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Abstract

Multiparental advanced generation intercross (MAGIC) populations provide abundant genetic 
variation for use in plant genetics and breeding. In this study, we developed a method for 
quantitative trait locus (QTL) detection in pure-line populations derived from 8-way crosses, based 
on the principles of inclusive composite interval mapping (ICIM). We considered 8 parents carrying 
different alleles with different effects. To estimate the 8 genotypic effects, 1-locus genetic model 
was first built. Then, an orthogonal linear model of phenotypes against marker variables was 
established to explain genetic effects of the locus. The linear model was estimated by stepwise 
regression and finally used for phenotype adjustment and background genetic variation control in 
QTL mapping. Simulation studies using 3 genetic models demonstrated that the proposed method 
had higher detection power, lower false discovery rate (FDR), and unbiased estimation of QTL 
locations compared with other methods. Marginal bias was observed in the estimation of QTL 
effects. An 8-parental recombinant inbred line (RIL) population previously reported in cowpea and 
analyzed by interval mapping (IM) was reanalyzed by ICIM and genome-wide association mapping 
implemented in software FarmCPU. The results indicated that ICIM identified more QTLs explaining 
more phenotypic variation than did IM; ICIM provided more information on the detected QTL than 
did FarmCPU; and most QTLs identified by IM and FarmCPU were also detected by ICIM.

Subject areas:  Quantitative genetics and Mendelian inheritance
Keywords:  8-way cross, inclusive composite interval mapping, pure lines, quantitative trait locus

Since Mendel’s experiments in plant hybridization were rediscovered, 
biparental segregating populations, such as double haploid line 
(DH), recombinant inbred lines (RIL), backcross (BC), and F2 popu-
lations, have been widely used in genetic studies and also the main 
genetic materials to identify quantitative trait loci (QTLs) (Wang 
et al. 2014). Major objective of studies on QTL mapping is to iden-
tify chromosomal polymorphisms associated with phenotypic traits 
in parents. In biparental populations, genetic loci without variation 

between the 2 parents cannot be detected, and the number of recom-
bination events is relatively limited, resulting in a lack of mapping 
precision (Huang et  al. 2012). In addition, it is not clear whether 
the identified QTL has multiple alleles. Multiparental advanced 
generation intercross (MAGIC) populations are emerging resources 
within the field of genetics (Mackay and Powell 2007; Cavanagh 
et  al. 2008). MAGIC populations are multifounder equivalents of 
the advanced intercross (Darvasi and Soller 1995), similar to the 
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heterogeneous stocks (HS; Mott et al. 2000) and the Collaborative 
Cross (CC; Churchill et al. 2004) used in mouse genetics.

MAGIC populations are normally created from 8-way crosses. 
Firstly, 4 single crosses are made from 8 homozygous parents. 
Secondly, two 4-way crosses are generated from the 4 single crosses. 
Thirdly, an 8-way cross is made from the two 4-way crosses. Finally, 
DHs are produced by embryo rescue and pollen culture technology, 
or RILs are produced by repeated selfing and single-seed descent 
from the 8-way cross. MAGIC populations possess a greater number 
of recombination events and higher genotypic diversity than other 
populations, and increase the number of QTLs, and precision and 
resolution in QTL detection (Cavanagh et  al. 2008). In addition, 
similar to biparental populations, MAGIC populations usually have 
no population substructure, reducing the risk of false-positive QTLs 
that may be caused by population structure (Kover et al. 2009).

In plants, MAGIC and MAGIC-like populations have been de-
veloped in a wide range of species, such as Arabidopsis thaliana 
(Cavanagh et al. 2008; Kover et al. 2009; Huang et al. 2011), rice 
(Bandillo et al. 2013), maize (Dell’Acqua et al. 2015), wheat (Huang 
et al. 2012; Mackay et al. 2014), barley (Sannemann et al. 2015), 
and cowpea (Huynh et  al. 2018). Furthermore, genome-wide as-
sociation studies (GWAS) have been employed in some MAGIC 
populations. Based on collections of related individuals, GWAS take 
advantage of historical recombination events that have accumulated 
over thousands of generations (Korte et al. 2013). However, GWAS 
have some disadvantages. Random mating causes linkage disequilib-
rium (LD) decay, therefore LD in the population is low. The repeat-
ability of mapping results by GWAS is poor between populations 
and between mapping methods. GWAS have less power to detect 
alleles with small genetic variation and low frequency (Ward and 
Kellis 2012). Moreover, the accumulated contribution of significant 
single nucleotide polymorphisms (SNPs) can explain only part of the 
genetic variation, which leads to the phenomenon of missing herit-
ability (Eichler et al. 2010).

At present, there are several linkage mapping methods available 
for MAGIC populations from 8-way crosses. The most common 
method is interval mapping (IM), which tests each chromosomal pos-
ition for association with the trait of interest (Lander and Botstein 
1989). Mott et al. (2000) implemented IM, based on founder prob-
abilities, in the R package happy to analyze the HS population of 
mice. R/happy was also applied to a multiparental population of 
Drosophila (King et  al. 2012). Composite IM (CIM) is based on 
the idea of covariables (Jansen 1994; Zeng 1994), available in the 
package R/mpMap (Huang and George 2011) for multiparental 
populations. Verbyla et  al. (2007) proposed a model called whole 
genome average IM (WGAIM), which considered population struc-
ture and nongenetic effects (such as spatial variation) in the mixed-
model framework. Although WGAIM increased the correct detection 
of QTL, it also increased false discovery rate (FDR) (Verbyla et al. 
2007). Wei and Xu (2016) developed a mixed-model method, which 
is available in R/MagicQTL, setting the parental effects to random in 
accordance with a normal distribution. The method was subdivided 
into Fixed-A, Fixed-B, Random-A, and Random-B, among which 
Fixed-B and Random-B had better performance. However, the com-
putation complex of this method is high (Wei and Xu 2016). Broman 
et al. (2019) developed the R package qtl2 for QTL mapping with 
high-dimensional data and multiparental populations (such as CC, 
HS, and so on). But QTL analysis in R/qtl2 is only conducted by 
genome scan with single-QTL model, instead of multiple-QTL 
model, and hard to explore the possibility of multiple causal SNPs in 
a QTL region (Broman et al. 2019).

