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The MItochondrial Contact Site and
Cristae Organizing System (MICOS)

is required for the biogenesis and mainte-
nance of mitochondrial cristae as well as
the proper tethering of the mitochondrial
inner and outer membranes. We recently
demonstrated that the core components of
MICOS,Mic10 andMic60, are near-ubiq-
uitous eukaryotic features inferred to have
been present in the last eukaryote common
ancestor. We also showed that Mic60
could be traced to a-proteobacteria, which
suggests that mitochondrial cristae evolved
from a-proteobacterial intracytoplasmic
membranes. Here, we extend our evolu-
tionary analysis to MICOS-interacting
proteins (e.g., Sam50, Mia40, DNAJC11,
DISC-1, QIL1, Aim24, and Cox17) and
discuss the implications for both derived
and ancestral functions ofMICOS.

MICOS Structure and Function

Mitochondrial cristae, the sites at
which aerobic respiration occurs, are spe-
cialized subcompartments derived from
invaginations of the mitochondrial inner
membrane (MIM).1,2 Cristae biogenesis
and maintenance have been shown to
strongly depend on a protein complex
called MICOS (MItochondrial Contact
Site and Cristae Organizing System).3-5 In
Saccharomyces cerevisiae MICOS is com-
posed of 6 subunits: Mic10, Mic12,
Mic19, Mic26, Mic28 (Aim37), and
Mic60.6,7 In humans, MICOS is also
composed of 6 subunits; it differs from
yeast’s MICOS by lacking Mic12, but
containing Mic25 (a paralogue of Mic19)
and Mic27 (a paralogue of Mic26).8,9 The

study of MICOS in S. cerevisiae and
Homo sapiens has characterized both
Mic10 and Mic60 as the 2 most function-
ally important subunits of MICOS.10,11

In mitochondria, MICOS has 2 pri-
mary functions: (i) to create/maintain
crista junctions (CJs), and (ii) to anchor
CJs to the mitochondrial outer membrane
(MOM). These two functions synergisti-
cally control the development of cristae,
and stabilize and maintain these as respira-
tory subcompartments. It is also hypothe-
sized that, by localizing at CJs, MICOS
dynamically differentiates the MIM into 2
functionally distinct domains: the inner
boundary membrane (IBM) and the crista
membrane (CM).12,13 Mic60 is the cen-
tral MICOS subunit responsible for these
functions. Mic60 has an N-terminal
trans-membrane domain with central
coiled-coil and C-terminal Mitofilin
domains, both exposed at the inter-mem-
brane space (IMS). These IMS domains
mediate homotypic and heterotypic inter-
actions to maintain crista junction archi-
tecture and establish contact sites between
the MIM and MOM, respectively.3,14,15

By creating tubular membrane struc-
tures (i.e., CJs), MICOS introduces mem-
brane tension in the form of negative
curvature.16 Two recent studies demon-
strated that the bending of the IBM at CJs
is performed by the oligomerization of the
second MICOS core subunit, Mic10.17,18

Two MICOS subunits, Mic26 and Mic28,
are apolipoproteins that bind the character-
istic mitochondrial lipid cardiolipin.19 It is
suspected that MICOS regulates and dis-
tributes cardiolipin between the IBM and
the CM, further differentiating these 2
MIM domains.20 Furthermore, MICOS
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exists as 2 dynamic subcomplexes, a Mic60-
Mic19 (Mic60-Mic19-Mic25 in humans)
subcomplex, and a Mic26-Mic10-Mic12
(Mic26-Mic10-Mic27 in humans) sub-
complex.21,22 It has also been recently
shown that the interaction between these 2
subcomplexes is mediated by the peripheral
IMS subunit Mic19.21 MICOS, therefore,
combines the different non-redundant
functions of its subunits to create CJs and
regulate the differentiation of theMIM into
cristae.

