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The mechanistic target of rapamycin (mTOR) is a central regulatory pathway that
integrates a variety of environmental cues to control cellular growth and homeo-
stasis by intricate molecular feedbacks. In spite of extensive knowledge about its
components, the molecular understanding of how these function together in
space and time remains poor and there is a need for Systems Biology approaches
to perform systematic analyses. In this work, we review the recent progress how
the combined efforts of mathematical models and quantitative experiments shed
new light on our understanding of the mTOR signaling pathway. In particular,
we discuss the modeling concepts applied in mTOR signaling, the role of multi-
ple feedbacks and the crosstalk mechanisms of mTOR with other signaling
pathways. We also discuss the contribution of principles from information and
network theory that have been successfully applied in dissecting design princi-
ples of the mTOR signaling network. We finally propose to classify the mTOR
models in terms of the time scale and network complexity, and outline the
importance of the classification toward the development of highly comprehen-
sive and predictive models. © 2017 The Authors. WIREs Systems Biology and Medicine pub-

lished by Wiley Periodicals, Inc.
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INTRODUCTION

Mammalian target of rapamycin (mTOR) is a
central regulator of translation, transcription,

differentiation, and metabolism thereby controlling
cell growth, survival and stress.1 The mTOR path-
way responds to diverse environmental signals such
as growth factors, nutrients, hormones and stress,

and regulates cellular energy and nutrients required
for execution of cell growth and proliferation.2

Therefore, it has attracted a broad research interest
as it is involved in many research fields, such as can-
cer, type II diabetes, obesity, neurodegeneration,1 and
aging.3–5 While the extent of the mTOR signaling
pathway, involving almost 1000 molecules, has been
elucidated and summarized into static interaction net-
works (see e.g., Caron et al.,6 BioModels Database,7

IDs MODEL1012220002-4) the pathway topology
alone was shown to be insufficient to capture the
dynamics of mTOR regulation at a molecular level.
For example, rapamycin is the best-known mTOR
inhibitor used in cancer therapy. However, limited
success has been achieved in clinical applications of
rapamycin and other drugs.8 Apparently, the effect of
drugs on mTOR signaling are quite complex, thus
requiring a better understanding of its dynamic regu-
lation. At this stage, a Systems Biology approach can
assist the understanding of this complex pathway
beyond mere intuition by transforming experimental
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knowledge into a coherent mathematical model and
testing hypotheses in silico.9 In contrast to other sig-
naling pathways such as MAPK,10 TGFβ,11 JAK-
STAT,12 and NF-κB,13 for which mathematical mod-
els have provided many insights, dynamic mTOR
pathway models have received less attention. One rea-
son is the diversity of upstream signals it senses. The
mTOR pathway integrates inputs from at least five
major intracellular and extracellular cues such as
growth factors, energy status, stress, oxygen, and
amino acids.2 The other reason lies in the multiple
effects the mTOR signaling exerts on multiple time
scales. Therefore, currently developed mathematical
models of this pathway differ with respect to the com-
plexity and time scale which they cover.

The aim of this review is to introduce the
molecular basis of the mTOR pathway that lays the
ground for the challenges of Systems Biology. Next,
we describe different modeling approaches and
model analysis methods applied to dynamic processes
on the subcellular level. Furthermore, we discuss the
effect of molecular feedbacks in the stability of the
pathway outcome, as well as the crosstalk mechan-
isms that have been identified using modeling
approaches. We discuss the design principles of the
mTOR signaling pathway using methods from infor-
mation and network theory and how the application
of these methods impacted on our understanding of
mTOR signaling. Lastly, we discuss the impact of
time scales and the degree of complexity on the
design principles of mTOR signaling and will con-
clude with the integrative modeling challenges that
are still open for the mTOR pathway.

THE OVERVIEW OF MTOR SIGNALING
PATHWAY

mTOR is a serine/threonine protein kinase which
belongs to the phosphoinositide 3-kinase (PI3K)-
related family and interacts with several proteins to
form two distinct complexes, named mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2).8

mTORC1 and mTORC2 are known to comprise six
and seven protein components, respectively. They
share the catalytic mTOR subunit, mammalian lethal
with sec-13 protein 8 (mLST8),14,15 DEP domain
including mTOR-interacting protein (DEPTOR)16 and
the Tti1/Tel2 complex.17 The protein components spe-
cific to mTORC1 are the regulatory-associated protein
of mammalian target of rapamycin (raptor)18,19 and
proline-rich AKT substrate 40 kDa (PRAS40).20–23

The proteins specific to mTORC2 comprise
rapamycin-insensitive companion of mTOR

(rictor),14,24 mammalian stress activated map kinase-
interacting protein 1 (mSin1) and protein observed
with rictor 1 and 2 (protor 1/2).25 mTORC1 is gener-
ally known to control cellular growth, translation,
transcription, and autophagy, while mTORC2 is
associated with the coordination of spatial growth by
regulating the actin cytoskeleton.2

The key signaling nodes of the core mTOR net-
work are depicted in Figure 1. Illustrated are the impor-
tant signaling pathways that promote the activation of
mTOR signaling. Insulin induces a kinase signaling cas-
cade through the insulin receptor (IR), insulin receptor
substrate (IRS), class I phosphoinositide 3-kinases
(PI3Ks), phosphoinositide dependent protein kinase
1 (PDK1), and AKT kinase. AKT activates mTORC1
by inhibiting the tuberous sclerosis complex 1/2 (TSC1/
TSC2) and PRAS40, which are negative regulators of
mTORC1.2 AKT also activates mTORC1 in a TSC1/2
independent manner by phosphorylating PRAS40.20–23

In response to insulin stimulation, mTORC2 phosphor-
ylates AKT in Drosophila and several human cell
lines.26 Recent evidence in HEK293 and Hela cells sug-
gested the activation of mTORC2 via insulin, which in
turn phosphorylates AKT.20

mTOR activation by the MAP kinase pathway
occurs at the level of TSC1/2, where ERK activates
mTORC1 via TSC1/2 inhibition.27 The proinflamma-
tory cytokine TNFα activates mTORC1 through a sim-
ilar mechanism, where IKKβ phosphorylates TSC1/2
by causing its inhibition.28 The canonical WNT path-
way, a major regulator of cell growth, proliferation,
polarity and differentiation, and development, also
activates mTORC1 via suppressing glycogen synthase
kinase 3β (GSK3-β). GSK3-β itself phosphorylates and
promotes TSC1/2 activity.29 DNA damage downregu-
lates mTORC1 via p53-dependent transcription of
Sestrin1/2, which activates AMPK and thus leads to
TSC1/2 activation and mTORC1 inactivation.30 Less
clear, but independent from TSC1/2 is the activation of
mTORC1 by amino acids.31 Omitting leucine and
arginine in culture media is as effective as complete
amino acid withdrawal and leads to inactivation of
mTORC1.32 In amino acid bound state the GTPases of
the Rag family and Rheb play an important role in
recruiting the mTORC1 to the lysosome where these
components are anchored by the regulator complex
and brought into close contact.33,34 Many other com-
ponents are discussed here35 in detail as part of an
amino acid sensing complex.

