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Introduction

Undifferentiated pleomorphic sarcoma (UPS) and myxofi-
brosarcoma (MFS) are among the most common adult soft 
tissue sarcoma (STS) subtypes, comprising 14% and 5% 
of adult STSs respectively [1, 2]. Although UPS and MFS 
are classified as distinct clinical entities based on differ-
ing clinicopathologic features – with MFS having promi-
nent myxoid stroma and UPS generally being higher grade 
and more prone to distant metastasis – genomic and tran-
scriptomic profiling have revealed the two STS subtypes 
to be largely indistinguishable [3, 4]. Given their similar-
ity, common treatment approaches for both subtypes may 
be appropriate. Standard of care for non-mestatic UPS 
and MFS includes complete resection and, for intermedi-
ate- and high-grade tumors, radiation therapy. The role 
of systemic therapy in these tumors has been uncertain. 
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Opinion Statement
Undifferentiated pleomorphic sarcoma (UPS) and myxofibrosarcoma (MFS) are among the most common adult soft tissue 
sarcoma (STS) subtypes. Due to their high genetic complexity, heterogeneity, and lack of specific genetic alterations, no 
consistent molecular targets for targeted therapy have been identified for UPS and MFS. Recently, immune checkpoint 
inhibition (ICI) has emerged as a promising treatment modality for UPS and MFS. However, the efficacy of ICI in UPS 
and MFS remains far lower than in other cancers such as melanoma. Strategies to increase the efficacy of ICI, including 
selecting patients based on putative biomarkers and combining ICI with chemotherapy, targeted therapies, and/or radia-
tion therapy, are currently in clinical development. In this review, we first summarize the clinical characteristics of UPS 
and MFS, examining the tumor microenvironment (TME) and its effect on the efficacy of ICI. We then review putative 
biomarkers of ICI response and highlight clinical trials testing ICI in patients with UPS and MFS. Finally, we discuss 
other forms of immunotherapy for UPS and MFS currently under preclinical investigation. The combination of ICI plus 
radiation therapy appears to have benefit for patients with localized UPS and MFS. ICI should be considered for patients 
with advanced or unresectable UPS and MFS, especially those with potential biomarkers of response such as tertiary lym-
phoid structures (TLS). However, singular biomarkers such as TLS may prove inadequate to predict ICI response; more 
accurate prediction will likely require a panel of biomarkers including TLS, immune cell infiltration, PD-L1 expression, 
and other TME components.
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Immunotherapy has dramatically improved outcomes for 
patients with many common types of cancer such as breast 
carcinoma, melanoma, and lung carcinoma [5]. However, 
these therapies have shown limited efficacy in UPS and 
MFS until recently. Recent clinical trials of immunotherapy 
have demonstrated remarkable efficacy in STS, including 
UPS and MFS [6–9]. In this review, we discuss the tumor 
microenvironment (TME) and TME biomarkers that poten-
tially predict response to immunotherapy. Furthermore, we 
review the existing literature on the use of immunotherapy 
in UPS and MFS.

Clinical Characteristics of UPS and MFS

UPS and MFS predominately affect adult patients, with an 
average age of presentation between 60 and 70 years, and 
typically arise in the trunk or extremity [2, 10, 11]. Both 
subtypes are highly aggressive, with a 5-year survival rate 
of between 60 and 70% [12–14]. In patients who develop 
metastatic disease, survival is poor, with a 5-year survival 
reported at 20% [12, 14–17].

Diagnosis of UPS and MFS requires biopsy and histo-
logic evaluation by an expert STS pathologist [11]. Mor-
phologically, UPS is characterized by marked cellular 
pleomorphism, spindle-shaped cells, nuclear atypia and 
hyperchromasia, a lack of differentiation, and a disorga-
nized or storiform cellular arrangement [18, 19]. MFS is 
characterized by a variable amount of myxoid stroma, cellu-
lar pleomorphism, and a distinctive curvilinear vascular pat-
tern [20]. MFS tumors can range from low- to high-grade, 
whereas UPS is almost uniformly high-grade. MFS has a 
predilection for superficial locations, but UPS and MFS can 
occur in both superficial and deep locations. Distinguish-
ing between UPS and MFS – especially higher grade MFS 
tumors – is often challenging due to the similarities in mor-
phology and the lack of molecular markers specific to either 
subtype [18]. Lee et al. found that increased myxoid content 
in MFS is associated with improved survival, and suggested 
that a cutoff of 5% myxoid component threshold could help 
differentiate UPS and MFS for clinical decision-making; 
however, this criterion has yet to be widely adopted [14, 18].

Current treatment for UPS and MFS relies on an onco-
logic (complete) surgical resection with the goal of achieving 
negative margins. Surgery is often combined with adjuvant 
radiation therapy and/or chemotherapy [21, 22]. Neoadju-
vant or adjuvant radiation therapy is often recommended 
to improve local control in high-grade tumors, especially 
in cases where achieving clear surgical margins is difficult. 
For patients with high-risk features or metastatic disease, 
systemic chemotherapy may be considered, although its 
benefit is not universally accepted. No specific regimen for 

UPS or MFS has been developed; the first choice chemo-
therapy for UPS and MFS is the AIM regimen (doxorubi-
cin, ifosfamide, and mesna), which is recommended for all 
adult STSs [1, 21]. However, response rates are variable and 
the regimen is associated with numerous toxicities [23, 24]. 
As such, the role and proper application of chemotherapy 
in UPS/MFS remain unresolved [25]. Novel therapeutics 
that improve survival and reduce toxicities for patients with 
UPS and MFS are greatly needed.