Inclusive CIM (ICIM) was originally proposed for bi-parental 
populations (Li et al. 2007; Zhang et al. 2008; Wang 2009) and 
then extended to 4-way-cross F1 populations (Zhang et al. 2015) 
and pure-line populations from 4-way crosses (Zhang et al. 2017). 
Background control was used to increase QTL detection power 
and reduce FDR. Based on the ICIM principle, we developed a 
QTL mapping methodology for DH and RIL populations from 
8-way crosses. Our objectives in this study were 1) to present an 
orthogonal linear model of phenotypes against marker variables 
to explain the genetic effects; 2) to propose an algorithm of 1-di-
mensional scanning with background control to estimate QTL lo-
cations and genotypic effects of the 8 parents; and 3) to investigate 
the efficiency of the approach by simulation studies and an actual 
population in cowpea.

Materials and Methods

Classification of Markers in Pure-Line Populations 
from 8-Way Crosses
Based on the number of identifiable alleles in the 8 parents, a total 
of 4139 marker categories can be differentiated in the pure-line 
populations from 8-way crosses (Zhang et al. 2019). Markers be-
longing to category ABCDEFGH represented the ideal situation, in 
which the parents had 8 identifiable alleles, denoted by A, B, C, D, 
E, F, G, and H. Their corresponding genotypes were denoted by 
AA, BB, CC, DD, EE, FF, GG, and HH. Markers belonging to the 
remaining categories were called incomplete loci. Linkage analysis 
and map construction were described in Zhang et al. (2019). Based 
on the constructed linkage map, incomplete and missing markers 
can be imputed. After imputation, all markers belonged to category 
ABCDEFGH, and no missing marker types remained. Therefore, in 
the following QTL mapping study, all markers were assumed to 
have 8 identifiable alleles, and there were no missing marker types 
as well.

One-Locus Model for Pure-Line Populations from 
8-Way Crosses
The 8 alleles at 1 QTL were designated by Aq, Bq, Cq, Dq, Eq, Fq, and 
Gq. The genotypic value of an individual with a known QTL geno-
type was defined as

µk = µ+ akwk, k = 1, 2, . . . , 8� (1)

where µk was the kth genotypic value of the QTL; µ was the overall 
mean of the 8 QTL genotypes; ak was the kth genotypic effect; and 
wk was the indicator of QTL genotype, valued at 1 for the kth par-
ental allele and 0 for other parental alleles. Mean and genotypic ef-
fects were calculated as

µ =
1
8

8∑
i=1

µi, ak =
1
8

Ñ
7µk −

8∑
i=1,i �=k

µi

é
, k = 1, 2, . . . , 8

� (2)
When there was no segregation distortion, the genetic variation con-
tributed by the QTL was defined as

VQ =
1
8

8∑
i=1

µ2
i −
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1
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µi
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=
1
8

8∑
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It is worth noting that there was 1 restriction on the 9 genetic param-
eters (i.e., µ and ak, k = 1, 2, …, 8) to be estimated in Equation 2, that 
is, sum of the 8 genotypic effects must be equal to 0. One orthogonal 
model equivalent to Equation 1 but with no restriction was built in 
Equation 4 to avoid the complexity caused by the restriction.

G = µ+ b1u+ b2v+ b3s+ b4uv+ b5us+ b6vs+ b7uvs
� (4)
where G was the genotypic value of an individual with known QTL 
genotype, and the definition of bi was as given below.

b1 =
a1 + a2 + a3 + a4

4
, b2 =

a1 + a2 + a5 + a6
4

b3 =
a1 + a3 + a5 + a7

4
, b4 =

a1 + a2 + a7 + a8
4

b5 =
a1 + a3 + a6 + a8

4
, b6 =

a1 + a4 + a5 + a8
4

b7 =
a1 + a4 + a6 + a7

4
� (5)

where u, v, and s were the 3 basic orthogonal variables for different 
QTL genotypes in Equation 4, and their values were given in Table 1. 
The other orthogonal variables were derived from u, v, and s. Let X 
represent the 8 × 8 design matrix in Equation 4; it can be easily seen 
that XTX was a diagonal matrix, indicating the orthogonality of the 
model of Equation 4.

Assume 1 QTL is located between 2 markers; A1, B1, C1, D1, E1, 
F1, G1, and H1 are the 8 alleles of the left flanking marker; and A2, 
B2, C2, D2, E2, F2, G2, and H2 are the 8 alleles of the right flanking 
marker. Supplementary Tables S1 and S2 showed the frequency of 
the QTL genotype for each marker class in DH and RIL populations 
from 8-way crosses, respectively, where r represented the 1-meiosis 
recombination frequency, and R was the recombination frequency 
accumulated during the repeated generations of selfing. The relation-
ship between these 2 variables was R = 2r/1 + 2r. A quantity analo-
gous to the 3-point coincidence for RILs derived from 8-way crosses 
can be referred in Teuscher and Broman (2007), and information for 
2-locus genotype probabilities in RILs derived from 8-way crosses 
was provided in Broman (2012). Similar to variables u, v, and s in 
Equation 4, 3 orthogonal variables, denoted by x, y, and z, were de-
fined for each marker locus. The values of x, y, and z were the same 
as those of u, v, and s, as given in Table 1.

Similar to the effects that occur in biparental F2 populations, 
4-way-cross F1 populations and pure-line populations from 4-way 
crosses, if there is 1 QTL between 2 flanking markers, the QTL ef-
fects will cause both main effects and interactions between markers 
(Zhang et al. 2008, 2015, 2017). However, the coefficients of marker 
interactions are much smaller than those of the marker main effects, 
and most of the QTL variation can be absorbed by the main effects 
of neighboring markers. Therefore, in this study, marker interactions 
were ignored.

The Inclusive Linear Model for Multiple QTL
For simplicity, we assumed that there were m QTLs located at m 
intervals within m + 1 markers. For intervals with no QTL, the QTL 
effects can be set at 0. Similar to 1-locus model, the genotypic value 
of an individual in 1 DH or RIL population from an 8-way cross 
was shown in Equation 6, indicating that genotypic vales were the 
summation of the overall mean and QTL effects.