There are several known feedback loops in the
core mTOR signaling (Figure 1, green lines). The first
one is the positive feedback from AKT to insulin recep-
tor substrate-1 (IRS1).36 It was shown that the activa-
tion of AKT in response to insulin propagates insulin
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signaling and promotes the phosphorylation of IRS1
on specific sites and downregulates its functions.37 This
phosphorylation prevents dephosphorylation of IRS1
by tyrosine phosphatases and maintains IRS1 in the
active form.36 The second one is the widely observed
negative feedback from S6K to IRS1. Once active, S6K
phosphorylates and inhibits IRS1, which prevents the
activation of PI3K in response to insulin.38 S6K inhibi-
tion also activates the ERK-signaling cascade in meta-
static cancer patients and in a mouse model of prostate
cancer.39 The third one is a recently reported positive
feedback from AKT to mTORC2, where AKT phos-
phorylates the mTORC2 subunit SIN1 thereby enhan-
cing mTORC2 activity.40

MODELING CONCEPTS RELEVANT
FOR MTOR SIGNALING PATHWAY

Dynamic Modeling of mTOR Signaling
The use of mathematical modeling in understanding
the complex dynamics of biochemical signaling cas-
cades, such as the mTOR pathway, has become

standard in Biology. Iteration between wet-lab
experiments and dry-lab computer simulations is gen-
erally known as Systems Biology approach to life
sciences.41 Systems Biology tries to quantify and pre-
dict dynamic biological processes through mathemat-
ical modeling approaches to understand the
underlying regulatory concepts and unravel biocom-
plexity as described below. In general, modeling is a
simplified and abstract representation of naturally
occurring processes to discern their core principles
and to predict their behavior. Moreover, it allows to
test many scenarios, which are either experimentally
not accessible or affordable and results, if successful,
in testable predictions. Depending on the degree of
complexity and the scope of modeling, signaling
pathway models are based on different mathematical
formalism. The choice of a particular modeling
approach depends on various factors: (i) the biologi-
cal question, (ii) the extent of mechanistic detail,
(iii) data availability and data type.42,9 Usually, bio-
logical experiments are described by continuous mea-
surements such as reaction rates, cell mass, protein

M
A

P
K

 p
athw

ay
D

N
A

 d
am

ag
e

mTOR pathway

W
N

T 
p

at
hw

ay
In

fla
m

m
at

io
n

GAB1

FIGURE 1 | Overview of the major mTOR signaling network. Shown are core components of PI3K/AKT/mTOR pathways and the pathways that
influence the mTOR signaling pathway.2 Depicted are also critical inputs regulating mTORC1 and mTORC2 including growth factors such as insulin,
epidermal growth factor (EGF), tumor necrosis factor (TNF), wingless type integration site family (WNT) ligands and amino acids. Once active, mTORC1
regulates protein synthesis, energy metabolism, lipogenesis, and inhibits autophagy and lysosome biogenesis. mTORC2 promotes cytoskeletal
organization, cell survival, and longevity. Green edges denote feedback loops in the core mTOR signaling pathway. For more information, see the text.
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concentrations and gene expression intensities which
can be further combined with various modeling
formalisms. In the following, we briefly overview the
modeling approaches that are mainly used in model-
ing mTOR signaling pathway. The mTOR models
and the corresponding modeling approaches are sum-
marized in Table 1.

Most models of mTOR signaling have been
encoded using ordinary differential equations (ODEs;
Figure 2(a)) which belong to a class of mechanistic
models and provide detailed information about the
network dynamics. Applications of ODEs have
allowed to specify the network topology and kinetic
mechanisms of the mTOR signaling pathway. In par-
ticular, an application of this method with a combi-
nation of time-course measurements has been crucial
in dissecting feedback mechanisms in mTOR signal-
ing.43,45,56,58 ODEs with real valued parameters over
a continuous time-scale allow a comparison of the

global state and experimental data, which can be
mathematically more accurate.65 ODEs are derived
from the law of mass action or Michaelis-Menten
kinetics, and describe the change of a system in con-
tinuous time. They assume a homogenous reaction
volume inside the components of the cell, and that
active transport and diffusion are fast compared to
the reaction rates of molecular interactions and the
spatial extent of the compartment.66 Modeling using
ODEs provides causal information on the chemical
reaction dynamics, but it also requires to estimate
kinetic parameters based on quantitative data.65 The
main challenge in exploiting ODEs is that they
require a substantial amount of prior information
about initial concentrations of species and kinetic
parameters from experimental measurements. Taking
into account the limitation of available quantitative
data, it is important to specify the model size such
that model predictions can be experimentally

TABLE 1 | Summary of Published mTOR Models

mTOR Models Biological Context Model Type
Model
Size Timescale

Dalle Pezze et al.43 Mechanisms of mTORC2 regulation ODE 25–33 0–120 min

Sonntag et al.44 mTOR-AMPK crosstalk ODE 26–28 0–120 min

Kubota et al.45 Decoding insulin signal in the mTOR pathway ODE 11 0–600 min

Toyoshima et al.46 Signal transfer in the mTOR pathway ODE 3–4 0–120 min

Noguchi et al.47 Metabolism regulation by the mTOR pathway ODE 15 0–480 min

Borisov et al.48 MAPK-mTOR crosstalk ODE 78 0–30 min

Fujita et al.49 Signal transfer in the mTOR pathway ODE 3–8 0–120 min

Jain et al.50 BDNF-mTOR crosstalk ODE 130 0–30 min

Wu et al.51 mTOR-MAPK-PKC crosstalk Boolean 19–22 0–60 min

Hatakeyama et al.52 mTOR-MAPK crosstalk ODE 33–34 0–30 min

Sedaghat et al.53 Metabolic insulin signaling ODE 21 0–60 min

Faratian et al.54 mTOR-MAPK crosstalk ODE 56 0–60 min

Brännmark et al.55 Mechanisms of receptor internalization ODE 5 0–30 min

Brännmark et al.56 Mechanisms of insulin resistance ODE 26–27 0–30 min

Vinod et al.57 mTOR regulation via amino acids ODE 10–13 0–30 min

Araujo et al.58 Feedback characterization in the mTOR pathway ODE 4–5 a.u.