The development of these therapeutics has faced many 
challenges. UPS and MFS are complex karyotype sarcomas, 
which are associated with a heterogenous array of genetic 
and chromosomal abnormalities including losses, gains, 
amplifications, and point mutations, while lacking specific 
driver mutations or recurrent genetic translocations seen in 
simple karyotype sarcomas [26]. This high genetic com-
plexity, combined with heterogeneity and a lack of specific 
genetic alterations, has made it difficult to identify consis-
tent molecular targets for targeted therapy in UPS and MFS. 
Additionally, UPS and MFS have historically been consid-
ered immunologically “cold” tumors, with low levels of 
immune cell infiltration, high levels of immunosuppressive 
cells, and relatively low tumor mutation burden compared 
to other cancers, which potentially limit the effectiveness of 
immunotherapies [27–29]. Until recently, immunotherapies 
have shown disappointing results in the setting of advanced 
UPS and MFS, but recent trials are beginning to demon-
strate improved response rates in selected patients and in 
combination with radiation, chemotherapy, and/or immuno-
modulatory agents [9, 30, 31].

TME of UPS and MFS

Tumor mutational burden (TMB) and copy number 
alteration (CNA)

TMB is defined as the number of somatic mutations per cod-
ing area within a tumor’s genome [32]. It serves as a proxy 
for neoantigen burden, which can influence the immune 
system’s ability to recognize and attack cancer cells [33, 
34]. STSs, although a heterogenous group of tumors, have 
been shown as a whole to harbor a low TMB, with a median 
of 2.5 mutations/Mb and only 5% of tumors harboring > 20 
mutations/Mb (compared to basal cell carcinoma, which 
has a median of 47.3 mutations/Mb and 70.7% of tumors 
harboring > 20 mutations/Mb) [35]. This is true of UPS 
and MFS, with a median TMB of 2.5 and 2.2 mutations/
Mb respectively [35]. UPS and MFS are characterized by 
a high number of CNA, which are defined as variations in 
the number of copies of particular genes and can theoreti-
cally increase neoantigen formation [3]. However, CNA are 
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considered to be less immunogenic than mutations [36]. 
The utility of TMB as a prognostic tool in UPS is debated. 
Higher TMB was found to trend with improved overall sur-
vival (OS) in STS in a study by Raj et al., although this 
was nonsignificant (p= 0.08) [37]. Higher TMB was found 
to trend with increased immune checkpoint inhibition 
(ICI) response rate in STS in a study by Lee et al., but this 
was also nonsignificant (p= 0.20) [38]. Subtypes with low 
TMB, such as UPS and MFS, have demonstrated relatively 
high response rates to ICI [38]. Taken together, TMB alone 
does not appear to be a clinically useful biomarker for ICI 
response in UPS/MFS.

Expression of Programmed Death-ligand 1 (PD-L1)

PD-L1 is a transmembrane protein that interacts with the 
programmed death-1 (PD1) receptor on T cells and other 
immune cells to inhibit T cell activity, promote immune tol-
erance, and prevent autoimmunity [39]. PD-L1 is commonly 
overexpressed on cancer cells and in the TME, thereby 
allowing cancer cells to evade immune surveillance. In the 
context of STS, high PD-L1 expression is generally asso-
ciated with higher metastatic potential and worse outcome 
[40–42]. Studies in a variety of cancers have demonstrated 
positive correlation between PD-L1 expression and response 
to ICI, although this correlation remains debated in sarcoma 
[43]. In STS, PD-L1 positivity is commonly defined as ≥ 1% 
tumor cells expressing PD-L1 [42, 44]. Various studies have 
reported that the rate of PD-L1 positivity in UPS ranges from 
23 to 73% [25, 29, 42, 45, 46]. In a study by Lee et al., of 
PD-L1 positive UPS tumors, 3.5% of tumors were found to 
have 1–4% of tumor cells expressing PD-L1, 24% of tumors 
had 5–9% of tumor cells expressing PD-L1, 27% of tumors 
had 10–49% of tumor cells expressing PD-L1, and 18% of 
tumors had ≥ 50% of tumor cells expressing PD-L1 [25]. Per 
Boxberg et al., Vargas et al., and Pollack et al., UPS has the 
highest prevalence of PD-L1 positivity of all STS [29, 45, 
47]. Regarding MFS, studies have reported PD-L1 positivity 
in 16% − 35.6% of tumors [45, 48, 49]. In a study by Wunder 
et al., 48% of MFS tumors were found to have ≤ 5% of tumor 
cells expressing PD-L1, 12% had 5–20% of tumor cells 
expressing PD-L1, 20% had 20–30% of tumor cells express-
ing PD-L1, 12% had 30–50% of tumor cells expressing 
PD-L1, and 8% had ≥ 50% of tumor cells expressing PD-L1 
[49]. Interestingly, several studies that looked at specifically 
at UPS have reported that there is a positive association 
between PD-L1 expression and improved survival, contrary 
to previous findings that PD-L1 expression is associated with 
worse outcomes [25, 29, 49]. Additionally, several studies 
have shown that PD-L1 expression correlates positively with 
response to ICI in STS, with a large retrospective study find-
ing that STS with PD-L1 ≥ 1% were significantly more likely 

to respond to ICI than those with PD-L1 < 1% (p= 0.02) 
[38, 50, 51]. Nevertheless, PD-L1 expression alone does 
not appear to be a clinically useful biomarker for predict-
ing response to ICI as responses are also frequently seen in 
PD-L1 negative STS.