We recently investigated the evolution-
ary history of the MICOS complex.9 Our
analyses revealed that the common ancestor
of all eukaryotes made use of a MICOS
comprising at least 2 subunits, Mic10 and
Mic60, but probably also Mic19. The extra
MICOS subunits of S. cerevisiae and H.
sapiens were acquired during the evolution
of opisthokonts (animals, fungi and their
protistan relatives). Despite the ubiquity of
MICOS across eukaryotic diversity, anaero-
bic lineages that exhibit reduced acristate
mitochondria have lost all MICOS genes.
Strikingly, we also discovered a prokaryotic
homolog of Mic60 unique to the a-proteo-
bacteria, the progenitor lineage of mito-
chondria.9 This led us to suggest that
MICOS has a pre-endosymbiotic origin
and that mitochondrial cristae were inher-
ited from membrane invaginations, or
intracytoplasmic membranes (ICMs), pres-
ent in a-proteobacteria. Furthermore, the
evolutionary stasis of Mic60 structure and
the sequence conservation of its Mitofilin
domain suggest that the 2 primary func-
tions ofMICOSare ancestral tomitochondria
in eukaryotes, and that prokaryotic Mic60 is
important for the development and mainte-
nance of a-proteobacterial ICMs and contact
sites (Bayer’s junctions).

MICOS Secondary Interactors and
Functions

The discovery of interactions between
MICOS and several protein partners/com-
plexes at the mitochondrial envelope sug-
gests additional roles for MICOS in
mitochondrial biogenesis. These interacting
proteins include Tom40 of the TOM
(Translocase of the Outer Mitochondrial
membrane) complex, Sam50 of the SAM
(Sorting and Assembly Machinery)

complex, VDAC (Voltage-Dependent
Anion Channel), Mia40, and Ugo1.3-5,23-25

The interaction of MICOS with TOM and
Mia40 positions both complexes in close
proximity for the correct oxidative folding
of translocated proteins.3,25,26 Similarly, the
interaction of MICOS with both TOM
and SAM is presumed to bring together
both translocases for the efficient transfer of
b-barrel proteins from one complex to the
other.23-25 By interacting with VDAC,
MICOS is hypothesized to enrich it in the
vicinity of CJs, therefore increasing the dif-
fusion of metabolites into the intracristal
space.5,27 Finally, the interaction of
MICOS with Ugo1 suggests the involve-
ment of MICOS in mitochondrial fission,
although the precise function of this interac-
tion remains uncertain.4 This multiplicity
of interactions has recently led to the view
that MICOS also functions as the protein
scaffold of a larger network of protein com-
plexes termed ERMIONE (ER-mitochon-
dria organizing network) that controls
mitochondrial function and biogenesis in S.
cerevisiae.27

Several other proteins have been shown
to physically interact with MICOS. These
proteins include DNAJC11,28 DISC-1,29

and QIL1 in humans;30 and Aim24,31 and
Cox17 in S. cerevisiae.32 Some of these
might be lineage-specific bona fidemembers
of MICOS, although most of them are
probably transient interactors. The func-
tional context for some of these interactions
remains unknown (e.g., DNAJC11, DISC-
1), whereas some of these protein partners
appear to be MICOS stabilizing/modulat-
ing subunits or factors (e.g., QIL1, Aim24,
and Cox17).

In order to infer whether these interac-
tions are ancestral or derived features of
MICOS, we investigated the phylogenetic
distribution of these MICOS-interacting
proteins (Fig. 1). We show that Sam50,
Mia40, Cox17, and DNAJC11 are widely
distributed among eukaryotic diversity,
suggesting their ancestral nature. Sam50 is
ubiquitous among mitochondria, but was
not detected in Giardia intestinalis. This
distribution is largely congruent with that
of other mitochondrial b-barrels, Tom40
and VDAC, previously analyzed by some
of us.33 Mia40 is also widespread, but
absent from most acristate eukaryotes, as
well as from members of SAR (i.e.,