Giri et al.59 Input–output characterization in metabolic insulin
signaling

Algebraic 22 a.u.

Tian and Wu60 Robustness property of the mTOR pathway ODE 16 a.u.

Wang and Krueger61 Bifurcation analysis of the mTOR pathway Algebraic 2 a.u.

Nguyen and
Kholodenko62

Feedback regulation in the mTOR-MAPK pathways ODE 29 a.u.

Kriete et al.63 Metabolism regulation by the mTOR and NF-kB pathways Fuzzy-logic 34 a.u.

Mosca et al.64 Metabolism regulation by the mTOR pathway ODE,
Algebraic

25 a.u.

a.u., arbitrary units. Model size represents (i) the number of equations in ODEs and algebraic equations, (ii) the number of nodes in Boolean models and
(iii) the number of reactions in fuzzy-logic models (rule-based).
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supported. Because the amount of quantifiable data
is currently limited or cost and labor prohibitive, the
size of the ODE models is nowadays restricted to few
variables and parameters in the order of
O 101−102
� �

. However, this might change in the
future with advances in multiplex protein assays or
mass spectrometry.

A Boolean or logic-based approach is another
type of modeling used in mTOR signaling.51,63 If the
exact kinetic parameters and type of molecular inter-
actions are less important as compared to the topol-
ogy of the reaction network, logic-based models
provide a viable approach in case of insufficient time
resolved quantitative data (Figure 2(b)). Boolean
models are discrete two-state logic-based models in
which each component is represented by on and off
states.67 Importantly, Boolean models have no free
parameters and the models covering the same set of

components differ only in topology.68 Since most
experimental data is continuous, it is required to
binarize the data that is used in Boolean models.65

This modeling approach has been successfully
applied for diverse systems such as gene regulatory
networks69–71 and EGFR signaling,72 etc. A limita-
tion of Boolean models is that they contain a limited
number of states and require binarization of data
which reduces the accuracy of predictions. However,
fuzzy logic-based methods that allow for multiple
states can partially overcome these drawbacks.73 For
example, Kriete et al.63 modeled mTOR, NF-κB and
cellular processes that play a role in aging via a
fuzzy-logic framework based on assembled interac-
tion rules.

mTOR signaling has also been modeled using
steady state or algebraic equations based on ODEs
that arise from switch-like input–output

(a) (b)

(c) (d)

(e) (f)

Time Time

(g)

FIGURE 2 | Methods used in mTOR signaling network modeling. (a) Converting a network into ODEs. At the first step, the network is
converted into biochemical reactions and further into a set of ODEs, assuming mass action kinetics. (b) Modeling networks using two state
Boolean logic. (c) Steps required to get a useful model. Before the model calibration, there is a poor correlation between the data obtained by the
model and the experimental data. The calibrated model can successfully reproduce experimental data and gives more accurate predictions than the
uncalibrated model. (d) Types of bifurcation observed in biological systems. Illustrative example is given in term of sensitivity of protein
phosphorylation to insulin concentrations. Drug treatment may drive the system to one of these modes. Insulin controllable modes: switch like
(left) and toggle switch (middle) and uncontrollable one switch mode (right). (e) Three temporal patterns of the stimuli that have widely been used
to elucidate the properties of mTOR pathway are illustrated. (f ) IFFL (incoherent feed-forward loop) has been found as an optimal mechanism to
explain S6K activation by AKT.45 (g) Example of the pathway that exhibits a low-pass filter property that could transmits slowly occurring changes
in upstream regulators to downstream effectors more efficiently than fast occurring changes in upstream regulators.49
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relationships.74 Goldbeter and Koshland showed that
in signal transduction pathways, a simple mechanism
can create switch-like response relationships.75 This
mechanism termed as zero-order ultrasensitivity
emerges, when phosphorylation and dephosphoryla-
tion reactions are modeled with Michaelis-Menten
kinetics. In this case, the steady-state response of the
system is described by Goldbeter–Koshland equa-
tions.75 For example, Giri et al. modeled the
metabolic insulin signaling and the mTOR signaling
at steady state using the Goldbeter–Koshland
framework.59

Other modeling formalisms can also be useful
in modeling the mTOR signaling. Recent advances in
flow cytometry and microfluidics technology allow
now to measure the protein abundance on the single
cell level, when protein molecules are present in small
numbers, only.76 When molecule numbers are low
(typically less than 100), random fluctuations need to
be accounted for through stochastic modeling rather
than using ODEs.67 Stochastic simulations provide a
more detailed description of the discrete molecule
dynamics by estimating the mean abundance as well
as its fluctuations.9 They are widely used in modeling
gene expression to account for extrinsic and intrinsic
noise in transcription and translation processes.9,77

The above mentioned modeling approaches can be
implemented and simulated using publicly available
Systems Biology tools. ODEs and stochastic models
can be simulated via user-friendly tools such as
CellDesigner,78 COPASI,79 and PyBioS,80 all of
which include methods for parameter estimation and
model analysis. Boolean or logic-based models can
be created and simulated by, e.g., CellNetOptimi-
zer,81 a software suite which allows to train a set of
possible logical models against experimental data.