G = µ+
m∑
j=1

(
b1juj + b2jvj + b3jsj + b4jujvj

+ b5jujsj + b6jvjsj + b7jujvjsj
)

� (6)
where uj, vj, and sj were indicators for genotypes at the jth QTL. 
The inclusive linear model containing all markers was given by 
Equation 7.

P = E (G) + ε = µ+
m+1∑
j=1

(
c1jxj + c2jyj + c3jzj + c4jxjyj

+ c5jxjzj + c6jyjzj + c7jxjyjzj
)
+ ε

� (7)
where P was the phenotypic value of the trait of interest; G was the 
corresponding genotypic value; ε was the random error, following 
a normal distribution with a mean of 0; and c1j to c7j were the ef-
fects of the jth marker. Phenotypic value was explained by marker 
effects in Equation 7. For large populations, the coefficients of an 
individual marker in Equation 7 were affected only by the QTL lo-
cated within the left and right intervals of the marker. That is, the 14 
variables of the 2 closest markers could absorb most effects of the 
QTL. Therefore, the linear model of Equation 7 can be used to con-
trol background genetic variation in QTL mapping.

Background-Controlled 1-Dimensional Scanning
A 2-stage mapping strategy was considered in QTL scanning. First, 
marker variables with significant coefficients in Equation 7 were 
identified by stepwise regression (Efroymson 1960). In each step 
of the regression, 1 variable which has not yet been in the model 

Table 1.  Values of the orthogonal variables for different QTL genotypes

Variable AqAq BqBq CqCq DqDq EqEq FqFq GqGq HqHq

U 1 1 1 1 −1 −1 −1 −1
V 1 1 −1 −1 1 1 −1 −1
S 1 −1 1 −1 1 −1 1 −1
u× v 1 1 −1 −1 −1 −1 1 1
u× s 1 −1 1 −1 −1 1 −1 1
v× s 1 −1 −1 1 1 −1 −1 1
u× v× s 1 −1 −1 1 −1 1 1 −1

These indicators were designed to reveal the relationship between genotypic values and QTL genotypes (Equation 4).
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but explains the largest variation is added to the model, based on 
a preassigned probability. Once a new variable has entered to the 
model, the existing variables will be double checked to determine 
whether some of them need to be removed from the model, which 
is based on another preassigned probability. The process stops 
until no new variable can enter into the model. Coefficients of 
nonsignificant variables (i.e., those not in the stepwise regression 
model) were set to 0. Second, during 1-dimensional scanning, the 
phenotypic values were adjusted by Equation 8 and then used in 
QTL detection.

∆Pi = Pi −
∑

j�=t,t+1

(
ĉ1jxij + ĉ2jyij + ĉ3jzij + ĉ4jxijyij

+ĉ5jxijzij + ĉ6jyijzij + ĉ7jxijyijzij
)

� (8)
where Pi represented the phenotypic value of the ith pure line; ∆Pi 
denoted the adjusted phenotypic value; the hat symbol meant “es-
timated”; and t and t + 1 were the 2 flanking markers of the pre-
sent scanning position. Please be noted that all coefficients of marker 
variables did not change once they were estimated in the first step. 
At a testing position in marker interval [t, t + 1], if coefficients of 
variables for the 2 flanking markers were all 0, ∆Pi only contained 
the model residual. Otherwise, the nonzero effects of the flanking 
markers were kept in ∆Pi, which was caused by the QTL at the 
current scanning interval. QTL effects in the other intervals were 
all excluded due to the background control. In other words, ∆Pi 
as defined in Equation 8 contained QTL information in the current 
interval and did not change until the testing position moved to the 
next interval.

At a testing position in marker interval [t, t + 1], the phenotypes 
of the 8 QTL genotypes followed the normal distribution N

(
µk,σ2

)
, where k = 1, 2, … , 8. To test for the existence of a QTL at the cur-
rent scanning position, the null and alternative hypotheses were set 
as follows.

H0 : µ1 = µ2 = · · · = µ8

HA: at least 2 of µ1, µ2, … ,µ8 were not equal.
Under the null hypothesis, the 8 QTL genotypes followed the 

same normal distribution N
(
µ0,σ2

0

)
. The mean value and variance 

were calculated as

µ̂0 =
1
n

n∑
i=1

∆Pi, and σ̂2
0 =

1
n

n∑
i=1

(∆Pi − µ̂0)
2

� (9)

where n was the mapping population size.
Under the alternative hypothesis HA, all pure lines could be classi-

fied into 64 marker classes. The sample size of each marker class was 
represented by ni (i = 1, 2, … , 64). The log-likelihood function was

lnLA =
64∑
j=1

∑
i∈Sj

ln

[
8∑

k=1

πjkf
Ä
∆Pi;µk,σ

2
ä]

� (10)

where Sj denoted the set of pure lines belonging to the jth marker 
class (j = 1, 2, … , 64); πjk was the proportion of the kth (k = 1, 2, … , 
8) QTL genotype in each marker class (Supplementary Tables S1 and 
S2); and f

(
•;µk,σ2

)
 represented the density function of the normal 

distribution N
(
µk,σ2

)
.

