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Functional specialization of medial
and lateral orbitofrontal cortex
in inferential decision-making

Lixin Qiu,1 Yidan Qiu,1 Jiajun Liao,1 Jinhui Li,1 Xiaoying Zhang,1 Kemeng Chen,1 Qinda Huang,1

and Ruiwang Huang1,2,*

SUMMARY

Inferring prospective outcomes and updating behavior are prerequisites for making flexible decisions in
the changing world. These abilities are highly associated with the functions of the orbitofrontal cortex
(OFC) in humans and animals. The functional specialization of OFC subregions in decision-making has
been established in animals. However, the understanding of how humanOFC contributes to decision-mak-
ing remains limited. Therefore, we studied this issue by examining the information representation and
functional interactions of human OFC subregions during inference-based decision-making. We found
that themedial OFC (mOFC) and lateral OFC (lOFC) collectively represented the inferred outcomeswhich,
however, were context-general coding in the mOFC and context-specific in the lOFC. Furthermore, the
mOFC-motor and lOFC-frontoparietal functional connectivity may indicate the motor execution of
mOFC and the cognitive control of lOFC during behavioral updating. In conclusion, our findings support
the dissociable functional roles of OFC subregions in decision-making.

INTRODUCTION

Humans canmake rapid decisions based on observable cues from sensory inputs1 and on their habits.2 However, making decisions in this way

neglects the environmental changes and may lead to suboptimal or inefficient decisions.3 Optimal and flexible decision-making requires in-

dividuals to infer or mentally simulate prospective outcomes and subsequently adapt their behaviors.4 This capacity is highly implicated in the

orbitofrontal cortex (OFC) functioning among humans and non-human animals.5 The functional specialization ofOFCduring decision-making

in animals has been well established, whereas that in humans remains unclear. Nevertheless, the studies in OFC functional specialization can

provide clinical insights into the neuropathology of psychiatric disorders.6–9 For instance, the dysfunction of inference-based circuits (i.e.,

medial OFC, lateral OFC, hippocampus, and amygdala) may result in compulsive behavior10 and bulimic anorexia nervosa.11 Therefore, it

is a pressing need to comprehensively understand the functional roles of OFC subregions.

Rodent OFC neurons and their functional interactions support flexible decision-making. The normal functioning of OFC neurons is indis-

pensable when the prospective outcomes need to be inferred.12,13 Specifically, the lateral subregion of OFC (lOFC) is responsible for inferring

the value of outcomes,14–16 and the medial subregion of OFC (mOFC) encodes the general value among options for value comparison.17

Moreover, the functional interactions of the OFC support flexible decisions in different ways. The amygdala/OFC projections can mediate

memory formation, whereas OFC/ striatum projections are responsible for memory retrieval during flexible behaviors.18 Additionally, the

lOFC instructs the primary somatosensory cortex through top-down mediation to guide adaptive decisions.19

Due to inconsistent findings and inadequate investigations in humans, how the OFC contributes to flexible decisions remains unclear. In

accordancewith previous studies in animals, several studies in humans found the functional specialization of OFC subregions. Specifically, the

mOFC represents context-general or abstract information for value comparison, such as (1) general value for food,20,21 (2) the item usefulness

across application contexts,22 and (3) the category-independent goal value.23,24 The lOFC encodes the context-specific information, such as

(1) the nutritional attributes and odors of food20,21 and (2) the personality traits in social decisions.25 However, no functional specializations can

be found in some studies that both these subregions represent the subjective value,26 and the health/taste valuation.27 Moreover, several

studies that did not intentionally distinguish the general and specific coding also found that mOFC and lOFC collectively respond to inferred

outcomes.28,29 Except for the information representation, the general value in mOFC transforms into motor execution command through the

mOFC-frontoparietal-motor cortex pathway.30 Therefore, the knowledge about how human OFC subregions contribute to flexible decision-

making remains limited.
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Here, we examined how humanOFC subregions contribute to decision-making.We implemented an inference-based task combiningwith

functional magnetic resonance imaging (fMRI) scan in which participants were required to integrate the information provided by the previous

events to infer the correct choice. We aimed to answer the question of whether the mOFC and lOFC play different functional roles during
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Figure 1. Illustration of the experimental task and the definition of the trial identities

(A) Task design. In this task, the participants were required to judge the age of a certain category. First, a text introduction was presented on the screen, indicating

the category that needed to be focused on (face, as shown in the Figure 1A). Then, participants needed to continuously judge the age of the instructed category

(face). When the age of the face changes (cue for the category switch), participants should switch their attention to another category in the next trial (category

switch). Based on the changing categories (inferred outcomes), there were two conditions in this task, outcome-stable (cue and outcome-stable trials) and

outcome-switching (switch trials).

(B) Stimulus presentation procedure.

(C) Identity definition for each trial. According to the task rules, we defined the identity of each trial according to the category and age information from both the

previous trial and the current trial. Therefore, each trial contained the information of four pieces (previous category, previous age, current category, and current

age) which led to a total of 24 = 16 trial identities in the task.
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outcome inference and behavior updating in decision-making. Specifically, we studied this issue from the following four perspectives: (1)

Whether the mOFC and lOFC show distinct decision-related information representation; (2) Whether the inferred outcomes in mOFC

were context-general coding and that in the lOFC was context-specific coding; and (3) Whether the mOFC and lOFC update the behavior

through different neural pathways.