Immune Cell Infiltration

Tumor-infiltrating immune cells (TIIC) are a critical com-
ponent of the TME and play diverse roles in tumor progres-
sion and response to therapy. TIIC include various immune 
cell types such as CD8 + T cells, natural killer (NK) cells, 
regulatory T cells (Tregs), myeloid-derived suppressor cells 
(MDSCs), and tumor-associated macrophages (TAMs) [5]. 
CD8 + T cells and NK cells are primarily involved in anti-
tumor responses, with high densities of these cells generally 
associated with improved patient outcomes. Conversely, 
Tregs, MDSCs, and M2-polarized macrophages are thought 
to promote tumor growth by suppressing the anti-tumor 
immune response, leading to worse patient outcomes.

Tumor associated macrophages are the most abundant 
cells in the UPS TME, where they are likely to be M2-polar-
ized [52, 53]. M2 macrophages differentiate from M0 mac-
rophages in the presence of M-CSF, IL-4, or IL-10 and 
express immunosuppressive cytokines PD-L1, IL-10 and 
TGFβ [54, 55]. The presence of M2 macrophages is thought 
to sustain an immunosuppressive TME that promotes tumor 
growth and proliferation. Among STS, UPS has the highest 
proportion of M2 to total macrophages, and this has been 
postulated to reduce the efficacy of ICI therapy [56]. 

Despite the abundance of immunosuppressive TAMs, 
UPS commonly has extensive T-cell infiltration, oligoclo-
nal T-cell repertoires, and increased expression of genes 
involved in antigen presentation and T-cell mediated apop-
tosis [27, 57, 58]. Increased CD8 + T cell density has been 
negatively correlated with tumor size and positively cor-
related with OS in UPS [27, 59, 60]. However, Dancsok 
et al. show that, despite the presence of tumor infiltrating 
lymphocytes (TILs) in UPS and MFS tumors, a majority 
of these tumors have ≥ 1 TIL that express immune check-
point proteins LAG3, TIM-3, and PD-1, which potentially 
contribute to an immunosuppressive TME [58]. Moreover, 
Que et al. show that 36% of UPS tumors are infiltrated with 
FOXP3 + Tregs, which correlates with PD-L1 expression, 
suggesting that PD-L1 and Tregs synergistically promote 
UPS immune evasion [61]. Interestingly, Guegan et al. show 
that despite predicting a better prognosis, high immune cell 
infiltration, particularly of CD8 + T cells and CD20 + B 
cells, predicts a poor response to neoadjuvant chemotherapy 
in UPS [62]. They hypothesize that this nonresponse may be 
mediated by M2 macrophages, which are enriched along-
side CD8 + T cells and CD20 + B cells.
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significantly higher than the unselected cohort, which had 
a 5-month NPR and ORR of 4.9% and 2.4% respectively. 
Surprisingly, among STSs in the selected cohort, UPS and 
MFS were relatively poorly responding STS subtypes, with 
no patients experiencing complete or partial response, 1 
UPS patient and 1 MFS patient experiencing stable disease, 
and 3 UPS patients experiencing progressive disease (com-
pared to dedifferentiated liposarcoma (DDLPS), which 
had 5 patients with PR, 6 with stable disease, and 1 with 
progressive disease) [30]. Nevertheless, this study found 
that TLS can be used to predict ICI response in patients 
with STS and select for patients who are more likely to 
respond. This finding was supported by the results from a 
phase 2 clinical trial by Roland et al., which tested neoadju-
vant nivolumab or nivolumab/ipilimumab in patients with 
resectable DDLPS and UPS (the UPS cohort also received 
concurrent nivolumab/radiation therapy) [73]. This study 
found that ICI therapy increased TLS signature in DDLPS 
but not UPS. Additionally, the presence of TLS at surgery 
for DDLPS and at baseline for UPS was associated with 
improved OS. Of note, 2 UPS patients with TLS at baseline 
were found to have lost their TLS upon neoadjuvant ther-
apy, which was hypothesized to be due to the radiosensitiv-
ity of B cells. These thought-provoking results highlight 
the complexity of the interactions between ICI, radiother-
apy, the TME, and TLS in STS. Please refer to Table 1 for a 
selected list of studies of the TME of UPS/MFS.

Immune Checkpoint Inhibition for UPS/MFS

Response rates of high risk and/or advanced STS to chemo-
therapy are low, with an ORR of between 11–18% [74, 75]. 
Moreover, systemic chemotherapy often causes dose limit-
ing toxicities, especially among older patients who make up 
the majority of UPS/MFS cases [76]. With the success of 
ICI therapy across multiple solid tumors, ICI is emerging 
as a promising treatment option for STS [77–83]. In addi-
tion to potentially being a more effective treatment, ICI is 
associated with fewer serious adverse events than chemo-
therapy, which may allow it to be offered to patients who 
are unable to tolerate chemotherapy [84]. Several clinical 
trials have been completed or are underway testing ICI in 
STS and, to date, UPS and MFS have been two of the most 
responsive STS subtypes to ICI therapy [38, 85, 86].