QTL genotypes were unknown before genetic mapping, so 
maximum likelihood estimates of the parameters in Equation 10 
were calculated via the expectation–maximization (EM) algorithm 
(Dempster et al. 1977). The EM algorithm has been widely applied 
in many QTL detection algorithms, where the QTL genotype were 
treated as unknown variables (Kao 1999). Most pure lines in marker 
classes 1, 10, 19, 28, 37, 46, 55, and 64 had genotypes AqAq, BqBq, 
CqCq, DqDq, EqEq, FqFq, GqGq, and HqHq, respectively. Initial values 
of the parameters used in the EM algorithm were defined as

µ
(0)
1 =

1
n1

∑
i∈S1

∆Pi,µ
(0)
2 =

1
n10

∑
i∈S2

∆Pi,µ
(0)
3 =

1
n19

∑
i ∈S3

∆Pi

µ
(0)
4 =

1
n28

∑
i∈S4

∆Pi,µ
(0)
5 =

1
n37

∑
i∈S5

∆Pi,µ
(0)
6 =

1
n46

∑
i∈S6

∆Pi,

µ
(0)
7 =

1
n55

∑
i∈S7

∆Pi,µ
(0)
8 =

1
n64

∑
i∈S8

∆Pi, and

σ2(0) =
1

n1 + n10 + n19 + n28 + n37 + n46 + n55 + n64
∑
i∈S1

Ä
∆Pi − µ

(0)
1

ä2
+

∑
i∈S2

Ä
∆Pi − µ

(0)
2

ä2

+
∑
i∈S3

Ä
∆Pi − µ

(0)
3

ä2
+

∑
i∈S4

Ä
∆Pi − µ

(0)
4

ä2

+
∑
i∈S5

Ä
∆Pi − µ

(0)
5

ä2
+

∑
i∈S6

Ä
∆Pi − µ

(0)
6

ä2

+
∑
i∈S7

Ä
∆Pi − µ

(0)
7

ä2
+
∑
i∈S8

Ä
∆Pi − µ

(0)
8

ä2

� (11)

In the E-step, the posterior probability of the ith pure line belonging 
to the kth QTL genotype was calculated as

wik
(t) =

πjkf
Ä
∆Pi;µ

(t)

k ,σ2(t)
ä

8∑
l=1

πjlf
Ä
∆Pi;µ

(t)

l ,σ2(t)
ä� (12)

where i ∈ Sj, and t was the step number in EM iterations starting 
from 0. In the M-step, means and variance in the log-likelihood func-
tion were updated by

µ
(t+1)
k =

n∑
i=1

w(t)
ik ∆Pi

n∑
i=1

w(t)
ik

(k = 1, 2, . . . , 8) and

σ2(t+1) =
1
n

n∑
i=1

8∑
k=1

w(t)
ik

Ä
∆Pi − µ

(t+1)
k

ä2
� (13)

The EM iteration continued until the difference in likelihood 
function between 2 consecutive iterations reached a preassigned 
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precision. From the estimation under the 2 hypotheses, the logarithm 
of odds (LOD) score or likelihood ratio test (LRT) between HA and 
H0 was calculated by Equation 14,

LOD = log10
maxLA

maxL0
orLRT = −2 ln

maxL0

maxLA
∼ χ2(df = 7)

� (14)
where maxLA was the maximum value of the likelihood function 
under HA, and maxL0 was the maximum value of the likelihood 
function under H0. LRT approximates a χ 2 distribution with the de-
gree freedom equal to the parental number minus 1.

QTL Models in the Simulation Study
In this study, we considered 3 QTL models to verify the efficiency 
of ICIM in 8-parental pure-line populations. In model I, 4 chromo-
somes were considered, and each chromosome was 150 cM in 
length. Seventy-six markers were evenly distributed on each chromo-
some, and the distance between any 2 adjacent markers was set to 
2 cM. Six QTLs, represented by QTL1 to QTL6, were located on 4 
chromosomes (Table 2). QTL1 and QTL6 were 2 independent QTLs 
with genetic variances of 6 and 4; QTL2 and QTL3 were linked in 
coupling with genetic variances of 6 and 9; and QTL4 and QTL5 
were linked in repulsion with genetic variances of 6 and 9. Total gen-
etic variance was equal to 40.01, and the random error variance was 
set to 20, such that the broad-sense heritability was equal to 0.67. 
The population size was set to 200. In model II, 8 chromosomes 
were considered, and each chromosome was also 150 cM in length. 
Marker density was the same as that in model I. Eight independent 
QTLs, denoted by QTL1 to QTL8 and with different percentages 
of variance explained (PVEs), were distributed on 8 chromosomes. 
Genetic variance of QTL1 to QTL8 was set from 0.5 to 7.5 (Table 
2). Total genetic variance was equal to 32, and the random error 

variance was set to 18. Therefore, the broad-sense heritability was 
equal to 0.64. Three population sizes were considered, that is, 200, 
400, and 600.

Model III was the same as that in Wei et al. (2016) and was used 
to compare ICIM with Fixed-B, Random-B, and R/qtl2. The first 
5 chromosomes in the linkage map of the MAGIC mouse popula-
tion with 458 individuals (Churchill et al. 2004) were used in the 
simulation, including 2250 markers in total. The marker density was 
approximately 0.19 cM. Seven QTLs were considered, denoted by 
QTL1 to QTL7, among which QTL1 and QTL7 had smaller genetic 
variances than the others (Table 2). The random error variance was 
set to 1, and the broad-sense heritability was equal to 0.67.

For each QTL model, one thousand RIL populations from 8-way 
crosses were generated without missing data by the genetics and 
breeding simulation tools QuGene and QuLine (available from: 
http://sites.google.com/view/qu-gene; Wang et al. 2003, 2004). ICIM 
was implemented in software Genetic analysis of multiparental pure-
line populations (GAPL) v1.2 (Zhang et al. 2019), which is freely 
available from http://www.isbreeding.net. The scanning step was set 
to 1 cM in models I and II, and 0.1 cM in model III. Probabilities 
of adding and removing variables in stepwise regression were set to 
0.001 and 0.002, respectively. For model III, Fixed-B and Random-B 
implemented in the R/MagicQTL package, and R/qtl2 package were 
used and compared with ICIM. The scanning step was set to 0.1 cM. 
The other parameters were set to their default values.