Modeling with High-throughput
Measurements
Until recently, experimental data for parameter esti-
mation of signaling pathway models mainly came
from low-throughput experiments such as assays,
protein western blotting and microscopy.82 For
mechanistic modeling approaches using ODEs this is
a limiting factor, which restricts the accuracy of
parameter estimates and scalability of ODEs to larger
systems. Recent progress in high-throughput technol-
ogies such as kinase arrays and mass spectrometry
now makes large-scale dynamic modeling possible.
These technologies allow to quantify a large number
of proteins in a single experiment.83 This will result
in more detailed models of the mTOR signaling path-
way and will improve the quality of parameter

estimates. However, with an increasing number of
proteins and kinetic parameters, the parameter esti-
mation becomes more difficult irrespective of any
optimization algorithm used because of the ‘combi-
natorial explosion’ problem.84 An alternative to
ODEs in this case will be to exploit logic-based
ODEs, also known as piecewise linear ODEs that
reduce the complexity of the model calibration
task.85–87 Logic-based ODEs do not represent a
mechanistic model, but they explain and predict the
quantitative and dynamic behavior of the system,
which is not possible with discrete Boolean models.
Several studies showed how to transform discrete
Boolean models into logic-based ODE models
through multivariate polynomial interpolation and
Hill functions, where the resulting ODE models pre-
serve important properties of the original system such
as steady-state behavior.87,88 Another alternative is
to exploit partial correlation methods, which are
based on the conditional independence concept and
are able to perform network inference from high-
throughput data efficiently.89 Popular approaches are
regularization based Lasso methods that induce the
sparsity in the estimated network.90 However, these
models just infer the undirected network of proteins
and cannot deduce a causality structure between the
proteins. Such a structure can be learned using Bayes-
ian networks which are a probabilistic graphical
model of random variables and their conditional
dependencies. A dynamic version of Bayesian net-
work (DBN) is able to incorporate the time-course
data and complement ODE-based approaches by
providing a feasible way to explore a large space of
various network topologies from the data.91

Computational Methods to Analyze mTOR
Models
An important step towards a useful dynamic mTOR
model is its calibration against experimental data.
This procedure is known also as parameter estima-
tion, model fitting or model training. In model cali-
bration, the aim is to match model performance to
experimental data via adjusting model parameters.
In case of ODEs, the model parameters are rate con-
stants and/or initial conditions, whereas in Boolean
models model calibration refers to adjusting the net-
work topology and the combination of logic
‘and’/‘or’ gates. A key to model calibration is to
define an objective function (known also as cost
function and error function), which is the squared
difference between model predictions and experi-
mental data, also known as the method of least
squares. The objective function can also be defined
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in terms of Bayesian framework where the model
parameters are considered as random variables and
defined in terms of a probability distribution. For
more information, we refer to Klipp et al.9 The goal
is to minimize the objective function in terms of
model parameters, which can be done by variety
optimization algorithms. After model calibration, a
trained model can successfully reproduce experimen-
tal data and make predictions in agreement with
measured data (Figure 2(c)). Partly calibrated or
noncalibrated models are still useful for simulation
purposes, however, informative conclusions about
the rate constants and concentrations are difficult.92

Another important prerequisite for model calibration
is the identifiability of model parameters that are
estimated from experimental data. A model parame-
ter is identifiable, if it can be determined from the
data. Biological questions are not addressable, if
the model parameters cannot be estimated from the
experimental data and thus are simply nonidentifi-
able.93 Identifiability of parameters can help to infer
feasible model predictions. Identifiability of model
parameters can be applied before or after the model
calibration. There are two types of identifiability
analyses for a system of ODEs. Structural identifia-
bility analysis is applied before the availability of
experimental data, while practical identifiability
analysis is applied if actual experimental data is
available. For instance, the mTOR models of Dalle
Pezze et al.43 and Sonntag et al.44 have been subject
to model calibration and both structural and practi-
cal identifiability analyses, whereas the model predic-
tions and simulations have been conducted on a set
of identifiable parameters.

The influence of model parameters on model
output is of particular interest and can be
approached using sensitivity analysis. Sensitivity
analysis is a method for quantifying uncertainty and
how input uncertainty impacts model outcome.94

This analysis identifies, which outputs are sensitive to
variation of a particular parameter of interest and
can be considered computationally equivalent to pro-
tein knock down or overexpression experiments.67

Sensitivity analysis reveals fragile points in the net-
work that exhibit major sensitivity to small perturba-
tions and identifies possible targets for therapeutic
intervention. For example, sensitivity analysis on the
ODE model of the AKT pathway (upstream of
mTOR pathway), identified critical parameters for
the cutoff frequency at which the transfer efficiency
of proteins in the pathway change.49

Robustness analysis is another method of
model analysis. Robustness is defined as the ability of
a system to function correctly in the presence of both

internal and external perturbations.95 Robustness is
a ubiquitously observed property of biological sys-
tems and this property has been widely applied as an
important measure to filter the optimal network
structure.60 Thus, this method can be used for valida-
tion of models of biological systems.96 For instance,
Tian and Wu60 have examined the robustness prop-
erties of an upstream model for the mTOR pathway.
The behavior of dynamical models can be further
analyzed using the bifurcation analysis, which is the
study of qualitative changes in the behavior of non-
linear dynamical systems when parameters of the sys-
tem are varied.97 Parameters can be considered as
signal strength that is controllable by experiments.
The points at which systems output changes discon-
tinuously leading to a different dynamic behavior are
called bifurcation points.98 Bifurcation analysis is
very useful when analyzing the input–output behav-
ior and summarizes the behavior of the biological
system. This method further enables to study critical
decisions made by biological systems in terms of
mathematical modeling and identification of suitable
targets for a drug intervention. Araujo et al.58

applied bifurcation analysis on the mTOR pathway
model, and characterized the dependence of pIRS1
on different inhibitors. Moreover, by employing
bifurcation analysis, Wang and Krueger analyzed the
dependence of pAKT on the insulin level and exam-
ined the conditions under which this dependence pro-
duces a bistable behavior.61

FEEDBACKS AND CROSSTALK
IN THE MTOR PATHWAY

Multiple Feedbacks in the mTOR Pathway
Signaling pathways are highly interconnected via
positive and negative feedback loops. Feedback
occurs when the output of a system serves as an
input to the same system resulting in a loop structure.
Because the effect of feedback loops on the dynamic
behavior of a system is difficult to examine experi-
mentally, mathematical models have proven a power-
ful tool to study this problem. Positive feedbacks
may create a discontinuous bistable switch such that
the cellular response changes abruptly and irreversi-
bly as signal strength crosses a critical threshold.98

Negative feedback enables the system to respond
robustly to external and internal perturbations.95

The interplay of these two feedbacks can drive the
system into bistable, toggle and one-way switches
(Figure 2(d)). A stronger positive feedback compared
to its negative counterpart facilitates a bistable and
one-way switch. Once the signal crosses a certain
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threshold, it remains at the high steady state despite
complete removal of the stimulus thereby creating
the one-way switch.58 A one-way switch is character-
ized by a point-of-no-return. A toggle switch is the
two-way switch that is capable of exhibiting two sta-
ble steady states.99 If the input signal in the toggle
switch is weak enough, the switch will go back from
the high to the lower steady state.98