ICI Monotherapy

The first clinical trial to demonstrate efficacy of ICI in STS 
was the SARC028 phase II clinical trial, which tested pem-
brolizumab (PD-1 inhibitor) in patients with metastatic 
or unresectable UPS, DDLPS, leiomyosarcoma (LMS), 

Subramanian et al. discovered, through a machine-learn-
ing framework using bulk transcriptomes, that a group of 
STS termed sarcoma ecotype 3 (SE3) with a TME consist-
ing of an intermediate level of immune infiltration char-
acterized by M2-like immunosuppressive macrophages, 
MYC/MTORC1-activated epithelial-like malignant cells, 
mature dendritic cells, and pro-inflammatory neutrophils 
had the best response ICI [63]. Interestingly, they noted that 
UPS tumors had the highest proportion assigned to SE3, 
which possibly explains the high clinical activity of ICI in 
UPS. Additionally, they found that SE3 abundance outper-
formed PD-L1 expression and presence of tertiary lymphoid 
structures as a biomarker for predicting ICI response and 
6-month non-progression, potentially enabling better identi-
fication of STS patients that could benefit from ICI therapy.

Tertiary Lymphoid Structures (TLS)

TLS are ectopic lymphoid aggregates that form in non-
lymphoid tissues at sites of chronic inflammation, includ-
ing tumors [64, 65]. They resemble secondary lymphoid 
organs in their organization and function, containing B-cell 
follicles, T-cell zones, high endothelial venules, and follicu-
lar dendritic cells [66]. The presence of TLS within tumors 
is hypothesized to prime T cells and B cells with tumor-
specific antigens. This process drives the expansion and 
differentiation of naive T and B cells into cytotoxic effec-
tor T cells capable of lysing tumor cells and B cells that 
express high-affinity antibodies for tumor antigens, respec-
tively [64]. Moreover, TLS have been shown as a prog-
nostic marker independent of ICI therapy and a predictive 
biomarker of ICI response in a range of cancers including 
non-small cell lung cancer, bladder cancer, gastrointestinal 
cancers, head and neck carcinomas, renal carcinoma, breast 
carcinoma, melanoma, and STSs [30, 66–71]. In STS, Petit-
prez et al. discovered that TLS are associated with an highly 
immune-infiltrated subtype of tumors with improved sur-
vival and ICI response [31]. Retrospective analysis of the 
SARC028 study, a phase 2 clinical trial of pembrolizumab 
in patients with metastatic or unresectable locally advanced 
STS and bone sarcoma, found that patients with STS cate-
gorized to this immune subtype had a 50% overall response 
rate (ORR) to ICI [8, 31, 72].

On the basis of this discovery, the PEMBROSARC 
study, a phase 2 clinical trial of pembrolizumab combined 
with cyclophosphamide in patients with advanced STSs, 
was amended to include a new cohort selected based on 
the presence of TLS [30, 56]. The goal of this modification 
was to investigate the efficacy of ICI therapy in patients 
selected for the presence of this biomarker. In the selected 
cohort, the 6-month non-progression rate (NPR) was 40% 
and overall response rate ORR was 30%, which were 
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synovial sarcoma (SS), Ewing sarcoma, osteosarcoma, 
and chondrosarcoma [8]. 18% of patients with STS had an 
objective response, including four of ten patients with UPS 
(1 CR and 3 PR). Due to the encouraging signal for UPS, 
an expansion cohort was enrolled with 30 additional UPS 
patients for a total of 40 patients [72]. The ORR of the entire 
UPS cohort was 23% (9/40), with an additional 5/30 PRs 
observed in the expansion cohort. The median progression-
free survival (PFS) for the entire UPS cohort was 3 months 
and the median OS was 12 months. Although the ORR of 
pembrolizumab in UPS was below the 25% considered clin-
ically meaningful, it nevertheless demonstrated the poten-
tial activity of ICI in UPS.

Despite early promising results, clinical trials testing ICI 
monotherapy in UPS and MFS have yielded poor results 
overall. In the Alliance A091401 phase II clinical trial, 
which tested nivolumab (anti-PD-1) or nivolumab plus ipi-
limumab (anti-CTLA-4) in metastatic or unresectable STSs, 
nivolumab monotherapy resulted in an ORR of 5% (2/38), a 
median PFS of 1.8 months, and median OS of 10.7 months 
[87]. No UPS or MFS patients experienced a response. 
In another phase II study, which tested nivolumab mono-
therapy in advanced/recurrent STS, uterine cervical cancer, 
and uterine corpus cancer, STS patients (including 5 UPS 
patients) had an ORR of 0% and median PFS of 1.4 months 
[88]. These data have led to a shift toward the combination 
of ICI with another immunotherapy, chemotherapy, small 
molecular inhibitor, and/or radiation therapy

ICI Combined with Another Immunotherapy

Although nivolumab monotherapy proved to be ineffective 
in the Alliance A091401 trial, combination of nivolumab and 
ipilimumab was more efficacious, demonstrating an ORR of 
16%, with responses occurring in UPS, MFS, uterine LMS, 
and non-uterine LMS [87]. The median PFS was 4.1 months 
and the median OS was 14.3 months. An expansion cohort 
reaffirmed these outcomes, with combination of nivolumab 
and ipilimumab in UPS patients resulting in an ORR 16.6%, 
a PFS of 2.7 months, and an OS of 15.2 months [89]. A 
similar phase II clinical trial by Somaiah et al., which tested 
the combination of durvalumab (anti-PD-L1) and tremelim-
umab (anti-CTLA-4) in a variety of advanced or metastatic 
sarcoma subtypes, demonstrated an ORR of 14%, a median 
PFS of 2.8 months, and a median OS of 21.6 months [90]. 
In UPS, one out of five of patients had a PR.