For each model, additional one thousand populations were simu-
lated for the null-QTL model to evaluate the empirical distribution 
of the test statistics and obtain the LOD threshold. Population size 
was the same as that in the respective simulated QTL model. The 
LOD score was estimated for ICIM and R/qtl2; the log10P value of 
the Wald statistic (denoted Wald.LOGP) was estimated for Fixed-B 
and Random-B. The largest LOD score (or Wald.LOGP) from each 
simulated population was recorded, and the 95th percentile was 

Table 2.  Predefined locations and genotypic effects for 3 QTL models used in the simulation study

Model QTL Chr. Pos. (cM) Genotypic effect VQ
a PVE (%)b

a1 a2 a3 a4 a5 a6 a7 a8

Model I QTL1 1 35 1.79 2.57 1.94 −2.41 −1.49 1.65 0.76 −4.81 6 10.00
QTL2 2 25 2.79 1.87 2.54 −3.54 −1.91 −2.11 2.37 −2.01 6 10.00
QTL3 2 55 3.09 2.34 2.94 −2.57 −3.51 −2.88 3.53 −2.94 9 15.00
QTL4 3 25 2.79 1.87 2.54 −3.54 −1.91 −2.11 2.37 −2.01 6 10.00
QTL5 3 55 −2.57 −3.51 −2.88 3.09 2.34 2.94 −2.94 3.53 9 15.00
QTL6 4 35 1.29 1.07 1.74 −1.61 −2.09 1.65 1.66 −3.71 4 6.67

Model II QTL1 1 55 0.39 0.27 0.79 −0.85 −0.38 0.61 0.47 −1.3 0.5 1.00
QTL2 2 55 0.89 1.07 0.79 −1.85 −1.38 1.05 0.91 −1.48 1.5 3.00
QTL3 3 55 1.19 1.47 1.04 −1.45 −1.98 1.05 1.26 −2.58 2.5 5.00
QTL4 4 55 1.79 1.47 1.04 −2.41 −2.98 1.65 1.13 −1.69 3.5 7.00
QTL5 5 55 1.79 1.97 1.04 −2.41 −2.98 1.65 1.69 −2.75 4.5 9.00
QTL6 6 55 2.79 1.97 1.04 −2.41 −2.98 1.65 1.39 −3.45 5.5 11.00
QTL7 7 55 2.79 1.97 2.04 −3.41 −2.99 1.65 1.3 −3.35 6.5 13.00
QTL8 8 55 2.79 0.97 2.04 −3.41 −2.99 1.65 2.89 −3.94 7.5 15.00

Model III QTL1 1 41.35 −0.14 0.17 0.49 −0.61 0.30 −0.36 0.09 0.06 0.11 3.58
QTL2 2 21.16 −0.99 −0.23 −0.17 0.66 0.06 0.28 −0.19 0.57 0.24 7.82
QTL3 3 58.79 0.69 −0.09 −0.53 −0.56 1.05 −0.57 0.09 −0.08 0.32 10.42
QTL4 3 65.18 −0.68 0.14 1.07 0.05 −0.31 0.26 −0.97 0.45 0.37 12.05
QTL5 4 27.42 0.88 0.01 0.98 0.32 −0.47 0.11 −1.07 −0.74 0.47 15.31
QTL6 4 41.19 −0.71 0.32 −0.19 0.07 −0.38 −0.59 1.48 −0.01 0.43 14.01
QTL7 5 28.65 −0.50 −0.08 0.09 −0.16 0.06 0.70 −0.40 0.27 0.13 4.23

aGenetic variance of individual QTLs.
bPercentage of phenotypic variance explained by individual QTLs.
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used as the threshold, which controlled the genome-wide type I error 
below 0.05 for the null-QTL model.

To compare ICIM, Fixed-B, Random-B, and R/qtl2, the detection 
power and FDR were taken into consideration. The length of sup-
port interval was set to 10 cM. If a peak higher than the threshold 
was detected within ±5 cM around the true position of the prede-
fined QTL, the peak was considered as a true positive. All QTLs 
detected outside of the support interval were treated as false posi-
tives. If multiple peaks occurred within the support interval, only 
the highest peak was counted. FDR was defined as the percentage 
of false positives out of the total number of true and false positives 
(Benjamini and Hochberg 1995; Li et al. 2010). Locations and ef-
fects of QTLs were estimated from significant peaks.

One Real MAGIC Population in Cowpea
One population consisting of 305 RILs from an 8-way cross in 
cowpea (Vigna unguiculata L. Walp.) was used in this study, which 
was developed by Huynh et al. (2018). In total, 32 114 SNPs were dis-
tributed on 11 chromosomes. The genetic map constructed from the 
population was 979.48 cM in length. Flowering time under long-day 
conditions (FTL) and flowering time under short-day conditions 

(FTS) were used for QTL mapping by ICIM in GAPL (Zhang et al. 
2019). The scanning step was set to 0.1 cM. Probabilities of entering 
and removing variables in stepwise regression were set to 0.001 and 
0.002, respectively. The LOD threshold was determined by permu-
tation tests with 1000 runs, and the type I  error was set to 0.05. 
GWAS was conducted using FarmCPU software (Liu et  al. 2016) 
for comparison. Physical positions of SNPs were achieved from the 
cowpea genome V1.0 (http://www.phytozome.net/). Threshold of P 
value was determined by Bonferroni correction at the 0.05 signifi-
cance level.

Results

Power Analysis and Mapping Results for Model I
Using the null-QTL model, the LOD threshold for ICIM was calcu-
lated to be 6.21. Detection power for QTL1 to QTL6 was shown in 
Figure 1A. QTL3 had the highest detection power of 90.2%; QTL4 
had the lowest detection power of 27.6%; and FDR was 29.41%. 
QTL1 and QTL6 were located on 2 different chromosomes inde-
pendently, but the genetic variance of QTL1 was larger than that of 
QTL6. Therefore, detection power for QTL1 was higher than that 
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Figure 1.  Power analysis from 1000 simulated populations for each predefined QTL (A) and each marker interval on the genome (B) for model I. The simulated 
population size was 200. Support interval for each predefined QTL in panel A was set to 10 cM. The last group of bars in panel A represented FDR.

Journal of Heredity, 2019, Vol. 110, No. 7� 885

http://www.phytozome.net/


for QTL6. Detection power of unlinked QTLs depends on genetic 
variance caused by individual QTLs. Detection power can also be 
affected by linkage. QTL1, QTL2, and QTL4 had the same genetic 
variance, but QTL2 was linked with QTL3 in coupling; QTL4 was 
linked with QTL5 in repulsion (Table 2). Compared with QTL1, 
QTL2 had higher detection power due to the coupling linkage phase; 
the repulsion linkage phase reduced the detection power for QTL4.