stramenopiles, alveolates, and rhizarians)
and discicristates (e.g.,, Naegleria gruberi,
Bodo saltans, Trypanosoma brucei and
Leishmania major). Cox17 and DNAJC11
are similarly widespread, but show more
irregular distributions. On the other hand,
Aim24, Ugo1, QIL1, and DISC1 have
more restricted phylogenetic distributions.
Both Aim24 and Ugo1 are specific to the
Holomycota (fungi and their amoeboid
relatives, e.g., Fonticula and nucleariids),
only absent from the divergent micro-
sporidians and Cryptomycota (Rozella
allomycis). DISC1 appears to be present
among animals and some of their single-
celled relatives (e.g., choanoflagellates),
whereas QIL1 is only found among ani-
mals (Fig. 1). Interestingly, with the
exception of Piromyces sp., lineages that
lack MICOS (i.e., microsporidians,
Entamoeba histolytica, G. intestinalis, and
Trichomonas vaginalis) also lack all
MICOS-interacting proteins (with the
exception of the ubiquitous and essential
Sam50).

MICOS Functional Evolution

MICOS’ functions that depend on
components present in both mitochondria
and a-proteobacteria are inferred to have
a pre-endosymbiotic origin. These include
the formation of neck-like membrane
structures that depend on homotypic
interactions between Mic60 subunits, and
the creation of contact sites between envel-
oping membranes that depend on hetero-
typic interactions between Mic60 and the
POTRA domain of Sam50.9 In bacteria,
the core component of the BAM complex,
BamA, comprises POTRA domains and a
b-barrel domain and is a homologous to
Sam50.34 The BAM complex is required
for b-barrel assembly in the outer mem-
brane of bacteria.35 Since MICOS-medi-
ated contact sites in mitochondria
facilitate the transfer of proteins from
TOM to SAM during b-barrel protein
import and assembly, it is attractive to
hypothesize that a-proteobacterial Mic60
could be similarly involved in b-barrel
export by positioning appropriate secre-
tion complexes in the cytoplasmic mem-
brane near BAM complexes in the outer
membrane. Our current experimental
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research aims to understand the function
of Mic60 in a-proteobacteria, and there-
fore whether CJ and CS formation, and
Mic60-mediated b-barrel assembly, pre-
dates the evolution of mitochondria or
represent derived eukaryotic functions.

After the endosymbiotic origin of cris-
tae, and prior to the diversification of
modern eukaryotes, MICOS acquired
both Mic10 and Mic19 as new subunits.9

The addition of Mic10 to MICOS as a
morphogenetic factor that creates curva-
ture at CJs further increased the differenti-
ation of the bioenergetic membranes (i.e.,
CM) from the IBM, effectively creating
2 MIM domains. Mic19 likely evolved to
mediate the interaction between Mic60
and Mic10 oligomers. However, it must
not be overlooked that Mic19 has not
been identified in several eukaryote
groups, which brings forth the possibility
that Mic10 and Mic60 do not interact in
some lineages. Nonetheless, the newly

discovered functions of Mic10 and
Mic19, namely the curving of the MIM at
CJs and the linking of both MICOS sub-
complexes,17,18,21,22 respectively, high-
light their functional importance in
MICOS, and further validate our original
evolutionary analyses that concluded their
presence in the ancestral eukaryotic
MICOS. Moreover, the presence of
Mic10 in Cryptosporidium parvum
explains the convoluted morphology of its
MIM in the absence of CJs (i.e., in the
absence of structurally defined cristae).

MICOS’ functions in mitochondrial
protein import can be inferred to have
evolved after the origin of mitochondria.
In support of this, TOM and Mia40 are
considered eukaryotic inventions present in
diverse eukaryote lineages (Fig. 1).33,36-38

Interestingly, although Tom40 is a virtually
ubiquitous mitochondrial feature, Mia40 is
absent in SAR and discicristates, potentially
indicating that MICOS lost its interaction

with this system more than once. This
divergence of character has yet to be
explained. It is conceivable that Mia40 has
been replaced by an analogous protein in
these lineages or that the interaction of
MICOS and Mia40 is an opisthokont-spe-
cific phenomenon.