In the core mTOR signaling pathway, there
are currently two positive and one negative feedback
loops identified (Figure 1, green edges). The first
positive feedback loop descends from AKT and con-
nects to IRS1.36 Another positive feedback loop
results from AKT to mTORC2 via SIN1 phospho-
rylation.40 The negative feedback emerges from S6K
and leads back to IRS1.38 The interplay of the posi-
tive feedback loop from AKT to IRS1 and negative
feedback from S6K to IRS1 was investigated theo-
retically.58 By using a simple mTOR pathway
model, the authors suggested that inhibiting the
mTOR complex downregulates the downstream
effectors eukaryotic translation initiation factor 4E
binding protein 1 (4EBP1) and S6K. The inhibitor,
however, also disrupts the negative feedback and
increases IRS1 and AKT activation, which ulti-
mately leads to the high mTOR activity. They fur-
ther demonstrated that an imbalance in favor of the
positive feedback, while weakening the negative
counterpart, creates the dangerous one-way switch
that could cause constitutive activation of effectors
downstream of mTOR. In their simulations, addi-
tional inhibition of AKT converted this one-way
switch into a two-way toggle switch. Only a joint
blockage of IRS1, AKT, and mTOR removed the
switch and allowed a graded response to input sti-
muli. Several experimental studies supported this
prediction in which the mTOR inhibitor, rapamycin,
released the S6K dependent negative feedback and
activated AKT in human tumors as well as in tumor
cell lines.100–102

The role of the negative feedback from S6K to
IRS1 was further investigated by several groups.
The combination of modeling and experiments
revealed that this negative feedback does not affect
mTORC2 in Hela cells, although the latter depends
on PI3K levels43 (Figure 3, label 1). A similar obser-
vation was found in Fao cells (hepatic-derived cell
line), where the disruption of this negative feedback
by rapamycin could not restore pAKT levels com-
pletely.45 The role of the feedback from mTORC1
to IRS1 was shown to be crucial in explaining
mechanistic differences between healthy and diabetic
cells.56 This work suggested that attenuated activity
of mTORC1 to IRS1 is a key mechanism in insulin

resistance in Type 2 diabetes and helped to explain
the reduced sensitivity to insulin and glucose uptake.
Kubota et al. demonstrated the existence of a
delayed negative feedback, different from the nega-
tive feedback discussed above. The delayed negative
feedback is sufficient to explain the adaptation of
S6K levels to insulin in Fao cells, indicating the
presence of unidentified pathways regulating S6K45

(Figure 3, label 3). This work proposed the negative
feedback from mTORC1 to S6K, which could
explain the dynamics of S6K. However, this still
remains to be verified experimentally. There is also
a reported negative cross-pathway feedback between
mTOR and MAPK pathways.103,104 Chandarlapaty
et al.103 reported FOXO-dependent activation of
RTK receptors such as HER3, IGF-1R, and IR
under inhibition of AKT in breast cancer cell lines.
According to these findings, AKT inhibits FOXO
which in turn activates HER3 that leads to an acti-
vation of the mTOR pathway. Based on this obser-
vation, Nguyen et al.62 developed a mechanistic
cross-talk model of mTOR/RTK/ERK pathways,
analyzed qualitatively the functional role of feed-
back loops and performed feedback-related thera-
peutic simulations.

FIGURE 3 | Simplified mTOR signaling network with interactions
inferred from modeling approaches. Depicted is the crosstalk of mTOR
with MAPK signaling pathway. Red dashed edges numbered as circled
labels represent the interactions and nodes inferred from modeling
approaches. Label 1: PI3K dependent regulation of mTORC2 which is
independent of negative feedback from S6K to IRS1.43 Label 2:
Positive regulation of AMPK by IRS1.44 Label 3: Negative regulation of
S6K by mTORC1.45 Label 4: Gab1 was found to be an important
adaptor protein between insulin and MAPK signaling that plays a role
of a nonlinear amplifier of mitogenic responses.48
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Crosstalk Between mTOR Signaling and
Other Pathways
Cells can convert multiple external clues into dis-
tinct cellular decisions via a limited number of sig-
naling pathways. mTOR signaling senses and
integrates a variety of environmental signals to regu-
late the growth and homeostasis.2 But it is currently
not well understood how the mTOR signaling path-
way integrates all these signals. Borisov
et al. investigated the crosstalk between insulin/
mTOR signaling and MAPK signaling pathways
using a combined approach of modeling and experi-
ments.48 To explore how these two signaling net-
works are linked together, the authors built a large-
scale ODE model comprising 78 variables and
200 parameters. This work showed that co-
activation by low insulin and high EGF led to
increased RAF activity due to increased RAS activity
and suggested that the net effect of insulin and EGF
stimulation on RAF is positive in the human embry-
onic kidney (HEK293) cells. The model predicted
that insulin cannot enhance ERK and MEK upon
PI3K inhibition, which was validated experimentally
by treating HEK293 cells with the PI3K inhibitor,
wortmannin. In the same study, the quantitative
experimental data on the dynamics of GAB1-PI3K
complexes upon insulin and EGF co-stimulation
suggested that GAB1 is one of the key mediators of
insulin-EGF crosstalk (Figure 3, label 4). Another
link between insulin stimulated mTOR and ERK
signaling was observed by Wu et al., where a three
state Boolean model predicted that the ERK feed-
back to IRS1 does not affect IRS1 tyrosine phospho-
rylation levels.51 Experimental validation was done
by applying the ERK inhibitor to human liver carci-
noma (HepG2) cells. This work also experimentally
demonstrated that the JNK inhibitor significantly
upregulated IRS1 tyrosine phosphorylation thereby
highlighting the importance of the feedback from
JNK pathway to insulin signaling via IRS1. Hata-
keyama et al. experimentally confirmed in WebB4
expressing Chinese hamster ovary (CHO) cells that
PI3K-AKT pathway activation suppresses the ERK
pathway by negatively regulating RAF.52 This was
independently confirmed in other cell lines.105,106

The established model in the same work,52 including
RAF-AKT crosstalk and protein phosphatase 2A
(PP2A), accounted for the experimental data better
than the model without crosstalk. The findings indi-
cate that a dual regulation by the crosstalk and
PP2A is necessary for the kinetic regulation of ERK
activity.

