast EvaGreen Supermix (Biorad). All samples were analyzed

in duplicates by means of a program with an initial denaturation

step of 95uC for 3 minutes and 40 cycles of 95uC for 5 seconds,

and 64uC (GAS7 and TMCO1) or 62uC (GAPDH) for 15 sec-

onds. Gene-specific primers (Eurofins, Anzing, Germany) were

designed to anneal with sequences located in different exons by

means of Primer 3 software (http://fokker.wi.mit.edu/primer3/

input.htm) and are summarized in Table S6. For quantification,

serially diluted standard curves were run in parallel, and

amplification specificity was checked using melt curve analysis.

For normalization of gene expression levels, mRNA ratios relative

to the house-keeping gene GAPDH were calculated.
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