RESULTS

Behavioral results

Participants were required to infer the current category andmake age judgments during the task (Figure 1A). Behavioral analysis showed that

the average response accuracy across participants was 0.95 (G 0.02, Figure 2A), and the average response time was 1138.90ms (G 125.99ms,

Figure 2C), indicating that the participants made successful category inference and switches. Paired t-tests were used to determine the dif-

ferences of the response accuracy and response time between different outcomes (face and house). No significant difference in the response

accuracy was found between the face trials (the current category was face) and the house trials (the current category was house; faceM= 0.954

vs. houseM= 0.949; paired t28 = 1.06, p = 0.30, Figure 2B). The response time was significantly shorter in the face trials than in the house trials

(face M = 1083.57ms vs. house M = 1190.30ms; paired t28 = -9.21, p < 0.01, Figure 2D).

Decision-related information representation in OFC subregions

During the inference-based decision-making task, participants were required to judge the age on a certain category (face or house) which

should be inferred from the category and age information of the immediate previous trial (Figure 1A). To decode decision-related information

representation inOFC subregions, we carried outmultivoxel pattern analysis (MVPA) for classifying each piece of decision-related information

in each of OFC subregion (see STAR Methods).

Different subregions of the OFC had distinct decision-related information representations (Figure 3). For the previous information,

we found that only the most lateral proportion of the OFC (i.e., lOFC3) had significant classification accuracy (chance level: 0.50) on both

the previous category (t28 = 3.09, p = 0.004, Cohen’s d = 0.57) and previous age (t28 = 3.11, p = 0.003, Cohen’s d = 0.60, Figure 3B). The

lOFC2 showed significant classification accuracy only on the previous category (t28 = 4.40, p < 0.001, Cohen’s d = 0.82) but not on the

previous age (t28 = 0.63, p = 0.533). None of the other OFC subregions had significantly greater than chance classification accuracy on

the previous information (all t28 values < 2.38, all p values > 0.024). Thus, the ROI-based classification analysis indicated that the pre-

vious information that supported the outcome inference was significantly decodable only in the lOFC3. As for the classification on the

inferred outcomes and the current age (Figure 3C), we found that a large proportion of OFC subregions (i.e., mOFC1, mOFC2, lOFC2,

and lOFC3) showed significant classification accuracy (all t28 values > 4.54, all p values < 0.001). However, we found that the current age

was not decodable in any of the OFC subregions (all t28 values < 2.08, all p values > 0.047). Detailed information about the ROI-based

classification is provided in Table 1, and the unilateral brain hemispherical results of the ROI-based classification are listed in Table S2.

A B

DC

Figure 2. Behavioral performance during the task-fMRI scanning

(A) Response accuracy for the whole task across all participants.

(B) Response accuracy for both the face trials and house trials.

(C) Response time for both the face trials and house trials. Whisker plots indicate the distribution of the response accuracy or response time, and the whiskers and

error bars represent the variability of data points (MeanG2 standard deviations, MG 2SD). The dots indicate the raw data of the participants. M, mean; n.s., non-

significant; ***, p < 0.001.
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To test whether the outcome representation in OFC subregions potentially guides behavior, we calculated the partial correlation

between the classification accuracy and the response accuracy. We found that only the classification accuracy in the mOFC1

(r = 0.58, p = 0.002) and lOFC3 (r = 0.43, p = 0.027) were positively associated with the response accuracy after controlling for the

response time, sex, and age of participants.

Considering that the size and shape of informative voxels (ROI definition) may influence the classification performance,32 we con-

ducted a whole-brain searchlight MVPA to test the replicability of the above results. In the OFC area, we found that only the left

lOFC retained the previous category (t = 4.56, pFDR < 0.05, MNI coordinates, -44/28/-14, Figure 4; Table S4). The previous category

was also decodable in the visual (right V1, t = 12.57, 6/-94/0; left V3/V4/V5, t = 6.13, 2/-7/44) and memory-related areas (right hippo-

campus, t = 4.07, 36/-36/-8; right dorsal lateral prefrontal cortex, t = 4.35, 24/36/30). However, for the previous age, no voxel survived

after multiple comparison correction. As for the inferred outcome (current category), both the mOFC (t = 8.27, 0/54/-8) and bilateral

lOFC (left, t = 5.65, -40/42/-12; right, 34/34/-18) showed significantly above-chance classification accuracy. In addition to the OFC,

the inferred outcome was also extensively decodable in the parietal, occipital, and parahippocampal/fusiform areas. The current age

was the observable information for the participants after the outcome inference, which was not decodable in the OFC. The significant

clusters included the visual, sensorimotor, and dorsal prefrontal areas. Detailed information about these clusters is listed in Table S4.

Different attributes of outcome representation in mOFC and lOFC

Although the humanmOFC and lOFC collectively responded to the inferred outcomes, their functional roles may be distinct in decision-mak-

ing.20,34Weperformed two classification analyses tomeasure the specificity (within-condition classification; see STARMethods and Figure 5A)

and the generalizability (cross-condition classification) of a spatial pattern. For testing the context-general encoding, one-sample t-tests

showed that the cross-condition classification accuracy in the mOFC1 and lOFC1 were significantly higher than the chance level (all t28 values
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Figure 3. Classification of decision-related information in the subregions of the orbitofrontal cortex (OFC)

(A) Anatomical location of each of the OFC subregions. According to the Brainnetome atlas,31 we defined 5 subregions of the OFC. They were located in the

medial part (mOFC1 and mOFC2) and the lateral part (lOFC1, lOFC2, and lOFC3); their sizes and MNI coordinates are listed in Table S1.