Faratian et al. developed an mTOR-ERK
crosstalk model to study the consequences of anti-
HER2 antibody therapeutic intervention in ovarian
carcinoma (PE04) and breast cancer cells
(BT474).54 In this work, the authors revealed that
PTEN, a negative regulator of PI3K and mTOR, is
the dominant resistance factor to receptor tyrosine
kinase (RTK) inhibition, which suggested that PI3K
inhibition in tumors with low PTEN levels should
be combined with RTK inhibitors. The effect of
combined adenosine monophosphate dependent
kinase (AMPK) and mTORC1 inhibition was stud-
ied experimentally and through modeling.107 The
authors investigated the impact of AMPK on mTOR
in response to energy deprivation. AMPK activated
pathways that led to the generation of ATP and
suppressed ATP consuming anabolic processes, such
as ribosome biogenesis and translation.108 Upon
activation, AMPK phosphorylated the TSC1–TSC2
complex, which eventually suppressed mTORC1.
By extending the previous model43 and combining it
with new experiments, Sonntag et al. investigated
how AMPK is linked to mTOR signaling.44 Their
model predicted a mechanism, in which IRS1 acti-
vated AMPK upon stimulation (Figure 3, label 2),
which was then experimentally validated with west-
ern blot analysis from Hela cells by overexpressing
IRS1 and PTEN.

Another crosstalk is observed between the
mTOR and SIRT1 pathways. Both mTOR and
SIRT1 regulate a number of metabolic pathways
and play an important role in promoting longev-
ity.109 However, it remains less well understood
how their interplay might contribute to longevity.
Several studies suggested a mechanism wherein
SIRT1 negatively regulates mTOR signaling through
the TSC1/2 complex.110,111 Based on experimental
results, Auley et al. suggested a mathematical model
of metabolic regulation in aging.109 Jain
et al. modeled the crosstalk of the brain-derived
neurotrophic factor (BDNF) and mTOR pathways,
analyzed the stability properties of the combined
model and explored the impact of input combina-
tions and feedbacks on the behavior of the BDNF-
mTOR crosstalk.50

mTOR Models in Metabolic Insulin
Signaling
Insulin is the major controller of energy homeostasis
in the human body and is therefore closely linked to
mTOR signaling on the cellular level. Major meta-
bolic action of insulin is catalyzing glucose uptake
into skeletal muscle and adipose tissue.112 Because
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the insulin signaling is a highly complex process and
involves several layers of regulation, mathematical
models have proven to be very useful to uncover
these complexities. Extensive modeling has been
carried out to uncover mechanistic insights starting
from the insulin binding to the insulin signaling
and eventually to cellular responses. Based on the
available models of IR binding, Sedaghat
et al. developed an ODE model of the metabolic
insulin signaling.53 This model includes upstream
regulators of mTORC1 such as PI3K and AKT and
predicted that the negative feedback from protein
kinase C (PKC) to IRS1 is sufficient to explain PKC
activation dynamics in response to insulin. A
steady-state model that used parameters from
Sedaghat et al.53 showed that insulin stimulated
GLUT4 can operate as a bistable switch.59 The
model of Sedaghat et al.53 was extended to study
the effect of amino acids in presence of insulin.57

Their model proposed that GLUT4 translocation
is more sensitive to higher amino acid concentra-
tions and produced a bistable behavior under vari-
ous insulin concentrations at steady state. The
insulin stimulated PI3K/AKT/mTOR pathway
model was linked to metabolic pathways to study
how metabolic processes are regulated by the
mTOR pathway.47,64 mTOR models have been
successfully applied in untangling complex
mechanisms of insulin resistance, which is the
main cause of Type 2 diabetes. Insulin resistance
is characterized by dysfunction in the insulin con-
trol that involves several layers of regulation, dif-
ferent cell types and different organs.113

Brännmark et al. developed an ODE model and
examined the phosphorylation of the IR, IRS1 and
its endocytosis that were measured under various
experimental perturbations in primary human adi-
pocytes.55 By testing several activation mechan-
isms, this work proposed that both the receptor
internalization and feedback from IRS1 to IR are
most plausible mechanisms that explain experi-
mental observations. Later, the same authors built
an extended ODE model comprising mTORC1
and its downstream effectors and combined it with
the experimental data to explore mechanistic dif-
ferences between healthy and diabetic cells.56

Experiments performed by these authors showed
attenuated activity of mTORC1 as a key feature
of insulin resistance in diabetic condition. Integra-
tion of these experiments with the mathematical
model predicted that attenuation of the feedback
from mTORC1 to IRS1 is a key mechanism in
insulin resistance in Type 2 diabetes.

DISSECTING MTOR SIGNALING USING
THE PRINCIPLES FROM
INFORMATION THEORY AND
NETWORK MOTIFS

Signaling pathways have a remarkable property to
code multiple cellular information via few common
signaling pathways.114 This cellular information is
coded in certain temporal patterns of stimuli such as
growth factors that are translated into specific tem-
poral patterns in signaling pathways.115 Eventually,
encoded information in signaling pathways is selec-
tively decoded by various downstream molecules.
For instance, pulsative dynamics of a stimulus may
produce an increasing or pulsatile response in the
molecules of signaling pathways.49 Overall, there are
three types of temporal patterns of a stimulus that
have been extensively studied in signaling pathways
both theoretically and experimentally (Figure 2(e)).
Encoding and decoding the temporal patterns is
highly dependent on the network structure and this
dependency has been studied in detail in terms of
network motifs. Network motifs are recurring cir-
cuits of interactions, from which networks are con-
structed and were shown to be the building blocks
of transcriptional and signal transduction net-
works.116 Based on these ideas, there have been
series of studies to uncover the mechanisms of the
mTOR pathway using the principles from informa-
tion theory and network motifs. By measuring and
translating the temporal profiles of pAKT and its
downstream effector S6K into an ODE model,
Kubota et al. revealed that the activation kinetics of
S6K were best explained by an incoherent feed-
forward loop (IFFL)45 (Figure 2(f )). An IFFL con-
sists of three nodes, wherein the first node regulates
the other nodes positively and the second node regu-
lates the third node negatively.116 This motif struc-
ture explained why S6K levels return to the basal
level despite continuous stimulation. In their model,
S6K is activated through an IFFL that involves rapid
activation followed by delayed inactivation through
mTOR. This property is known as perfect adapta-
tion, where upon the stimulation the system’s
response returns to the prestimulus level.117,118 Dif-
ferent insights in temporal patterns have been
obtained in PC12 cells, where the cells were stimu-
lated by step, pulse and ramp type patterns of EGF
stimuli.49 The authors investigated how the AKT/m-
TOR pathway transmits temporal information from
distinct upstream EGF stimulus patterns to down-
stream effectors (Figure 2(g)). They modeled the
mTOR pathway using a simple three component
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ODE model and applied frequency response analy-
sis, which allows to study how the system responds
to inputs over a wide range of time scales.119 The
authors showed that the AKT/mTOR pathway func-
tions as a low-pass filter despite the different tempo-
ral patterns of phosphorylated EGF receptors in
PC12 cells. Low-pass filters transmit slowly occur-
ring changes from upstream signals to downstream
effectors more efficiently than rapidly occurring
ones. This property of the AKT pathway suggested
that the EGFR inhibitor, lapatinib, converts strong
transient pAKT into weak sustained pAKT signals,
which led to a stronger S6 phosphorylation.