Figure 1B shows detection power in every marker interval in the 
whole genome across 1000 simulation runs. False positives were low 
in the marker interval where no QTL was located, and detection 
powers were significantly high around the predefined QTL. Higher 
detection powers were observed in marker intervals near QTLs with 
higher genetic variances. In other words, a QTL was less likely to 
be detected in chromosomal regions far from the predefined QTL. 
When QTLs were linked in the coupling phase, detection powers 
around the 2 linked QTLs were increased (Figure 1B). A ghost QTL 
was detected between the 2 linked QTLs. When QTLs were linked 
in the repulsion phase, detection power around the 2 linked QTLs 
decreased (Figure 1B). Both linkage phases complicated the QTL 
detection.

Table 3 shows LOD scores, locations, and genetic effects of QTLs 
estimated by ICIM, averaged from 1000 simulations. Unbiased es-
timations of QTL positions and effects were approximately achieved. 
Taking QTL1 as an example, the estimated position was 34.99 cM 
(Table 3), corresponding to the true position 35.00 cM (Table 2). 
The standard error was 2.11. The estimated effects were 1.05, 2.42, 
2.00, −2.30, −1.54, 1.71, 1.00, and −4.33, which were close to the 
true effects as given in Table 2.

Power Analysis and Mapping Results for Model II
Under the null-QTL model, the LOD threshold averaged across the 
3 population sizes was 6.53. Detection powers for QTL1 to QTL8 
were shown in Figure 2. Detection power was clearly increased 
with the genetic variance of QTL and population size. QTL1 to 
QTL8 were arranged in the order of increasing genetic variance. 
When population size was 200, detection power ranged from 2.8% 
for QTL1 to 81.4% for QTL8. For a population size of 400, power 
for the 8 QTLs ranged from 5.1% to 100%. For a population size 
of 600, power ranged from 13.4% to 100%. To achieve the power 
higher than 90%, PVE needs to be larger than 9% for a popu-
lation size of 400, and larger than 5% for a population size of 
600. FDR for the 3 population sizes was 35.22%, 27.06%, and 
25.62%, respectively. A  larger population size corresponded to a 
reduced FDR.

Supplementary Tables S3, S4, and S5 provide the estimated 
LOD scores, locations, and effects of the 8 QTLs for population 
sizes of 200, 400, and 600, respectively. Generally speaking, QTLs 
with greater genetic variance resulted in a greater LOD score. For 
instance, for a population size of 200, the LOD score was 8.45 for 
QTL1, with the lowest genetic variance, and 12.23 for QTL8, with 
the greatest genetic variance (Supplementary Table S3). The esti-
mated QTL locations were unbiased. Moreover, with an increase in 
population size, the bias in position estimation decreased. The same 
was true for standard errors. Taking QTL1 as an example, the esti-
mated positions were 54.61, 55.29, and 54.98 cM for population 
sizes 200, 400, and 600 (Supplementary Tables S3–S5), respectively, 
whereas the true position was 55 cM. Standard errors were 3.05, 
2.87, and 2.36 for the 3 population sizes, respectively.

The estimated effects in Supplementary Tables S3–S5 and their 
true values were shown in Figure 3. Some QTL effects were overesti-
mated, but some were underestimated. For example, the a8 effect of 
QTL1 was overestimated with percentages of bias equal to 82.37, 
31.98, and 22.78 for population sizes of 200, 400, and 600, respect-
ively; the a8 effect of QTL8 was underestimated with percentages of 
bias equal to 13.09, 8.93, and 6.40 for population sizes of 200, 400, 
and 600, respectively. With an increase in population size and the 
genetic variance of QTLs, the bias in estimation of QTL effects de-
creased. In general, the estimated effects asymptotically approached 
unbiasedness (Figure 3).

Power Analysis and Mapping Results for Model III
Using the null-QTL model, the estimated LOD threshold was 5.76 
and 6.08 for ICIM and R/qtl2, and the estimated Wald.LOGP 
threshold was 3.56 and 2.34 for Fixed-B and Random-B, respect-
ively. Detection power and FDR obtained by the 4 mapping methods 
were shown in Figure 4. ICIM achieved higher power for each QTL 
than the other 3 methods, especially for QTLs with smaller genetic 
variances. For instance, power for QTL7 was 87.6%, which was 
24.2% higher than that for R/qtl2, and almost twice that for Fixed-B 
and Random-B (Figure 4). FDR for ICIM was 25.29%, which was 
4.61% and 3.61% lower than that for Fixed-B and Random-B, re-
spectively, but 19.47% higher than R/qtl2. Although R/qtl2 achieved 
the lowest FDR, detection power by R/qtl2 was much lower than the 
other 3 methods for all QTLs.

The estimated positions of the 7 QTLs from ICIM, Fixed-B, 
Random-B, and R/qtl2 were shown in Table 4. The 4 methods 
achieved approximately unbiased estimation for the 7 QTL posi-
tions. ICIM had the lowest bias for 3 QTLs; Fixed-B and Random-B, 

Table 3.  Estimated LOD scores, locations, and genotypic effects by ICIM for model I

Variable QTL1 QTL2 QTL3 QTL4 QTL5 QTL6

LOD 10.0 (3.07)a 11.66 (4.03) 13.79 (5.02) 9.05 (2.35) 10.28 (3.43) 8.85 (2.34)
Pos. (cM) 34.99 (2.11) 25.60 (2.21) 54.69 (2.09) 24.50 (2.23) 55.43 (1.88) 35.04 (2.21)
a1 1.05 (1.43) 2.69 (1.75) 2.90 (1.76) 2.03 (1.57) −1.55 (1.51) 0.54 (1.53)
a2 2.42 (1.23) 1.58 (1.82) 2.20 (1.79) 0.51 (1.60) −2.38 (1.43) 1.28 (1.34)
a3 2.00 (1.27) 2.38 (1.75) 2.74 (1.82) 2.16 (1.52) −2.31 (1.40) 1.86 (1.22)
a4 −2.30 (1.29) −3.36 (1.58) −2.60 (1.74) −2.97 (1.24) 2.17 (1.44) −1.78 (1.35)
a5 −1.54 (1.35) −1.88 (1.83) −3.07 (1.77) −0.92 (1.75) 1.49 (1.52) −2.24 (1.29)
a6 1.71 (1.39) −2.17 (1.69) −2.51 (1.80) −-1.36 (1.59) 1.94 (1.53) 1.92 (1.28)
a7 1.00 (1.40) 2.71 (1.54) 3.02 (1.74) 2.17 (1.22) −2.25 (1.51) 2.08 (1.17)
a8 −4.33 (1.12) −1.95 (1.87) −2.68 (1.79) −1.63 (1.39) 2.91 (1.47) −3.67 (1.01)