ICI Combined with Chemotherapy

ICI combined with chemotherapy has been shown to have 
increased efficacy in STS [85, 86]. In a phase I/II clini-
cal trial by Pollack et al., which tested the combination of 
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had a significantly longer 6-month NPR and ORR at 40% 
and 30% respectively, compared to non-selected patients 
at 4.9% and 2.4% respectively. Median PFS and OS were 
also significantly longer in the TLS-positive cohort, at 4.1 
months and 18.3 months respectively, compared to non-
selected patients, at 1.4 months and 14.3 months respec-
tively. However, no UPS or MFS patient in the TLS-positive 
cohort had a response.

Not all clinical trials combining ICI with chemotherapy 
have shown efficacy. In the phase Ib TRAMUNE study, 
patients with advanced pretreated STS (including 2 UPS 
patients) were treated with a combination of trabectedin and 
durvalumab [96]. The ORR was 7%, the 6-month PFS was 
28.6%, and the 1-year PFS rate was 14.3%.

Finally, high-dose local administration of chemotherapy 
combined with ICI for STS of the extremities has shown 
early signals of efficacy. A case report of 2 patients with 
recurrent MFS treated with isolated limb infusion of che-
motherapy combined with pembrolizumab demonstrated 
excellent responses, with one patient having a significant 
PR lasting 6 months and the other patient having a CR last-
ing 2 years [97]. These promising responses have prompted 
the initiation of a phase II clinical trial investigating the 
combination [98].

ICI Combined with Tyrosine Kinase Inhibitor (TKI)

Although the combination of ICI and TKI has demonstrated 
activity in certain sarcoma subtypes, it has shown varying 
efficacy in UPS and MFS [86]. In the IMMUNOSARC 
trial, which treated patients with advanced STS with a com-
bination of nivolumab and sunitinib (multi-kinase inhibi-
tor), the ORR was 21%, the 6-month PFS rate was 48%, 
and the median OS was 24 months [99]. However, no UPS 
patients had a response. Similarly, in a phase II clinical trial 
that tested the combination of axitinib plus pembrolizumab 
in patients with advanced or metastatic sarcomas, no UPS 
patients had a response [100]. This combination did show 
efficacy in other sarcoma subtypes, with an ORR of 25%, a 
median PFS of 4.7 months, and median OS of 18.7. Another 
phase II trial that combined cabozatinib with nivolumab 
and ipilimumab for patients with metastatic STS resulted 
in an ORR of 11%, median PFS of 5.4 months, and median 
OS of 22.6 months for the combination treatment [101]. No 
responses were observed in patients with UPS or MFS.

Other clinical trials have shown that the combination of 
ICI with TKI has benefit in UPS and MFS. In a pilot study 
combining pembrolizumab and lenvatinib in advanced pre-
treated sarcoma, two out of five UPS patients experienced 
a PR (20% ORR), and the median PFS for the five patients 
was 25 weeks [102]. The median OS was not reached. 
In a phase II clinical trial that combined durvulamab and 

pembrolizumab and doxorubicin in patients with advanced 
anthracycline-naive sarcomas, the ORR was 13%, median 
PFS was 8.1 months, and median OS was 27.6 months [91]. 
Notably, two out of three patients with UPS had a durable 
PR. In a very similar phase II clinical trial by Livingston 
et al., patients with unresectable or metastatic anthracycline 
naïve STS were treated with a combination of pembroli-
zumab and doxorubicin [92]. The ORR was substantially 
higher at 36.7%; however, median PFS and median OS 
were lower at 5.7 months and 17 months respectively. The 
authors noted that the differences in outcomes between their 
trial and that of Pollack et al. may have been due to the 
variability in sarcoma subtypes enrolled, increased pro-
portion of patients receiving the combination of pembroli-
zumab and doxorubicin as first-line systemic treatment, and 
the doxorubicin doses received. Notably, all UPS patients 
enrolled (4/4) experienced a PR. Pembrolizumab combined 
with doxorubicin versus doxorubicin alone for aggressive, 
poorly differentiated sarcomas is now being tested in a 
nationwide phase III clinical trial (NCT06422806) [93]. 

Another combination that has shown clinical activity 
is that of ipilimumab, nivolumab, and trabectedin, dem-
onstrated in the SAINT phase I/II trial [94]. In this trial, 
patients with unresectable or metastatic STS including UPS 
and MFS received each of these drugs in combination as 
first-line therapy. The ORR was 25.3%, median PFS was 
6.7 months, and median OS was 24.6 months. Notably, six 
patients experienced CR, including two UPS patients and 
one MFS patient.

The combination of sintilimab (anti-PD-1), doxorubi-
cin, and ifosfamide has also shown efficacy in STS [95]. 
In the phase II trial reported by Liu et al., treatment naïve 
patients with unresectable or metastatic UPS, SS, myxoid 
liposarcoma, and DDLPS were treated with the combina-
tion. The ORR was an unprecedented 68.3%, with seven out 
of 8 UPS patients experiencing a response. Median PFS and 
OS were 9.0 months and 19.9 months respectively. Confir-
mation of this outcome in a phase III trial may lead to the 
adoption of this treatment combination as the gold standard 
for advanced STS [6]. However, there are serious concerns 
about the toxicity associated with combining immunother-
apy with two cytotoxic agents.