Following this study, Toyoshima et al. exam-
ined signal transfer efficiencies of various pathways,
including AKT, in different cell lines using both theo-
retical and experimental approaches.46 By modeling
the pathways using ODEs they revealed that the sig-
nal transfer efficiency of the transient peak amplitude
from upstream to downstream signals is attenuated
proportionally to the negative regulation within the
signaling network. Global analysis of about 568 sets
of upstream and downstream time courses of signal-
ing pathways demonstrated that the attenuation of
the signal transfer efficiency is a global property of
signaling pathways, where about 169 sets including
the AKT/mTOR pathway met this criterion. This
property was found to be conserved not only in
PC12 cells, but also in other cell lines such as human
umbilical vein endothelial cells (HUVECs), Swiss 3T3
and HeLa cells. Owing to this property, downstream
molecules show higher sensitivity to the activator
and lower sensitivity to the inhibitor compared to the
upstream molecules. Experiments revealed that in the
mTOR pathway, S6 which is a downstream mole-
cule, shows lower sensitivity to the EGFR inhibitor
than AKT. Overall, this study revealed that through
this remarkable mechanism the cells can control the
sensitivity of mTOR pathway molecules to both acti-
vators and inhibitors of the pathway.

TIME SCALE AND DEGREE
COMPLEXITY IN THE MTOR MODELS

mTOR signaling exerts multiple effects on multiple
time scales. Based on this fact, the mathematical
models of the mTOR pathway differ with respect to
the time scale and the complexity which they cover.
In this section, we will discuss the impact of the time
scale of observation on the design principles of the
mTOR signaling pathway by providing some recent
examples.

Figure 4 maps the different mathematical mod-
els of the mTOR pathway onto the time-scale versus
complexity plane. The corresponding table that sum-
marizes the mTOR models is given in Table 1. The
models on the time scale of minutes are typically
valid for protein signaling networks. To study the
relation between the receptor internalization and the
activation of downstream insulin network compo-
nents in response to insulin stimulus, it was necessary
to perform measurements within the first hour of
stimulation.55,56 Detailed measurements on this early
time scale allowed to model the early phase of insulin
signaling thereby enabling for a better understanding
of insulin resistance in human adipocytes. In the
work of Kubota et al., the authors measured the
response of Fao cells to different temporal patterns of
insulin stimulation.45 In this case, monitoring the sys-
tem dynamics for a longer time period was essential,
because the effects of step and ramp stimulation on
protein phosphorylation lasted over hours and pro-
tein activation remained dynamic. Monitoring the
dynamics over longer time is also important to prop-
erly differentiate, whether the activation follows tran-
sient or sustained behavior, which significantly
affects the design principles of the underlying net-
work. In the same work, by conducting experiments
for 4–8 h and quantifying transient as well as sus-
tained responses, the authors revealed the depend-
ence of pAKT on the increasing rate and final
concentration of insulin, whereas pS6K was depend-
ent on the increasing rate of insulin, only. Based on
these observations, they could reconstruct the under-
lying mechanism on the molecular level. Without
long time analysis it would have been impossible to
reveal such dependencies and would have resulted in
an improper and incomplete network design.

Long term observation was also important in
establishing the link between mTOR signaling and
metabolism.47 In particular, this study showed that
pAKT can encode the information over a wide
dynamic range of insulin concentrations in both tran-
sient and sustained phases, and control the glucose
metabolism. The most complex mTOR models so far
have been established by Jain et al.50 and Borisov
et al.48 The latter model is one of the successful
examples that integrates detailed pathway informa-
tion with mechanistic modeling. This model was
developed to dissect how the multiple crosstalk
mechanisms in insulin and EGF stimulated pathways
function together in a cell-dependent context. Despite
many mechanisms of IR-EGFR crosstalk being well
characterized at the molecular level, is not well
understood how cell responds to combined EGF and
insulin stimulation due to the many pathway
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interactions and feedback loops. With the aid of this
detailed model, the authors predicted that GAB1
behaves like a nonlinear amplifier for mitogenic
responses and insulin provides EGF signaling with
the stability to GAB1 suppression.

Another example is the crosstalk model by
Faratian et al.,54 in which the detailed modeling
enabled the authors to closely examine therapeutic
responses to RTK inhibitors and finally allowed
for improved selection of treated patients. We
think that the classification of the models with
respect to the time and degree of complexity can
guide the reader to select appropriate model of
interest depending on the details and the time
scale, in which the experiments were conducted.
Since there is a number of different models availa-
ble, this approach can simplify the model selection
depending on the experimental data measured in
certain time scales.

Bridging mTOR Models with Different
Time Scales
The classification of mTOR models according to their
time scale raises the question of constructing an inte-
grated model bridging various processes running on
different time scales. Since most mTOR models are
ODE based and thus share the same model formalism
it is in principle possible to integrate the various
descriptive levels into one large differential equation
model. However, apart from the problem of defining