(B) Classification accuracy of the previous category and previous age in each of the OFC subregions.

(C) Same as (B) except for the inferred outcome (current category) and the current age. The chance level of the classification accuracy was 0.50. Whisker plots

indicate the data distribution of the classification accuracy, and the whiskers represent the variability of data points (Mean G2 standard deviations, M G

2SD). *, p < 0.05/5 = 0.01 (Bonferroni correction).

(D) Partial correlation between classification accuracy and response accuracy. Dots correspond to the raw data from the participants and the shadow indicates a

95% confidence interval (CI). Histograms indicate the classification accuracy for the mOFC1 (blue) and lOFC3 (red) as well as the response accuracy (yellow).
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> 2.99, allp values < 0.006, Table 2). For testing the context-specific encoding, the lOFC (lOFC1 and lOFC2) showed significantly higher within-

classification accuracy than cross-classification accuracy (all t28 values > 3.44, all p values < 0.002). Additionally, the paired t-test between the

within- and the cross-classification accuracy in the mOFC (i.e., mOFC1 and lOFC3) did not show significant differences (all t28 values < 2.21, all

p values > 0.036, Table 3; Figure 5B). These results indicated that the outcome representation in themOFC1was context-general and context-

specific in the lOFC1/lOFC2.

Distinct interaction patterns of mOFC and lOFC during behavior updating

Since theoutcome representation in themOFC1and lOFC3potentiallyguided the task responses (Figure3D),weperformedPPI analysesonthose

twoOFCsubregions tostudyhow these twosubregionssupportedthebehavior updating.Wefirst took themOFC1as the seed region (GLM2, see

STARMethods) and found that the interactions between themOFC1 and the bilateral primary motor cortices (left: Z = 4.90, -22/-30/76; right: Z =

4.49, 28/-34/72, Figure6A)were significantly increasedduringbehaviorupdating. This effect extended to thebilateral supplementarymotor areas

(left: Z = 4.12, -8/-16/78, right: Z = 4.08, -6/-12/76) and right somatosensory association cortex (Z = 4.08, 22/-46/72). Moreover, the visual areas,

including V1 (Z = 4.24, 2/-80/16) and V3 (Z = 4.32, 4/-78/38), also showed increased interactions with the mOFC1 when updating the behavior.

We then took the lOFC3 as the seed region (GLM3) and found that the right frontal polar cortex (Z= 3.91, 28/62/-4), bilateral supplementary

motor areas (left: Z = 4.14, -16/8/66; right: Z = 4.95, 28/12/60), left dorsal lateral prefrontal cortex (Z = 3.76, -26/56/14), left dorsal anterior

cingulate cortex (Z = 4.42, -4/20/40), right opercular cortex (Z = 3.87, 58/22/24), bilateral supramarginal gyrus (left: Z = 4.64, -58/-36/42; right:

Z = 4.42, 48/-42/56), and left V3 (Z = 4.05, -10/-78/34) had significantly increased interactions with the lOFC3 during behavior updating.

Detailed information about these clusters is listed in Table S3.

Our results showed that both the mOFC1 and lOFC3 interacted with the visual areas during behavior updating. To test whether the

mOFC1-visual and lOFC3-visual interactions made a similar contribution to the behavior updating, we extracted the interaction indicator

(PPI bs) from the mOFC1 and lOFC3 significant clusters within the visual area, separately. Then, we calculated Pearson’s correlation between

the interaction metric and the response accuracy. The result shows that the mOFC1-visual interaction was positively associated with the

Table 1. Classification accuracy obtained from the multi-voxel pattern analysis (MVPA) for classifying each type of decision-related information on the

bilateral orbitofrontal cortex (OFC) subregions

Decision-related information Bilateral OFC subregions Classification accuracy (M G SD) t28 p-value

Previous category

mOFC1 0.513 G 0.028 2.38 0.024

mOFC2 0.499 G 0.024 �0.19 0.849

lOFC1 0.508 G 0.028 1.55 0.132

lOFC2 0.523 G 0.028 4.40 <0.001*

lOFC3 0.515 G 0.027 3.09 0.004*

Previous age

mOFC1 0.509 G 0.037 1.29 0.206

mOFC2 0.501 G 0.040 0.09 0.927

lOFC1 0.513 G 0.032 2.12 0.043

lOFC2 0.505 G 0.043 0.63 0.533

lOFC3 0.514 G 0.023 3.21 0.003*

Current category

mOFC1 0.543 G 0.026 8.94 <0.001*

mOFC2 0.529 G 0.034 4.54 <0.001*

lOFC1 0.516 G 0.034 2.61 0.014

lOFC2 0.531 G 0.036 4.71 <0.001*

lOFC3 0.526 G 0.027 5.34 <0.001*

Current age

mOFC1 0.513 G 0.033 2.08 0.047

mOFC2 0.494 G 0.038 �0.79 0.436

lOFC1 0.494 G 0.032 �1.07 0.294

lOFC2 0.509 G 0.035 1.44 0.161

lOFC3 0.508 G 0.029 1.50 0.144

m, medial; l, lateral; *, p < 0.05/5 = 0.01 (Bonferroni correction).
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response accuracy (r = 0.45, p = 0.014, Figure 6B). However, no similar relevance was found between the lOFC3-visual interaction and the

response accuracy (r = 0.07, p = 0.717).