Finally, DNAJC11 and Cox17 are
widespread among eukaryotes, but their
functional significance and interaction
with MICOS requires further investiga-
tion. Other MICOS-interacting proteins
and functions evolved more recently. For
example, MICOS connection with the
mitochondrial fusion machinery evolved
after the divergence of animals and fungi,
as Ugo1 is restricted to Fonticula alba and
fungi. Similarly, the MICOS stabilizing
factor Aim24 is a fungal innovation
(eukaryotic Aim24 homologues exist out-
side fungi, but are more similar to bacte-
rial homologues than the fungal proteins),
whereas the metazoan-specific protein

Figure 1. Phylogenetic distribution of MICOS-interacting proteins. Homology searching was performed as previously described (Mu~noz-G�omez et al.
2015). Briefly, MICOS-interacting proteins Aim24, Ugo1, QIL1, DISC1, DNAJC11, Cox17, Mia40 and Sam50 from S. cerevisiae and/or H. sapiens were used as
BLAST queries in searches into predicted proteomes of diverse eukaryotes. Sequences were retained as putative orthologues only if, when used as BLAST
queries in searches into S. cerevisiae or H. sapiens protein databases, the original query sequences were retrieved as the best hit. The collected sequences
were used to construct hidden Markov models (HMMs) that were used to search eukaryote protein databases for divergent homologues. All sequences
that were hit with an e-value lower than 0.05 were then used in reciprocal pHMMER searches into protein databases from organisms with bioinformati-
cally validated orthologues. If a validated sequence was retrieved as the best hit in any organism, then the sequence was retained. Species in red are
those that have lost MICOS.9 Light color circles indicate potential orthologues with weaker sequence similarity. In the case of Sam50, highly divergent cil-
iate candidate orthologues were found using PsiBLAST with the closest available Sam50 gene sequence (e.g., Chromera velia Cvel_14064). Although we
could not detect a Sam50 ortholog in Trichomonas vaginalis with our bioinformatics methods, its presence in T. vaginalis hydrogenosomes is supported
by experimental data previously reported.41,42.
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QIL1 likely evolved to perform a similar
function among animals. These lineage-
specific MICOS-interacting proteins
point to the inherent evolvability of
MICOS and suggest that numerous other
interactions likely evolved in other under-
studied eukaryote lineages.

Conclusions

Interactions between MICOS and pro-
tein partners are inferred based on their
phylogenetic co-occurrence. However, the
co-existence of protein interactors in a
compartment does not guarantee that they
have co-evolved to interact in another
eukaryotic lineage. It is possible that some
of these interactions are derived, having
been only recently established in a specific
eukaryotic lineage. These proteins have to
be functionally investigated in other
eukaryotes to validate their predicted
mitochondrial localization and interaction
with MICOS. Moreover, derived
MICOS-interacting proteins or functions
restricted to within animals and fungi sug-
gest that several uncharacterized MICOS
functions and interactions have evolved
across eukaryotic diversity. Again, we
stress that to understand MICOS and cris-
tae evolution in eukaryotes, MICOS
structure and function must be investi-
gated in diverse eukaryotes beyond animal
and fungal models.

The progressive integration of mito-
chondria with cellular functions has led to
an expanded protein interaction network,
and the establishment of MICOS as a
major protein scaffold for mitochondrial
biogenesis.27,39 MICOS, and its multiple
interactors, highlight the co-evolution of
protein complexes at the mitochondrial
envelope during the integrative evolution
of mitochondria.40-43 As new protein
interactions were gained in a lineage-spe-
cific manner, new MICOS functions
evolved. These new interactions could
have evolved by a combination of adaptive
and non-adaptive (ratchet-like) pro-
cesses.44,45 The presence of paralogous
MICOS subunits in vertebrates and
Saccharomycetales supports the latter evo-
lutionary mode.9 In S. cerevisiae, as should
be the case for any other eukaryote

lineage, MICOS combines both ancestral
and more recently acquired functions.
The functional evolution of MICOS in
eukaryotes, therefore, tells a story of inher-
itance of conserved ancestral functions
from a-proteobacteria, followed by the
acquisition of ancient derived mitochon-
drial functions before the diversification
of modern eukaryotic lineages, and then
finally, the subsequent gain of lineage-spe-
cific functions and interactions.
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