proper biological boundary conditions between the
different processes evolving on different times, the
resulting ODEs which will be very stiff due to large
differences in time scales. Numerical integration of
stiff ODEs is computationally challenging and
requires suitable numerical methods and might lead
to precision loss.120 One solution is the use of a quasi
steady-state approximation. It is possible to reduce
the dimensionality of the ODE system, thereby allow-
ing to speed up numerical simulations. The quasi
steady-state approximation is based on the assump-
tion that enzyme mediated substrate conversion
quickly reaches and remains in a quasi steady-
state.121 These assumptions allow to separate fast and
slow time scales. Since the fast time scale is neglected
in this setting, it is, however, not possible to analyze
feedbacks that arise in fast time scales. In order to
study feedbacks that are present both in fast and slow
time scales, one could model them using different
modeling formalisms. For example, some studies rec-
ommend to model fast processes by ODEs and slow
processes by flux balance analysis (FBA), and to inte-
grate them using advanced approaches such as iFBA
(integrated FBA)122 and integrated dynamic FBA
(idFBA).123 In addition, these approaches are capable
of integrating Boolean models with ODEs and FBA.
The first integrated whole-cell model of Mycoplasma
genitalium was constructed using these advanced
approaches that allowed to capture a diverse types of
cellular processes which was not possible by a single
formalism alone.124
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FIGURE 4 | Scatter plot of mTOR models according to their complexity and time window of observation. The complexity axis refers to the
number of molecules and/or genes considered in the model. Depicted are only models supported by experimental time series data. The fast time
scale from seconds to minutes is associated with activation and deactivation mechanisms based on post-translational modifications, while the
longer time scales incorporate processes such as protein synthesis and degradation. Most models of mTOR signaling pathways are valid in time
scale of minutes and mainly describe the early phase of the mTOR signaling. Interestingly, majority of crosstalk models are grouped in this range
and belong to the models with higher complexity. Most models that exploit information-theory approaches belong to the long time scale group.
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CONCLUSIONS

The mTOR pathway has attracted much scientific
interest over the last decade and many things con-
tinue to be discovered as we learn more about this
pathway. In this review, we discussed the contribu-
tion of Systems Biology approaches to the under-
standing of mTOR signaling. Overall, combined
efforts of experiments and mathematical models shed
light onto the mechanisms regulating mTOR signal-
ing. Most mTOR models simulations are in a close
agreement with the time course of experimental data,
which indicates a predictive power of the models.
Mathematical modeling has explained the role of
negative feedback in the presence of opposing posi-
tive feedbacks58 in mTOR signaling and showed the
importance of this feedback in elucidating the molec-
ular differences between healthy and diabetic cells.45

Moreover, modeling efforts have been crucial in iden-
tifying the negative feedback in mTOR signaling that
has been inferred from experimental data in Fao
cells.45 Applying principles from information theory
also helped to elucidate the dynamics of mTOR sig-
naling components in terms of network motifs.46,49

These studies provided an alternative explanation as
to why downstream components are less sensitive to
the inhibitor than the upstream components in the
mTOR pathway. Modeling was also successful in
providing significant insights into the crosstalk of
mTOR with other pathways. In particular, modeling
provided a quantitative explanation about crosstalk
mechanisms at different levels between mTOR and
MAPK pathways such as the crosstalk upstream of
Ras,48 the RAF-AKT crosstalk,52 the crosstalk at the
level of ERK and IRS1,51 and the crosstalk between
mTOR and AMPK pathways.44 Mathematical mod-
els of the mTOR pathway may provide rational drug
targeting predictions. For instance, the low-pass filter
property of the AKT pathway helped to elucidate
why the EGFR inhibitor lapatinib leads to strong
S6K phosphorylation.49 Furthermore, modeling
efforts revealed that PI3K inhibition in tumors with
low PTEN levels should be combined with RTK inhi-
bitors.54 Theoretical analysis on feedback loops in
the mTOR pathway proposed the administration of
additional inhibitors that target PI3K and AKT
together with rapamycin to achieve a better treat-
ment efficacy.58 Mathematical and computational
models have been shown to be extremely useful in
characterizing how the multiple feedback loops work
together and how mTOR signaling is linked to fur-
ther signaling pathways. The impact of the different
time scales on the design of mTOR pathway should
be noted as well. Different time scales include time-

sequential events involving protein signaling and
gene regulation in feedback entangled processes that
last for several hours.71 Based on this, the design
principles of mTOR network on different time scales
might be largely affected. The degree complexity of
models should be increased depending on the amount
and quality of the experimental data, because the
predictive power of the model relies on the identifia-
bility of model parameters, which can be estimated
from the data.93

One important challenge that remains to be
explored is how mTOR as a single protein and even
the multisubunit complex mTORC1 can integrate
and translate these signals into different cell fate
decisions. It is also less understood how mTORC1
and mTORC2 signaling pathways regulate each
other. It is known that mTORC1 and mTORC2
function as scaffold proteins for integrating the com-
plexes and for binding substrates and regulators.8

The function of scaffold proteins has been well char-
acterized by mathematical modeling and engineered
scaffold proteins. In particular, both approaches
have shown that scaffold proteins can modify signal-
ing pathways by coordinating positive and negative
feedback signals.125 In addition, scaffold proteins
are capable of creating signaling thresholds and vari-
ous signaling behaviors ranging from graded to
oscillatory signalings.126 Given the current knowl-
edge of the mTOR signaling, it is feasible to verify
these questions via mathematical modeling by gener-
ating various hypotheses in silico which might give a
better idea about possible regulation mechanisms
that are amenable for experimental validation.

One of the bottlenecks in the development of
accurate predictive mathematical models for signal-
ing networks is the lack of experimental data on ini-
tial conditions and rate constants. This is certainly
true for the mTOR pathway as well. Signaling com-
ponents have been largely identified, but relatively lit-
tle is known about their quantitative values like
abundance and rate constants. These values can only
be determined when recombinant proteins are availa-
ble.11 Additionally, direct measurement of the rate
constants for different signaling reactions is still
experimentally challenging. Since there is a number
of mTOR models which were developed for different
cell lines and in different context, the next challenge
will be to merge them to get a more comprehensive
model with presumably higher predictive power. For
example, such a consensus model was developed
for the NF-kB signaling network13 which shows an
increased predictive power over the formerly used
small networks. On the other hand, mathematical
models can be combined with network inference
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algorithms that have been successfully applied to identify
principal drivers of the molecular differences between the
genetic and pharmacological perturbations.127

In summary, application of mathematical mod-
eling to mTOR signal transduction is still at the
beginning with many conceptual and technical chal-
lenges. So far, despite extensive biochemical knowl-
edge about mTOR signaling, only a subset of known
information has been subjected to computational
modeling. In order to gain a more global

understanding of the mTOR pathway, new mecha-
nistic and logical models are needed. They will allow
us to tackle yet unresolved questions such as the
exact contribution of the mTOR pathway on aging,
on other signaling pathways and suitable targets for
drug intervention. Therefore, computational model-
ing will continue to play an important role as experi-
mental research uncovers new mechanistic
knowledge and tackles new questions about mTOR
signaling.
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