DISCUSSION

The current study investigated the information representation in themOFC and lOFC, as well as their functional interactions during inference-

based decision-making. We found that the inferred outcome was decodable both in the mOFC and lOFC but only the lOFC retained the

previous information that supported the inference processing. In addition, the inferred outcome represented in mOFC was context-general

coding, and that in the lOFC was context-specific coding. On the basis of outcome representations, the mOFC and lOFC updated the be-

haviors with distinct interaction patterns. Specifically, the mOFC interacted with the sensory and motor-related areas, suggesting sensory

mediation and motor execution during behavior updating, and the lOFC extensively interacted with the frontoparietal areas, suggesting

cognitive control for updating the behavior.

The lOFC may integrate context-specific information and infer the decision outcomes. The results of the cross-within condition classifica-

tion analysis (Figure 5B; Table 3), were in line with previous findings that human lOFC represented various context-specific information for

guiding decisions, including the category-dependent goal value,22,24 food nutrients,26 and food odor.21 Notably, these specific codes may

be integrated by human lOFC instead of mOFC.35 In addition, we found that the lOFC kept track of previously acquired information (previous

category and previous age, Figure 3B) to support the outcome inference. The lOFCwas found to flexibly infer or update the outcome values in

response to devaluation21 and task rule reversals.36 Moreover, previous studies found that the rodent lOFC neurons can integrate both cur-

rent and previous task information to guide decisions.37,38 Collectively, we suggest that human lOFC may infer the prospective outcomes by

integrating decision-related information in decision-making.

ThemOFCmay translate the context-general coding into choices through top-downmediation. ThemOFChas been consistently found to

encode context-general, abstract information for the choice comparison.20,22,23,26,29 In the current study, we found an increased interaction

between the primary motor area and mOFC during behavior updating (Figure 6A), which might suggest a transformation from general value

signals intomotor commands.30 Additionally, the increased interaction between the visual cortex andmOFC indicated that visual areasmight

accept feedback from the mOFC to distinguish the visual features of the inferred outcomes, i.e., face or house.39 Similarly, we found an

increased lOFC-visual interaction during behavior updating (Figure 6A; Table S3). However, further correlation analysis indicated that only

themOFC-visual interactionmay be involved in behavioral updating (Figure 6B). In addition, we found the lOFC interactedwith frontoparietal

areas (Figure 6A), which are believed to be associated with working memory (dlPFC),40 task rules retrieving (FPC),41 alertness, strategy

adjustment, and contexts switching (cingulo-opercular network).42–44 Interestingly, the integrative role of the lOFC and mOFC-motor area

interaction we found might support the cognitive map hypotheses in the decision-making domain. The cognitive map, an internal schema

representation for ‘‘navigating’’ flexible behaviors,45,46 was proposed to be created by lOFC using sensory-specific information during deci-

sion-making in rodents.47 As for the mOFC, a previous study indicated that this region may keep assigning credits for different inferred as-

sociations during decision-making.29 Combinedwith the result of themOFC-motor interaction we found in the current study, we suggest that

the lOFC may be involved in integrating specific associations (map creation) and the mOFC may be responsible for deploying this higher-

order associative structures (cognitive map) when an inference needs to be translated into behavior.
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Figure 4. Significant clusters from the whole-brain multi-voxel pattern analysis (MVPA) searchlight on decision-related information

The displayed clusters were significant at pFDR < 0.05, with the cluster size determined by threshold-free cluster enhancement (TFCE, 5,000 iterations). No voxel

showed significant classification accuracy on the previous age. The anatomical label was determined according to the HCP template.33 The peak coordinates are

listed in Table S4. Abbreviations: m/lOFC, medial/lateral orbitofrontal cortex; FuG, fusiform gyrus; STS, superior temporal sulcus; PhG, parahippocampal gyrus;

V1, primary visual cortex; V2, second visual cortex; V3, third visual cortex; V4, fourth visual cortex; Tha, thalamus; SAC, sensory association cortex.
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The differential anatomical and functional connections of OFC subregions may underlie the functional specialization in decision-making.

Anatomically, the lOFC accepts diverse sensory inputs, including olfactory, gustatory, visual, and somatic/visceral sensory, whereas the mOFC

is most heavily connected with the posterior cingulate cortex, parahippocampal areas, and hippocampus.48 Functionally, a meta-analysis found

that the lOFC showed greater functional connectivity than themOFCwith the inferior frontal gyrus, and the dorsolateral prefrontal cortex.49 Pre-

vious studies found that the mOFC-visual area functional connectivity may support feature learning39 and the mOFC-frontoparietal-motor area

interaction may support the value-motor commands transformation.30 Furthermore, even though these two subregions have overlapped

anatomical connections, their functional roles can be distinct in decision-making. For instance, the lOFC/BLA projections can mediate the

outcome-specific reward memories and the mOFC/BLA projections can regulate the ability to use these memories for guiding decisions.50

Therefore, the unique anatomical and functional connection patterns of the OFC subregions may contribute to their functional specialization.

Limitations of the study

There are threemajor limitations in this study. First, we failed to completely replicate the findings of ROI-baseddecision-related classifications

in whole-brain searchlightMVPA. Future studies should further examinewhether human lOFC consistently integrates the prior information for

decision-making. Second, the functional roles of the lOFC in inference process and mOFC in value-action transformation can be revealed by

their functional connections. However, the causal directions of these functional interactions should be further identified in human subjects.