As discussed above, retrospective analysis of the 
SARC028 trial by Petitprez et al. and Keung et al. pro-
vided the rationale for the PEMBROSARC trial to include 
a new cohort consisting of patients with intratumoral TLS 
present on biopsy [30]. Previously, the PEMBROSARC 
trial showed that the combination of pembrolizumab and 
cyclophosphamide had limited activity in STS [56]. In this 
trial, patients with advanced nonresectable or metastatic 
STSs received pembrolizumab combined with low dose 
cyclophosphamide. Patients from the TLS-positive cohort 
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studies to increase proliferation and activation of TILs in 
solid tumors, leading the investigators to hypothesize that 
it would enhance the efficacy of ICI in sarcoma. For UPS/
MFS patients, the ORR was 20% (two out of ten patients 
experienced a PR), the median PFS was 2.4 months, and the 
median OS was 9.2 months.

Several clinical trials have tested the combination of ICI 
with oncolytic virotherapy. A phase II clinical trial by Kelly 
et al. tested tamilogene laherparepvec (T-VEC) – a modified 
human herpes simplex virus type I designed to lyse tumor 
cells that is FDA-approved to treat melanoma – with pembro-
lizumab in patients with locally advanced or metastatic sar-
coma who had failed at least one line of therapy [109]. The 
ORR was an impressive 35% (7 out of 20 patients), the median 
PFS was 17.1 weeks, and the median OS was 74.7 weeks. PR 
was observed in two UPS patients and one MFS patient. An 
expansion cohort demonstrated impressive results in patients 
with cutaneous angiosarcoma, with an ORR of 71% (five out 
of seven patients) [110]. However, only one of ten UPS/MFS 
patients in the expansion cohort experienced a response.

Another phase II trial by Toulmonde et al. tested the com-
bination of avelumab (anti-PD-L1), metronomic cyclophos-
phamide, and JX-594, an oncolytic vaccinia virus in patients 
with advanced “cold” STS characterized by an absence of 
TLS [111]. The investigators hypothesized that the combina-
tion of cyclophosphamide and JX-594 would have immuno-
stimulatory effects that sensitized the tumors to ICI. While 
they found that treatment with JX-594 led to significant 
changes in the TME, including increased T cell infiltration, 
the clinical activity of this combination was disappointing, 
with only one PR out of fifteen patients enrolled. Median 
PFS was 1.8 months, and median OS was 10.5 months. One 
UPS patient was treated and had progressive disease.

Other Immunotherapy Strategies

Aside from ICI, several other forms of immunotherapy for 
UPS/MFS are in clinical trials or preclinical development. 
These include adoptive cell therapies, antibody-drug conju-
gates, and immunomodulators.

Adoptive Cell Therapies

The first engineered cell therapy FDA-approved for solid 
tumor is afamitresgene autoleucel (afami-cel), a MAGE-
A4 directed T-cell receptor (TCR)-based cellular therapy 
for synovial sarcoma, which was approved in August 2024. 
MAGE-A4 is a cancer testis-antigen highly and nearly ubiq-
uitously expressed in synovial sarcoma, making it an excel-
lent target. The SPEARHEAD-1 phase II trial showed that 
treatment with afami-cel in patients with heavily pretreated 

pazopanib in patients with metastatic and/or recurrent STS, 
the ORR was 30% and median PFS was 7.7 months [103]. 
Four UPS and four MFS patients were included in the trial. 
Of the four UPS patients, three had a PR while one had sta-
ble disease (near PR). However, none of the MFS patients 
had a response. Correlative analysis showed that patients 
with high B cell infiltration in their tumor had a longer PFS 
and better response to treatment, consistent with the find-
ings of Petitprez et al. [31, 103].

ICI Combined with Radiation Therapy

The combination of ICI with radiation therapy is thought 
to release tumor antigens and enhance the effect of ICI, 
with clinical trials of this strategy showing promise in STS 
[104–106]. In an ongoing phase II clinical trial by Roland 
et al. (NCT03307616), patients with resectable UPS were 
treated with a combination of nivolumab, ipilimumab, and 
radiotherapy prior to surgical resection [73, 107]. 89% of 
UPS patients experienced a pathologic response to therapy 
(percent hyalinization), while 20% of UPS patients had a 
PR on imaging. Survival outcomes were excellent, with 
78% relapse-free survival and 90% OS at 24 months fol-
low-up. As discussed earlier, this study confirmed previous 
findings that intratumoral B cells and TLS are associated 
with increased survival. A recent landmark trial that demon-
strated the efficacy of combining ICI with radiotherapy was 
the SU2C-SARC032 study, which compared neoadjuvant 
pembrolizumab plus radiotherapy followed by surgery and 
adjuvant pembrolizumab (experimental group) with neoad-
juvant radiotherapy followed by surgery (control group) in 
patients with localized high-risk STS (UPS, DDLPS, pleo-
morphic LPS) [9]. This was the first completed randomized 
clinical trial of adding ICI to radiation therapy and surgery 
in patients with high-risk, localized STS of the extremity. 
Two-year disease-free survival was 68% in the experimen-
tal group and 52% in the control group, demonstrating the 
potentially synergistic effect of neoadjuvant ICI and radia-
tion therapy. These results support the addition of ICI to 
preoperative radiation therapy and surgery for high-risk, 
resectable UPS/MFS of the extremity or limb girdle. Please 
refer to Table 2 for a selected list of ICI clinical trials that 
include patients with UPS and MFS.

