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We develop an algebraic framework for sequential data assimilation of partially observed
dynamical systems. In this framework, Bayesian data assimilation is embedded in
a nonabelian operator algebra, which provides a representation of observables by
multiplication operators and probability densities by density operators (quantum
states). In the algebraic approach, the forecast step of data assimilation is represented
by a quantum operation induced by the Koopman operator of the dynamical system.
Moreover, the analysis step is described by a quantum effect, which generalizes the
Bayesian observational update rule. Projecting this formulation to finite-dimensional
matrix algebras leads to computational schemes that are i) automatically positivity-
preserving and ii) amenable to consistent data-driven approximation using kernel
methods for machine learning. Moreover, these methods are natural candidates for
implementation on quantum computers. Applications to the Lorenz 96 multiscale
system and the El Niño Southern Oscillation in a climate model show promising
results in terms of forecast skill and uncertainty quantification.
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Since its inception in weather forecasting (1) and object tracking problems (2), sequential
data assimilation, also known as filtering, has evolved into an indispensable tool in
forecasting and uncertainty quantification of dynamical systems (3, 4). In its essence,
data assimilation is a Bayesian inference framework: Knowledge about the state of the
system at time t is described by a probability distribution pt . The system dynamics acts
on probability distributions, carrying along pt to a time-dependent family pt,τ , which can
be used to forecast observables of the system at time t + τ , τ ≥ 0. When an observation
is made, at time t+1t, the forecast distribution pt,1t is updated in an analysis step using
Bayes’ rule to a posterior distribution pt+1t , and the cycle is repeated.

In real-world applications, the Bayesian theoretical “gold standard” is seldom feasible
to employ due to a variety of challenges, including high-dimensional nonlinear dynamics,
nonlinear observation modalities, and model error. Weather and climate dynamics
(5) represent a classical application domain where these challenges are prevalent
due to the extremely large number of active degrees of freedom (which necessitates
making dynamical approximations such as subgrid-scale parameterization) and nonlinear
equations of motion and observation functions (which prevent direct application of
Bayes’ rule). Addressing these issues has stimulated the creation of a broad range of data
assimilation techniques, including variational (6), ensemble (7), and particle (8) methods.

In this paper, we examine Bayesian data assimilation and its representation
through finite-dimensional computational methods from an algebraic perspective. Our
formulation employs different levels of description, depicted schematically in Fig. 1. We
begin by assigning to a measure-preserving dynamical flow 8t : X → X , t ∈ R, an
algebra of observables (complex-valued functions of the state) A = L∞(X,µ), where X
is the state space and µ the invariant measure. This algebra is a commutative, or abelian,
von Neumann algebra (9) under pointwise function multiplication. The state space of
A, denoted as S(A), is the set of continuous linear functionals ω : A→ C, satisfying the
positivity condition ω(f ∗f ) ≥ 0 for all f ∈ A and the normalization condition ω1 = 1.
Here, ∗ denotes the complex conjugation of functions, and 1 is the unit of A, 1(x) = 1
for all x ∈ X . Every probability density p ∈ L1(X,µ) ≡ A∗ induces a state ωp ∈ S(A)
that acts on A as an expectation functional, ωpf =

∫
X fp dµ. Such states ωp constitute

the set of normal states of A, denoted as S∗(A).
Elements of A evolve under the Koopman operator U t : A → A, which is the

composition operator by the dynamical flow, U t f = f ◦ 8t . Moreover, algebra states
evolve under the transfer operator Pt : S(A) → S(A), which is the adjoint of the
Koopman operator, Ptω = ω◦U t (10–12). The space of normal states S∗(A) is invariant
underPt , and we havePtωp = ωU−tp for every probability density p ∈ A∗. In this picture,
the evolution pt 7→ pt,τ of the forecast density is represented by dynamics on S∗(A)
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Fig. 1. Schematic representation of the abelian and nonabelian formula-
tions of sequential data assimilation (DA), showing a forecast–analysis cycle.
The Top row of the diagram shows the dynamical flow8t : X → X . The second
row shows the observation map h : X → Y used to update the state of the
DA system in the analysis step. The rows labeled A , Q , and M show the
abelian, infinite-dimensional nonabelian (quantum mechanical), and finite-
dimensional nonabelian (matrix mechanical) DA systems, respectively. In A ,
the forecast step is carried out by the transfer operator Pt : S∗(A) → S∗(A)
acting on states of the abelian algebra A. The analysis step (green dot) is
represented by an effect-valued map F : Y → A that updates the state given
observations in Y . In Q , the forecast step is carried out by the transfer
operator P t : S∗(B) → S∗(B) acting on states of the nonabelian operator
algebra B. The analysis step (red dot) is carried out by an effect F : Y → B