A

B

Figure 5. Within- and cross-condition classification on the inferred outcomes for each of the orbitofrontal cortex (OFC) subregions

(A) The procedure of the within-cross-condition classification. Within-condition classifiers were trained to classify the activation patterns of the OFC subregions

into ‘‘faces’’ or ‘‘houses’’ within the outcome-stable (classifier 1) and the outcome-switching conditions (classifier 2) separately. Then, we estimated the accuracy of

these classifiers in predicting the labels of the OFC activation patterns within the same condition (e.g., trained in the outcome-switching and tested in the same

condition). The within-condition classification accuracy was obtained by averaging the prediction accuracy of the two classifiers. For the cross-condition

classification, we trained the classifier in outcome-switching and tested it in the stable condition or vice versa. The cross-condition classification accuracy was

obtained by averaging the prediction accuracy.

(B) Accuracy of the within- and cross-condition classification in each OFC subregion. The chance level of the classification accuracy was 0.50. The whiskers

represent the variability of data points (Mean G 2 standard deviations, M G 2SD). **, p < 0.01; ***, p < 0.001. Abbreviations: n.s., not significant.
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Lastly, the BOLD (blood-oxygen-level-dependent) signals in the OFC, which were acquired with echo planar imaging (EPI) sequence, are sus-

ceptible to imaging geometric distortion and signal sensitivity loss due to susceptibility-induced magnetic field inhomogeneities.51,52

Although we took measures to minimize these effects, such as tilting the slice orientation for the BOLD-fMRI scanning and performing the

susceptibility distortion correction of the fMRI data by using the field-maps, the exact influence on the results from imaging geometric distor-

tion and BOLD signal loss is not precisely known.
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m, medial; l, lateral; *, p < 0.05/5 = 0.01 (Bonferroni correction).

Table 3. Paired t-tests between the within- and cross-classification accuracy on the inferred outcomes for each of the orbitofrontal cortex (OFC)

subregions

Bilateral OFC subregions

Within-condition classification

accuracy (M G SD)

Cross-condition classification

accuracy (M G SD) t28 p-value
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

The access for code and data is listed in the key resources table above. Further information and requests should be directed to and will be

fulfilled by the lead contact, Ruiwang Huang (ruiwang.huang@gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The behavioral data, MVPA classification accuracy (behavioral response, behavioral performance, and ROI-based classification accuracy) and

codes for MVPA have been uploaded on OSF and are publicly available as of the date of publication. Access is listed in the key resources

table. Any additional information reported in this article is available from the lead contact on reasonable request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Thirty-four right-handed healthy adult undergraduates and postgraduates were recruited from South China Normal University (SCNU) for the

experiment. Three participants quit the experiment and data from two participants were excluded due to their poor task performance

(response accuracy < 2 standard deviations, SD). The data of the remaining 29 participants (10 males/19 females, age = 22 G 3.13 years

old, aged 18-30 years old) were analyzed. Due to the well-regulated head motion during the scanning, the maximum translation was less

than 1.50mm, and the maximum rotation was less than 1.5� in the remaining fMRI scans. All participants had normal or corrected-to-normal

sight. None of them had a neurological history or psychiatric disorders. The study was approved by the Institutional Review Board (IRB) of

SCNU. Written informed consent was obtained from all participants before the study.

Experiment stimuli

Figure 1 illustrates the task design, which was adapted from the previous study.53 The stimuli consisted of 42 pictures, including 10 young

faces, 12 old faces, 14 modern houses, and 6 old-fashioned houses. Each stimulus had two spatially overlapped, semi-transparent pictures,

a face, and a house. The overlapping stimuli can be recognized as either a face (a young or old adult) or a house (a modern or old-fashioned

house). Therefore, the age in the overlapping stimuli may be congruent (both face and house are ‘‘young’’ or ‘‘old’’) or incongruent (‘‘young’’

face accompanied by ‘‘old’’ house or vice versa).

Task design

Training session

To minimize the individual difference in the age judgements about the stimuli, we trained the participants for about 15 min before the MRI

scans. The first training was a single-category judgment task. The participants were required to judge the age of a series of non-overlapped

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Code for MVPA classification analysis https://osf.io/65v8m/ https://doi.org/10.17605/OSF.IO/65V8M

Behavioral data https://osf.io/65v8m/ https://doi.org/10.17605/OSF.IO/65V8M

MVPA classification accuracy https://osf.io/65v8m/ https://doi.org/10.17605/OSF.IO/65V8M

Software and algorithms

fMRIPrep 20.2.3 https://github.com/nipreps/fmriprep RRID: SCR_016216

Nibetaseries 0.6.0 https://github.com/HBClab/NiBetaSeries N/A

FSL 6.0.4 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ RRID: SCR_002823

Nilearn 0.8.1 https://github.com/nilearn/nilearn RRID: SCR_001362

MATLAB R2018a https://nl.mathworks.com/products/matlab.html RRID: SCR_001622

DPABI V5.1_201201 http://rfmri.org/ RRID: SCR_010501
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pictures (face/house), which were randomly presented on the screen and utilized in the subsequent task-fMRI scans. The participants had

3.30s to make each choice. The same picture was repeated if they made a wrong choice or failed to react in time. The first training ended

when the participants judged the age of 17 consecutive pictures correctly. The second training task was the same procedure as in the

task-fMRI scans to ensure that the participants were familiar with the task rules. The second training endedonly when the participants correctly

judged the age in 10 consecutive trials (at least 2 category switches occurred).