Each value was the average from 1000 simulations.
aThe number in parentheses is the standard error.
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for 1; and R/qtl2, for 3. Supplementary Figure S1 showed the esti-
mated effects. Some QTL effects were overestimated, and some were 
underestimated. ICIM achieved the lowest bias for 13 out of the 56 
effects; Fixed-B, for 11; Random-B, for 27; and R/qtl2, for 5. For 
independent QTLs, ICIM provided better effect estimates, while for 
linked QTLs, Fixed-B, and Random-B provided better estimates. 
Considering the higher detection power and lower FDR of ICIM 
(except FDR for R/qtl2) and the unbiased estimation of QTL loca-
tions, ICIM is more efficient.

QTL Mapping of Flowering Time in Cowpea
The LOD profile from ICIM was displayed in Figure 5 for 2 pheno-
typic traits, namely, FTL and FTS, in the cowpea population. The 
LOD threshold obtained by permutation tests was 6.83. Seven QTLs 
were identified for FTL, explaining 68.23% of the phenotypic vari-
ance. The estimated positions and effects of the detected QTLs were 
summarized in Table 5. For the 7 FTL QTLs, 2 were located on 
chromosome 1, and 1 each was located on chromosomes 3, 4, 5, 9, 
and 11 (Table 5). The QTL located on chromosome 9 had the largest 
LOD score of 40.21 and the largest PVE of 25.53%. The alleles from 
parents IT84S-2049, CB27, and IT82E-18 reduced FTL (Table 5). 
The QTL with the second largest PVE was located on chromosome 
11, explaining 13.57% of the total phenotypic variance. The alleles 
from parents CB27, Suvita2, IT00K-1263 and IT84S-2246 reduced 
FTL (Table 5). In summary, the alleles from the 8 parents may have 
different genotypic effects in different directions. Three QTLs were 
identified for FTS, explaining 24.34% of the phenotypic variance. 
One QTL each was located on chromosomes 4, 5, and 10 (Table 
5). The QTL located on chromosome 4 had the largest LOD score 
of 11.62 and the largest PVE of 11.62%. The alleles from parents 
IT89KD-288, CB27, Suvita 2, and IT84S-2246 reduced FTS (Table 
5). Lo et al. (2018) reported 2 candidate genes for flowering time 
called CFt5 and CFt9 located at SNP 2_05332 on chromosome 5 
and 2_03945 on chromosome 9, close to the 2 FTL QTLs detected 
by ICIM. Genetic distance between the 2 pairs of linked QTLs were 
2.90 and 1.34 cM, respectively (Table 5).

On chromosome 4, 1 QTL was detected for FTL and FTS separ-
ately with a distance at 0.9 cM; on chromosome 5, distance between 
the 2 QTLs affecting FTL and FTS was 5.2 cM. The correlation coeffi-
cient between FTL and FTS was 0.57 in the mapping population. The 
2 pairs of QTLs genetically explained the observed phenotypic correl-
ation between the 2 traits, and represented their genetic background 
independence and environmental stability. For the QTL on chromo-
some 4, the allele from parent CB27 reduced FTL by 4.71 days but 
reduced FTS by only 1.65 days. For the QTL on chromosome 5, the 
allele from parent IT84S-2246 delayed FTL by 4.04 days but delayed 
FTS by only 1.45  days. In general, the effects of FTL QTLs were 
stronger than those of FTS QTLs. Further investigation is needed to 
determine whether they are coincident or close-linked QTLs.

For convenience of comparison, the results from IM reported by 
Huynh et al. (2018) were given in Supplementary Table S6. The re-
sults from ICIM were also given in Supplementary Table S6, where 
the genotypic effects of individual parental genotypes were relative to 
IT93K-503-1. Four QTLs on chromosomes 4, 5, 9, and 11 were iden-
tified by IM for FTL, and 4 for FTS were located on chromosomes 1, 
4, 5, and 9. ICIM resulted in a shorter confidence interval than did 
IM. The confidence intervals of the 4 FTL QTLs detected by IM over-
lapped with the 4 QTLs detected by ICIM, and the confidence inter-
vals of 2 FTS QTLs detected by IM overlapped with 2 QTLs detected 
by ICIM. For the 6 common QTLs detected by both methods, the 
estimates of genotypic effects were not the same. However, for FTL, 
22 out of the 28 effects had the same directions by both methods; 
for FTS, 8 out of the 14 effects had the same directions. In summary, 
most QTLs identified by IM were detected by ICIM as well; ICIM 
identified more QTLs explaining more phenotypic variation.

GWAS results from FarmCPU were shown in Supplementary 
Table S7. A total of 9 QTLs were identified for the 2 traits. Three 
for FTL were located on chromosomes 1, 9, and 11, and 6 for FTS 
were located on chromosomes 4, 5, 8, 9, 10, and 11. Six of the 9 
QTLs were close to the QTLs detected by ICIM. For the 3 FTL QTLs 
located on chromosomes 1, 9, and 11, difference on the estimated 
location between ICIM and FarmCPU was 7.2, 0.1, and 1.7 cM, 
respectively. For the 3 FTS QTLs located on chromosomes 4, 5, and 
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Figure 2.  Power analysis from 1000 simulated populations for model II and population sizes 200, 400, and 600. Support interval for each predefined QTL was set 
to 10 cM. The last group of bars represented FDR.
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10, difference on the estimated location between between ICIM and 
FarmCPU was 0.6, 3.5, and 0 cM, respectively. No information for 
PVE and confidence interval of the identified QTL was provided by 
FarmCPU. In addition, only one allelic effect relative to the minor 
allele was estimated by FarmCPU, which could not be separated into 
genotypic effects of the 8 founder parents. Therefore, source of the 
most favorable allele in parental lines cannot be determined when 
using GWAS on multiparental populations.