given by the composition of F with the regular representation � of A into B

(red arrow). The state space S∗(A) is embedded into S∗(B) by means of a
map 0, which is compatible with both forecast and analysis; Eqs. 4 and 9.
This compatibility is represented by the commutative loops between A and
Q having 0 as a vertical arrow. To arrive at the matrix mechanical DA, M ,

we project B into an L2-dimensional operator algebra BL using a positivity-
preserving projection ΠL. The composition of this projection with F leads
to an effect FL : Y → BL employed in the analysis step (purple arrow and
dot). Moreover, ΠL induces a state space projection Π ′L : S∗(B) → S∗(BL)

and a projected transfer operator P(t)
L : S∗(BL)→ S∗(BL) employed in the

forecast step. Vertical dotted arrows indicate asymptotically commutative
relationships that hold as L→∞.

under the transfer operator, ωpt,τ = Pτωpt . Moreover, Bayesian
analysis, pt,1t 7→ pt+1t , is represented by projective condition-
ing of the state. Together, these two steps encapsulate classical
data assimilation within an abelian algebraic setting, labeled A
in Fig. 1.

The next level of our framework, labeled Q in Fig. 1, gener-
alizes data assimilation by embedding it in a nonabelian operator
algebra. Operator algebras form the mathematical backbone of
quantum mechanics (13)—one of the most successful theories in
physics. Quantum information theory and quantum probability
provide a unified mathematical framework to characterize the
properties of information transfer in both abelian and nonabelian
systems through maps (quantum operations) acting on elements
of the algebra and the corresponding states (14–16). Our
nonabelian formulation Q is based on the von Neumann algebra
B ≡ B(H) of bounded linear operators on the Hilbert space
H = L2(X,µ), equipped with operator composition as the
algebraic product. The state space S(B) is defined as the space
of continuous, positive, normalized functionals analogously to
S(A); that is, every state ω ∈ S(B) satisfies ω(A∗A) ≥ 0
and ωI = 1, where ∗ denotes the operator adjoint on B(H)
and I is the identity operator. Analogously to A, S(B) has a
subset of normal states, S∗(B), induced in this case by trace-
class operators. Specifically, letting B∗ ≡ B1(H) denote the
space of trace-class operators in B(H), every positive operator
ρ ∈ B∗ of unit trace induces a state ωρ ∈ S∗(B) such that
ωρA = tr(ρA). Such operators ρ are called density operators and
can be thought of as nonabelian analogs of probability densities
p ∈ A∗. As we will see below, analogs of the transfer operator and
Bayesian update described above for S∗(A) are naturally defined
for S∗(B).

To arrive at practical data assimilation algorithms, we project
(discretize) the infinite-dimensional system on B to a system on
a finite-dimensional subalgebra BL ⊂ B, which is concretely
represented by an L × L matrix algebra ( M in Fig. 1). We
show that this approach leads to computational techniques
which are well suited for assimilation of high-dimensional
observables, while enjoying structure-preservation properties that
cannot be obtained from orthogonal projections of abelian
function spaces. Moreover, by virtue of being rooted in linear
operator theory, these methods are amenable to consistent
data-driven approximation using kernel methods for machine
learning.