Scanning session

After the trainings, the participants underwent 4 task-fMRI scans (97 trials in each scan) in the scanner. The task performance (response time

and response accuracy) in the task-fMRI scanning was recorded and analyzed. The participants were requested to judge the age of either the

face or house during each trial (Figure 1A) in 4 separate task-fMRI runs. In each task-fMRI scan, the stimuli began with a category text present-

ing on the screen for 4s, indicating the given category of the stimulus (face or house) that the participants needed to focus on. Then in the

subsequent task trials, the participants were requested to judge the age on the given category continuously until the age in that category

changed. Once the age changed (e.g., from young to old or vice versa), the participants were required to shift their attention to another cate-

gory (e.g., from face to the house or vice versa) in the next trial. Therefore, the category that needed to be focused on in the current trial could

be inferred from the information provided by the previous trial. During the task, no category text was shown for the category switch; the par-

ticipants had to constantly pay attention to the age changes and infer the current category. According to the task rules, the trials were clas-

sified into three types (Figure 1A): (1) non-switch trials in which the age did not change and the participants continuously focused on the same

category; (2) cue trials in which the age group changed relative to the previous trials and the participants had to switch to focus on another

category in the next trial; and (3) switch trials in which the participants judged the age of another category. In the switch trials, the categories

that needed to be focused on (inferred outcomes) were changed, while in both the cue trials and the non-switch trials the inferred outcomes

remained unchanged. Therefore, the switch trials could be treated as the outcome-switching condition, and the cue as well as the non-switch

trials could be treated as the outcome-stable condition (Figure 1A). In total, each task-fMRI scan included 97 trials containing an initial trial to

indicate the starting category, 32 non-switch trials, 32 cue trials, and 32 switch trials. At least 2 non-switch or cue trials (3 trials on average) were

set between any two switch trials so that the participants were not exposed to continuous category switches.

METHOD DETAILS

Task procedure

For each trial, a central fixation cross and age options were initially presented (young and old, duration: 0.70–4.70s, mean duration: 1.20s,

Figure 1B), and then an overlapped stimulus was displayed (duration: 0.55–8.30s, mean duration: 3.30s, extracted from a truncated exponen-

tial distribution). The mean time for each trial was 4.50s, ranging from 3.25 to 8.50s. To balance the left/right presses for both ages, we ran-

domized the position of options (young and old) in each trial. The fMRI response devices were made on a bimanual 2-button box. The par-

ticipants judged the age of the stimulus by pressing either key ‘‘1’’ with their left hands (indicating the left option) or key ‘‘4’’ with their right

hands (indicating the right option). The participants had tomake their choices in 2.75s, and the chosen optionwas framedby a white rectangle

(Figure 1B). The stimulus was displayed on the screen till the next trial began. Thus, the response time and the stimulus duration were inde-

pendent across different trials so that the brain activity during the decision-making would not entangle with the stimulus presentation. When

the participant made a wrong choice or failed to respond in time (within 2.75s), a repeated trial with feedback (indicating the category that

needed to be judged) was displayed on the screen. If the age of the category did not change during the current trial, there would be a 50%

chance that the age would change in the next trial.

Decision-related information definition

To facilitate the subsequent data analysis, we defined 4 pieces of decision-related information based on the task demands (Figure 1C). Since

the current category was determined by (or inferred from) the category and the age changes of the previous trial, and the correct age judg-

ment depended on the face/house recognition, we defined 4 pieces of decision-related information; these included two pieces from the pre-

vious trial: previous category (face/house), previous age (young/old), and two from the current trial: current category (face/house; inferred

outcome), current age (young/old). Therefore, each trial had a corresponding identity containing 4 pieces of decision-related information,

which generated 24 = 16 different trial identities in this task (Figure 1C).

Imaging data acquisition

All images were acquired on a 3T Siemens Prisma-fit MRI scanner with a 64-channel phased-array head/neck coil at the Brain Imaging Cen-

ter of SCNU. The fMRI data were obtained using a single-shot simultaneous multi-slice (SMS) or multi-band (MB) gradient-echo echo-

planar imaging (EPI) sequence with the following parameters, repetition time (TR) = 1,500ms, echo time (TE) = 31ms, flip angle = 70�, ac-
celeration factor = 3, the field of view (FOV) = 211 mm 3 211 mm, data matrix = 88 3 88, slice thickness = 2.4mm without inter-slice gap,

voxel size = (2.4mm)3, anterior-to-posterior phase coding direction (A >> P), brain bandwidth = 2,186 hz/px, and 60 interleaved (multi-slice

mode = interleaved, and series = interleaved) slices covering the whole brain. The slice orientation was tilted 30� backward relative to the

anterior-posterior commissure axis to acquire better signals from the orbitofrontal cortex.51 To correct susceptibility-induced geometric

distortions and MRI signal loss in the acquired functional images, we also acquired the field-map of the whole brain by using a
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double-echo fast low angle shot (FLASH) sequence. The locations of the slices and the geometric properties in the field-map scan were the

same as those in the fMRI scan. The sequence parameters for the field-map scan were: TR = 620ms, TE1/TE2 = 4.92ms/7.38ms, flip angle =

60�, FOV = 211 mm 3 211 mm, voxel size = (2.4mm)3, 60 slices, and anterior-to-posterior phase coding direction (A >> P). In addition,

high-resolution brain structural images were acquired using a T1-weighted 3D MP-RAGE sequence with the following parameters: TR =

1,800ms, TE = 2.07ms, flip angle = 9�, slice thickness = 0.80mm, FOV = 256 mm 3 256 mm, data matrix = 320 3 320, voxel size =

(0.8mm)3, and 208 sagittal slices covering the whole brain. For each participant, the MRI scan started with a short localizer scan, followed

by a resting-state fMRI (rs-fMRI) scan, 4 task-fMRI scans, a second rs-fMRI scan, a field map, and a T1-weighted brain structural scan. All of

the scans were completed in the same session.