Discussion

ICIM has been proven to be an efficient QTL mapping method 
and widely used in biparental (e.g., Yin et al. 2015, 2017; Wu et al. 
2018), 4-way-cross pure-line (e.g., Ning et al. 2017), and clone F1 

and 4-way-cross F1 populations (e.g., Ding et al. 2015; Chen et al. 
2016). Simulation studies and application in a cowpea MAGIC 
population in this study validated its efficiency with 8-parental pure-
line populations. Simulation results in this study also provided a 
reference for the mapping population size that is probably needed 
for detecting QTLs with different genotypic variances. Compared 
with Fixed-B, Random-B, and R/qtl2, ICIM provides higher detec-
tion power, a relatively lower FDR, and unbiased estimation of QTL 
locations. Bias was observed between the estimated QTL effects and 
the true values (Supplementary Figure S1), but the bias was reduced 
as the increase in population size.

Stepwise regression was used to reduce the model complexity 
in this study. In 8-way crosses, alleles at each locus in parents may 
be different and therefore have different effects. To handle multiple 
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Figure 3.  True and estimated genotypic effects for 8 simulated QTLs for model II. The estimated effects were the average from 1000 simulations.

888� Journal of Heredity, 2019, Vol. 110, No. 7

http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz050#supplementary-data


allele effects, each marker has to be defined with 8 effects. Therefore, 
a very large number of marker variables were included in the re-
gression model (Equation 7), which complicated the model selection 
procedure in stepwise regression. The incompleteness of the linear 
model built from stepwise regression may not have a large effect on 
LOD score and QTL position estimation, but may have some impact 
on the estimation of QTL effects. Further investigation is needed to 
determine suitable probability levels for variables to enter into and 
leave from the stepwise regression model. Other model selection al-
gorithms which may provide better estimates for the linear model 
based on other criteria may be considered in future.

The method proposed in this study was specifically designed for 
pure-line populations from an 8-way crosses, that is, [(A × B) × (C × 
D)] × [(E × F) × (G × H)]. However, the method can also be directly 
applied to pure-line populations from fewer than 8 parents. For ex-
ample, the cross between 2 top crosses, that is, [(A × (C × D)] × [E × 
(G × H)], where 6 parents are involved, can be treated as 1 special case 
of 8-way cross, that is, [(A × A)×(C × D)] × [(E × E) × (G × H)], where 
parent A is the same as parent B, and parent E is the same as parent F.

To provide more recombination events and higher mapping reso-
lution, some MAGIC-like populations have also been developed. For 
example, Bandillo et  al. (2013) reported an indica rice 8-parental 
MAGIC population with 2 more cycles of intercrossing for enhancing 
recombination before selfing. A  16-parental MAGIC population 
(including 8 indica and 8 japonica parents) was developed to cap-
ture broader genotypic diversity (Bandillo et al. 2013). Currently, the 
MAGIC-like populations mentioned above are analyzed by GWAS. 

Some linkage analysis methods and tools can be used for these popu-
lations, such as R/qtl2 (Broman et al. 2019), R/MagicQTL (Wei and 
Xu 2016), and mixed-model methods. However, the efficiency of 
these methods for more general MAGIC populations has not been 

Table 4  Estimated QTL locations (cM) by mapping methods ICIM, Fixed-B, Random-B, and R/qtl2 for model III

Method QTL1 QTL2 QTL3 QTL4 QTL5 QTL6 QTL7

ICIM 41.24 (1.87)a 21.25 (1.55) 61.46 (2.19) 64.29 (2.04) 27.31 (1.19) 41.47 (1.26) 28.61 (1.86)
Fixed-B 41.16 (1.32) 21.28 (1.10) 60.29 (2.35) 64.81 (1.66) 27.25 (0.70) 41.39 (0.73) 28.72 (1.33)
Random-B 41.16 (1.32) 21.28 (1.10) 60.29 (2.35) 64.81 (1.66) 27.25 (0.70) 41.39 (0.73) 28.71 (1.32)
R/qtl2 41.21 (1.74) 21.23 (1.29) 59.72 (2.03) 64.76 (1.77) 27.31 (1.04) 41.29 (1.16) 28.76 (1.63)
True pos. 41.35 21.16 58.79 65.18 27.42 41.19 28.65

Each value was the average from 1000 simulations.
aThe number in parentheses is the standard error.
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Figure 5.  LOD score of flowering time under long-day conditions (top) 
and short-day conditions (bottom) obtained by ICIM for the real cowpea 
MAGIC population consisting of 305 RILs. Twenty was added to LOD score of 
flowering time under long-day conditions (top). The horizontal dashed lines 
represented the threshold calculated by permutation tests.
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explored. We are considering extending the ICIM-based mapping 
method to accommodate more kinds of multiparental populations.

Epistasis plays a crucial role in the genetic variation underlying 
many complex traits in plants. However, the detection of epistasis and 
effect estimation are still difficult because of the complex interacting 
patterns, insufficient sample sizes of mapping populations and lack of 
efficient statistical methods (Zhang et al. 2012). Identifying genome-
wide epistasis is a high-dimensional multiple regression problem that 
also requires the application of dimensionality reduction techniques 
(Ehrenreich 2017). High collinearity among markers and computa-
tional complexity are always obstacles to epistasis detection. ICIM 
has been applied to detect epistasis in biparental populations (Li 
et al. 2008; Zhang et al. 2012). Recently, a Bayesian-based method 
was proposed to identify epistasis for flowering time in a barley 
MAGIC population. However, this method has some disadvantages. 
High collinearity among markers created inconsistency in the results 
from different Markov chain Monte Carlo (MCMC) chains. Some 
epistatic interactions cannot be detected owing to the coding system 
used in this study, especially for signals whose marginal associations 
are not large enough (Mathew et  al. 2018). Generally speaking, 
studies on epistasis in MAGIC populations are rare. The extension 
of ICIM to epistatic QTLs in multiparental populations requires fur-
ther investigation.
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