Other ICI Combinations

Other clinical trials have combined ICI with immunomod-
ulators such as IL-2 agonists and oncolytic virotherapy, 
with varying degrees of success. A pilot study tested the 
combination of bempegaldesleukin, an IL-2 agonist, with 
nivolumab in patients with advanced or metastatic sarco-
mas [108]. Bempagaldesleukin was shown in previous 
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synovial sarcoma had an ORR of 37%, median PFS of 3.8 
months, and a median OS of 15.4 months [112]. Another 
cancer testis-antigen highly expressed in synovial sarcoma is 
NY-ESO-1, and a phase I/II clinical trial testing a NY-ESO-
1-targeted TCR therapy also demonstrated antitumor activity 
in synovial sarcoma [113]. Both NY-ESO-1 and MAGE-A4 
are expressed to varying degrees in UPS and MFS. One 
study showed that NY-ESO-1 is positive in 35.3% (6/17) of 
MFS tumors and 11.1% (3/27) of UPS tumors, with positiv-
ity defined as greater than 50% of positive tumor cells and a 
staining intensity of “moderate” or “strong.” [114] Another 
study showed that MAGE-A4 is positive in 66.6% (6/9) 
MFS tumors and 60% (6/10) UPS tumors, albeit with a posi-
tivity defined as a lenient ≥ 5% of positive tumor cells [115]. 
Nevertheless, they show that on average, 37.8% of cells in 
MFS tumors and 34.2% of cells in UPS tumors were posi-
tive for MAGE-A4. These data suggest that a NY-ESO-1- 
or MAGE-A4-directed TCR therapy may be effective in a 
subset of UPS/MFS patients. To that end, a case report of a 
NY-ESO-1 positive UPS patient treated with autologous NY-
ESO-1-specific TCR therapy showed initial tumor regres-
sion [116]. However the tumor eventually lost NY-ESO-1 
expression, leading to disease progression.

Adoptive cell transfer with TILs is another strategy being 
pursued. Mullinax et al. showed that it is feasible to derive 
and expand TILs from several STS subtypes including UPS 
and MFS, and that these TILs have tumor-specific reactivity 
[117]. A pilot trial combined LTX3-15, an oncolytic peptide, 
and TILs in patients with advanced or metastatic STS (no 
UPS/MFS patients were included) [118]. Although a sys-
temic immune response was induced in patients, the combi-
nation ultimately had limited clinical efficacy.

Antibody-based Therapeutics

Antibody-drug conjugates (ADC) have shown significant 
efficacy in the treatment of various solid and hematologic 
malignancies [119]. The ideal target antigen for ADCs is 
one that is abundantly expressed on the surface of cancer 
cells and minimally expressed on normal tissues; such tar-
gets have been difficult to identify in UPS and MFS [120]. 
A phase I clinical trial tested ABBV-085, an ADC targeting 
LRRC15, in several cancers including UPS, with two out 
of ten UPS patients having a PR [121]. Although the 20% 
ORR in UPS was considered clinically significant, further 
development of ABBV-05 was discontinued. Another ADC 
currently in clinical trials for STSs is mecbotamab vedo-
tin, which targets AXL, a receptor tyrosine kinase highly 
expressed several sarcoma subtypes including UPS and MFS 
[122]. In this phase II trial, patients with AXL-expressing 
advanced refractory sarcoma received either mecbotamab 
vedotin monotherapy or combined with nivolumab. Pollack 
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ICI. Several strategies to induce TLS are being pursued in 
preclinical studies. This includes use of immunoregulators 
such as delivery of LIGHT or LTα to the TME to enhance 
infiltration of T cells [127–129], immune-stimulating agents 
such as agonists of stimulator of interferon genes (STING) 
[130] or agonistic CD40 antibodies [131]chemokines 
associated with lymphoid formation such as CXCL13 and 
CCL21 [132, 133], injection of driver cells such as stromal 
cells that act as lymphoid tissue organizer cells [64], repres-
sion of Tregs [134, 135], enrichment of T follicular helper 
cells [136], and oncolytic virotherapy [137]. No study has 
yet tested these strategies to induce the formation of TLS in 
the context of UPS/MFS. However, a recent study showed 
that intratumoral STING activation resulted in tumor regres-
sion in a preclinical model UPS, with analysis of the tumors 
showing an upregulation of lymphocytic markers and infil-
tration of cytotoxic T-lymphocytes [138]. Additionally, the 
study showed that combination therapy of a STING agonist 
with ICI showed a significant survival benefit over either 
therapy alone. However, no analysis was conducted on the 
effect of STING agonism on TLS formation.

Cytokine-induced Killer (CIK) Cell

Another adoptive cell therapy strategy that has shown prom-
ise against UPS in preclinical studies is CIK cells. CIK cells 
are a heterogenous population of immune effector cells that 
exhibit both T cell and NK cell properties and possess MHC-
unrestricted cytotoxicity against a broad range of tumor cells 
[139]. Several preclinical studies by Sangiolo et al. have 
shown that CIK cells are highly effective against STS. Using 
a UPS xenograft model, the group demonstrated that treat-
ment with autologous CIK cells significantly delayed tumor 
growth [140]. In another study, the group demonstrated that 
CIK cells are effective against sarcoma stem cells resistant 
to chemotherapy and molecular targeted therapy, again using 
a UPS model [141]. In yet another study, the group demon-
strated that CIK cells – redirected with a chimeric antigen 
receptor targeting CSPG4, a cell surface proteoglycan highly 
expressed on several STS subtypes including UPS and MFS 
– was better at controlling a STS xenograft models (includ-
ing UPS) than untransduced CIK cells [142]. CIK cells have 
been used in clinical trials against melanoma, renal cell car-
cinoma, lung cancer, and colorectal cancer, but have yet to be 
tested against STS [143].