Data analysis

Behavioral assessment and data analysis

To measure the applicability of the stimuli (faces and houses) for Chinese participants, we assessed the stimuli by inviting another 35 par-

ticipants to judge the age (either young or old) of the houses and faces before our formal experiment. The assessment showed that the

accuracy of the age judgement of the face pictures was 0.99 (SD = 0.02) and the accuracy of the house pictures was 0.91 (SD = 0.10). To

reduce individual differences in age judgement on the task stimuli, the participants participated in two training sessions before the MRI

scanning. Additionally, the response time and response accuracy were considered as the measure of behavioral performance during the

task-fMRI scanning. To test whether the participants showed different behavioral performances for different outcomes (face/house), we

compared the response time and response accuracy between the face trials (the current category was face) and the house trials (the cur-

rent category was house).

Task-fMRI preprocessing

To distill and detect the effect of outcome inference and outcome representation, we discarded (1) the first trial in each task-fMRI scan; (2) the

trials in which the participants failed tomake correct age judgements in time; and (3) the trials immediately following the circumstances in (2) in

all the imaging data analysis.

The task-fMRI data were preprocessed using fMRIPrep 20.2.3,54 which is a standardized and efficient fMRI preprocessing pipeline. For the

task-fMRI data, we carried out the following steps: (1) correction of geometric distortions and MRI signal loss using the field-map images; (2)

co-registration of the functional images to T1w structural images; (3) estimation of the head-motion parameters and motion correction ac-

cording to the reference image, i.e., the median volume of each scan; (4) slice-time correction to the middle of each TR; (5) normalization

to Montreal Neurological Institute (MNI) space; and (6) estimation of the confounds, including the signals from the brain white matter and

cerebrospinal fluid (CSF). We did not smooth the images in the preprocessing workflow.

fMRI data analysis

Multi-voxel pattern analysis (MVPA)

Single trial b maps for MVPA. The MVPA was performed based on the single trial activation patterns, which were obtained using single

trial GLMs with the Nibetaseries python toolbox (https://github.com/HBClab/NiBetaSeries). For each task-fMRI scan, we constructed a first-

level GLM (GLM1) to acquire the bmap for each trial. To reduce the collinearity of the regressors of the GLMs,55 we applied the least-squares

separatemethod inGLM1, which included 8 regressors, one for the trial identity (defined above) of the current trial, one for all the other events

in the scan, and six head motion parameters.

Definition of the region of interest (ROIs): We carried out the MVPA on each of the OFC subregions. We defined 5 OFC subregions ac-

cording to the Brainnetome Atlas,31 a fine-grained parcellation based on functional connectional architecture. Specifically, 2 subregions

are located in the medial area (mOFC1, mOFC2) and the other 3 are located in the lateral area (lOFC1-3, see Figure 3A; Table S1 for details).

Classification features. The activation pattern of each of the OFC subregions was extracted from the single-trial bmaps. These activation

patterns of the 16 trial identities, which contained all decision-related information (previous category, previous age, inferred outcome, and

current age), were entered into the ROI-based and whole-brain searchlight MVPA as classification features.

Classification labels of the decision-related information: Our goal was to decode the decision-related information from the activation pat-

terns of the OFC subregions. The classification labels of the information were derived from the identity of each trial (see STAR Methods and

Figure 1C). Each piece of decision-related information had its corresponding label: previous category (labels: face, house), previous age

(labels: young, old), current category (labels: face, house), and current age (labels: young, old).

Classification algorithm. A linear support vector classifier (SVC) with an L2 penalty was applied as the classifier. The classification analysis

was performed with the Python toolbox using Nilearn (https://nilearn.github.io/stable/index.html). Two-way classifiers were trained and

tested using leave-one-scan-out cross-validation (LOOCV) for the classifications of the previous category, previous age, current category,

and current age, separately. In each iteration, one task-fMRI scan was treated as the test set and the other three scans were treated as the

training sets. The classification accuracy scores were estimated and averaged across the four task-fMRI scans for each participant to obtain

the final scores.
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Behavior relevance of the inferred outcome representation. To test whether the representation of the inferred outcome in the OFC

guided the decisions, we estimated the partial correlation between the classification accuracy of the inferred outcome and the response ac-

curacy. In this calculation, we considered response time, age, and sex as covariates.

Whole-brain searchlight MVPA: To test the stability of ROI-based analysis, we carried out a whole-brain searchlight analysis using Nilearn,

classifying each piece of decision-related information. The classification labels and cross-validation of this analysis were identical to the ROI-

based classifications except that the spatial pattern in each classification was extracted from spheres with a 4mm radius (voxel size: 2323

2mm3). The classification accuracy of a certain sphere was ascribed to the center voxel and the final map of accuracy was generated by search-

ing through the whole brain.