Previous Work. Recently, an operator-theoretic framework for
data assimilation, called quantum mechanical data assimilation
(QMDA) (17), was developed using ideas from Koopman opera-
tor theory (10, 12) in conjunction with the Dirac–von Neumann
axioms of quantum dynamics and measurement (18). In QMDA,
the state of the data assimilation system is a density operator ρt
acting on H = L2(X,µ) (rather than a classical probability
density pt ∈ L1(X,µ)), and the assimilated observables are
multiplication operators in B(H) (rather than functions in
L∞(X,µ)). Between observations, ρt evolves under the induced
action of the transfer operator, and the forecast distribution of
observables is obtained as a quantum mechanical expectation
with respect to ρt . During observations, the density operator
ρt is updated projectively as a von Neumann measurement,
which is the quantum analog of Bayes’ rule. QMDA has a
data-driven formulation based on kernel methods for Koopman
operator approximation (19–21), which was shown to perform
well in low-dimensional applications. Meanwhile, the paper
(22) has shown that Koopman operators of systems with pure
point spectra can be approximated on quantum computers using
shallow quantum circuits, offering an exponential computational
advantage over classical deterministic algorithms for Koopman
operator approximation.

Contributions. We provide a general algebraic framework that
encompasses classical data assimilation and QMDA as par-
ticular instances (abelian and nonabelian, respectively). The
principal distinguishing aspects of this framework are as
follows:

1. Dynamical consistency. We employ a dynamically consistent
embedding of abelian data assimilation A into the nonabelian
framework Q . As in ref. 17, observables in A are mapped into
multiplication operators in B, but here, we also employ an
embedding 0 : S∗(A)→ S∗(B) that is compatible with the
transfer operator (see the commutative loops between A and
Q in Fig. 1). This allows us to study QMDA in relation to
the underlying classical theory and establish the consistency
between the two approaches.

2. Effect system. In both the abelian and nonabelian settings, the
analysis step, given observations in a space Y acquired through
an observation map h : X → Y , is carried out using quantum
effects (loosely speaking, algebra-valued logical predicates)
(14). In the abelian case, the effect F : Y → A is induced by a
kernel feature map. In the nonabelian setting, F is promoted
to an operator-valued feature map F : Y → B; see the
column in the schematic of Fig. 1 labeled “Analysis.” Our
use of feature maps enables assimilation of data of arbitrarily
large dimension, overcoming an important limitation of the
original QMDA scheme (17) (which becomes prohibitively
expensive for high-dimensional observation maps).
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3. Positivity-preserving discretization. The discretization proce-
dure leading to the finite-dimensional scheme M has the
important property that positive elements of B are mapped
into positive elements of BL. Moreover, the transfer operator
on S∗(B) is mapped into a completely positive, trace-
nonincreasing map, so the finite-dimensional data assimi-
lation system is a quantum operation. We call this system
“matrix mechanical.” By virtue of these properties, the sign
of sign-definite observables, i.e., observables which are either
positive or negative, is preserved. Relevant examples include
positive physical quantities such as mass and temperature
but also statistical quantities such as probability density or
standard deviation, which are useful for uncertainty quantifi-
cation. We emphasize that the approach of first embedding
classical data assimilation in A to the nonabelian operator
setting of B and then projecting to the finite-dimensional
system on BL is important in positivity preservation.

4. Data-driven formulation. The matrix mechanical system M on
BL admits a data-driven approximation in which all operators
are represented in a kernel eigenbasis learned from time-
ordered training data, without requiring a priori knowledge
of the equations of motion. In the limit of large training
data, predictions made by the data-driven assimilation system
converge to those from M , which in turn converge to those
from the infinite-dimensional system Q on B as L→∞.

5. Route to quantum computing. QMDA is well suited for im-
plementation on quantum computers as we demonstrate here
with simulated quantum circuit experiments. Our approach
provides a route to quantum algorithms that sequentially alter-
nate between unitary evolution and projective measurement
to perform inference and prediction of classical dynamics with
quantum computers.

To place this work in the context of our previous work (17, 22),
we note that ref. 17 proposed QMDA as an ad hoc data
assimilation scheme, without attempting to connect it to the
underlying classical Bayesian framework. Moreover, ref. 17 did
not investigate the positivity-preserving aspects of QMDA, nor
did it employ an operator-valued feature map in the analysis
step. Ref. 22 developed a scheme for quantum computational
simulation without addressing data assimilation. There, the focus
was on representing classical dynamics via quantum circuits of
low complexity (depth); to that end, the scheme was limited
to systems with pure point spectra, which do not include
systems with mixing (chaotic) dynamics that lie in the scope of
QMDA.