Conclusions

UPS and MFS are the most common histological sub-
types of STS in adults, and the efficacy of current systemic 
treatment options is limited. Although STS are generally 

et al. reported in 2024 that ORR is 3.5% in the monotherapy 
group and 4.5% in the mecbotamab vedotin + nivolumab 
combination group; the study is ongoing [123].

Oncolytic Virotherapy

Oncolytic viruses are an emerging class of immunotherapy 
that exploit the innate ability of certain replication-compe-
tent viruses to infect and preferentially lyse tumor cells while 
leaving non-neoplastic cells intact [124]. They are often 
combined with other cancer treatment strategies designed 
to mediate tumor regression through alternative means. As 
discussed earlier, oncolytic virotherapy has been combined 
with ICI in STS clinical trials under the hypothesis that the 
virotherapy could trigger an immune response that potenti-
ates the efficacy of ICI. Aside from combination with ICI, 
oncolytic virotherapy has been combined with radiotherapy. 
A phase IB/II clinical trial combined intratumoral T-VEC 
injection with external beam radiation therapy followed by 
surgery in patients with locally advanced STS of the extremi-
ties and trunk, including 13 UPS patients and 2 MFS patients 
[125]. Of the 30 patients treated, only one had a PR. The 
2-year PFS was 57% and the 2-year OS was 77%.

An approach to improve the efficacy of oncolytic viro-
therapy plus radiation therapy was explored in a translational 
study by Floyd et al., which found that deletion of ATRX 
increased the sensitivity of sarcomas to T-VEC plus radia-
tion therapy [126]. ATRX is a chromatin remodeling protein 
and tumor suppressor that is commonly altered in UPS and 
other sarcomas (up to 24%). The investigators found in STS 
patients with ARTX genomic alterations who did not receive 
radiotherapy, disease specific survival was significantly 
worse than STS patients without ARTX genomic alterations. 
However, among STS patients who received ionizing radia-
tion, there was no significant difference in survival between 
those with ARTX genomic alterations and those without, 
suggesting that ARTX genomic alterations sensitize tumors 
to radiotherapy. Additionally, the investigators showed that 
in a mouse model of STS, those with ATRX deletion had 
a significantly better response to T-VEC plus radiotherapy 
than those that did not. Thus, ATRX mutation status in 
UPS and other sarcomas may be useful as a biomarker for 
response to T-VEC and/or radiotherapy.

Preclinical Studies

Immunomodulation of TLS

Given the strong association between the presence of TLS 
and ICI response, it is hypothesized that induction of TLS in 
immunologically “cold” tumors could impart sensitivity to 
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This reference is of outstanding importance because 
it is the first study demonstrating that STS patients 
selected for the presence of TLS have improved re-
sponse to ICI compared to unselected patients.

	● Mowery YM, Ballman KV, Hong AM, et al. Safety 
and efficacy of pembrolizumab, radiation therapy, 
and surgery versus radiation therapy and surgery for 
stage III soft tissue sarcoma of the extremity (SU2C-
SARC032): an open-label, randomised clinical trial. 
The Lancet. 2024;404(10467):2053-2064. 10.1016/
S0140-6736(24)01812-9

This reference is of outstanding importance because 
it is a landmark clinical trial that demonstrates that 
the addition of ICI to radiation therapy and surgery 
provides benefit to patients with localized STS of 
extremity or trunk.

	● Subramanian A, Nemat-Gorgani N, Ellis-Caleo TJ, et 
al. Sarcoma microenvironment cell states and ecosys-
tems are associated with prognosis and predict response 
to immunotherapy. Nat Cancer. 2024;5(4):642-658. 
10.1038/s43018-024-00743-y

This study is of outstanding importance because it 
uses bulk transcriptomics and machine learning to 
describe a group of sarcomas termed sarcoma eco-
type 3 with the best response to ICI. This finding 
suggests that the optimal prediction of response to 
of STS to ICI likely will likely require a panel of 
biomarkers rather than singular biomarkers.
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STS	� Soft tissue sarcoma
TME	� Tumor microenvironment
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CNA	� Copy number alteration
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PD-L1	� Programmed death-ligand 1
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considered immunologically cold tumors, UPS and MFS are 
among the most immunogenic sarcoma subtypes and have 
shown promising response to ICI in clinical trials. Particu-
larly promising are clinical trials combining ICI with che-
motherapy and radiation therapy. Combination of ICI with 
immunomodulators such as oncolytic virotherapy have also 
shown early promise and should be further investigated. 
The most promising singular biomarker of ICI response in 
UPS/MFS is TLS. However, only 30% of STS patients with 
TLS positivity responded to ICI, indicating that better bio-
markers are still needed. Evaluation of a panel of biomark-
ers appears to be the best approach to predicting response of 
UPS/MFS to ICI. In addition to ICI, other immunotherapy 
approaches such as adoptive cell transfer and antibody drug 
conjugates may be effective against UPS/MFS. TCR ther-
apy has been shown to be an effective approach in SS, but 
limited work has been done in UPS/MFS despite a subset 
of patients possessing targetable cancer/testis antigens. An 
ADC is currently in clinical trials.

In summary, immunotherapy is a promising treatment 
modality in UPS/MFS and should be carefully considered 
highly aggressive, unresectable, or relapse and refractory 
forms of the disease.
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