Within- and cross-condition classification analysis. The outcome representations in the five OFC subregions may be either context-

specific or context-general encoding. Context-specific encoding indicates that the representation of category information is only appli-

cable to a specific context or task condition, and context-general encoding indicates that the representation of category information can

be generalized across different contexts or task conditions. To measure the specificity and the generalizability of outcome representa-

tion, we performed within- and cross-condition classification analyses (Figure 5A). The classification features, labels, and algorithm of the

within- and cross-condition classification were the same as the classification of the inferred outcomes mentioned above. This analysis

had two components, within and cross-classifications. For the within-condition classification, which was designed to test the specificity

of the outcome representation, we first trained the classifier in a specific task condition, e.g., outcome-stable (non-switch and cue trials),

and used it to predict the labels of the inferred outcomes within the same task condition, i.e., outcome-stable. We trained and tested

two classifiers for each participant, and then averaged the prediction accuracy as the within-condition classification accuracy. For the

cross-condition classification, which was designed to test the generalizability of the outcome representation, we trained the classifier

in a certain task condition, e.g., outcome-stable, and predicted the labels of inferred outcomes in another task condition, e.g.,

outcome-switching (switch trials). Similarly, we averaged the prediction accuracy from the two classifiers as the cross-classification accu-

racy. We determined the representation attributes of the inferred outcome based on the difference between the within- and the cross-

condition classification accuracy in a given subregion of OFC. If the within-condition classification accuracy was significantly higher than

the cross-classification accuracy, then the outcome representation in the given OFC subregion was context-specific. If the following two

criteria were met, then the outcome representation was context-general: (1) the cross-classification classification accuracy was signifi-

cantly higher than the chance level,20,23,24 and (2) the difference between the cross- and within-condition classification accuracy was sta-

tistically insignificant.22

Psychophysiological interaction (PPI) analysis

PPI analyseswere performed to determinewhether theOFCupdated behavior by interactingwith other brain areas. In the task we performed,

the behavior updating effect could be detected by subtracting the brain activation corresponding to outcome-stable trials from the outcome-

switching trials, since the only difference between these two conditions was whether to update the behaviors or not (switch to judging another

category or not). We constructed twoGLMs (GLM2 andGLM3) for themOFC1 and lOFC3, respectively, using FSL 6.0.4.56 Before the statistical

modeling, we smoothed the preprocessed task-fMRI data with a 5mm full width at half maximum (FWHM) Gaussian kernel and filtered (high

pass) the data with a 128s cutoff by using FEAT toolbox. Taking GLM2 as an example, in the first-level analysis, we selected the mOFC1 as the

seed region and included the following regressors: (1) a zero-center psychological (PSY) factor, representing the outcome-switching trials vs.

the outcome-stable trials, by setting the weight of the outcome-switching trial as 1 and the outcome-stable trial as -1; (2) a blood oxygenation

level-dependent (BOLD) time series extracted from themOFC1 voxels after subtracting its temporal mean strength; (3) a psychophysiological

interaction factor; and (4) six headmotion parameters (X) estimated frommotion correction. Only the psychological regressor was convolved

with the double-gamma hemodynamic response function (HRF).

GLM2 : Y = b1PSY + b2mOFC1 + b3ðPSY 3 mOFC1Þ + Xb+ ε;

Similarly, we took the lOFC3 as the seed region and constructed GLM3, which is shown as:

GLM3 : Y = b1PSY + b2lOFC3 + b3ðPSY 3 lOFC3Þ + Xb+ ε;

where Y indicates the BOLD signal of a given voxel, b values indicate the regression coefficients, and ε is the residual. The preprocessing

settings of GLM2 and GLM3 were the same as for GLM1. In the second-level analysis, we averaged the b coefficients of the interaction

terms across the 4 task-fMRI scans for each participant. In the third-level analysis, by constructing a mixed effect model, we estimated

the group mean of the b coefficient across all the participants and regressed out the effects of sex and age of the participants.

Statistical tests

For testing the difference of response accuracy and response time between different outcomes, we used paired t-test (two-tailed). For the

ROI-based classifications, we used a one-sample t-test (two-tailed) to determine whether the decision-related information was significantly

decodable in the OFC subregions. The significance level was set at p < .01 (Bonferroni correction) and the chance level of classification was
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0.50. To measure the difference between classification accuracy and the chance level, we reported Cohen’s d when the ROI-based classifi-

cations showed positive results and the calculation formula was:

Cohen0s d =
X � m0

SD

where bX and SD indicate themean and standard deviation of the sample. m0 indicates the chance level of classification (0.50). As for the whole-

brain searchlight, we performed one-sample permutation t-tests based on threshold-free cluster enhancement (TFCE) with 5,000 iterations to

determine whether the group classification accuracy was significantly different from 0.50 (two-tailed) with Matlab toolbox DPABI

V5.1_201201.57,58 The significance level was set at p < .05 (FDR correction). One-sample t-tests (two-tailed) were performed to test the sig-

nificance of cross-classification across OFC subregions. A paired t-test (two-tailed) was performed between the within and cross-classification

accuracies on each of the OFC subregions and the significance level of ROI-based classification analysis was set at p < .01 (Bonferroni correc-

tion). In the PPI analyses (GLM2 and GLM3), a one-sample t-test (one-tailed) was used to determine whether the group b coefficient was

greater than 0. The significance level was set at the voxel level p < .025 and the Gaussian random field (GRF) theory correction procedure

at the cluster level Z > 3.09.
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