Embedding Data Assimilation in Operator
Algebras

Consider a dynamical flow8t : X → X , t ∈ R, on a completely
metrizable, separable space X with an ergodic, invariant, Borel
probability measure µ. The flow induces Koopman operators
U t : f 7→ f ◦ 8t , which are isomorphisms of the Lp(X,µ)
spaces with p ∈ [1,∞]. The flow also induces transfer operators
Pt : Lp(X,µ)∗→ Lp(X,µ)∗ on the dual spaces Lp(X,µ)∗, given
by the adjoint of the Koopman operator, Ptα = α ◦ U t . Under
the canonical identification of Lp(X,µ)∗, p ∈ [1,∞), with finite,
complex Borel measures with densities in Lq(X,µ), 1

p + 1
q = 1,

the transfer operator is identified with the inverse Koopman
operator; that is, for α ∈ Lp(X,µ)∗ with density % = dα

dµ ∈

Lq(X,µ), αt := Ptα has density %t = dαt
dµ ∈ Lq(X,µ) with

%t = U−t%. In what follows, ‖f ‖Lp(X,µ) = (
∫
X |f |

p dµ)1/p for
p ∈ [1,∞) and ‖f ‖L∞(X,µ) = limp→∞‖f ‖Lp(X,µ) denote the
standard Lp(X,µ) norms.

Among the Lp(X,µ) spaces, H := L2(X,µ) is a Hilbert space,
and A := L∞(X,µ) is an abelian von Neumann algebra with
respect to function multiplication and complex conjugation. In
particular, for any two elements f, g ∈ A, we have

‖fg‖A ≤ ‖f ‖A‖g‖A, ‖f ∗f ‖A = ‖f ‖2A, [1]

making A a C∗-algebra, and moreover, A has a predual A∗ :=
L1(X,µ) (i.e., a Banach space whose dual is A), making it a
von Neumann algebra. We let 〈f, g〉 =

∫
X f ∗g dµ denote the

inner product on H . On H , the Koopman operator is unitary,
U t∗ = U−t .

Embedding Observables. Let B := B(H) be the space of
bounded operators on H , equipped with the operator norm,
‖A‖B = supf ∈H

‖Af ‖H
‖f ‖H . This space is a nonabelian von

Neumann algebra with respect to operator composition and
adjoint. That is, for any A, B ∈ B, we have

‖AB‖B ≤ ‖A‖B‖B‖B, ‖A∗A‖B = ‖A‖2B,

which is the nonabelian analog of Eq. 1 making B a C∗-
algebra. Moreover, B has a predual, B∗ := B1(H), making it
a von Neumann algebra. Here, the space of trace-class operators
B1(H) ⊆ B(H) is equipped with the norm ‖A‖1 := tr

√
A∗A,

which can be thought of as a nonabelian analog of L1(X,µ). The
unitary group of Koopman operators U t on H induces a unitary
groupU t : B→ B (i.e., a group of linear maps mapping unitary
operators to unitary operators), which acts by conjugation, i.e.,

U tA = U tAU t∗. [2]

The abelian algebra A embeds isometrically into B through
the map π : A → B, such that π f is the multiplication
operator by f , (π f )g = fg. This map is injective, and satisfies
π(fg) = (π f )(πg), π(f ∗) = (π f )∗ for all f, g ∈ A. Thus, π is a
∗-representation, preserving the von Neumann algebra structure
of A. The representation π is also compatible with Koopman
evolution, in the sense that U t

◦π = π ◦U t holds for all t ∈ R.
Equivalently, we have the commutative diagram

A

π

��

U t
// A

π ,
��

B
U t
// B

which shows that π provides a dynamically consistent represen-
tation of observables of the dynamical system in A as elements
of the nonabelian operator algebra B. In Fig. 1, we refer to
the level of description involving B as quantum mechanical due
to the central role that operator algebras play in the algebraic
formulation of quantum mechanics (13). In particular, Eq. 2
is mathematically equivalent to the Heisenberg picture for the
unitary evolution of quantum observables (here, under the
Koopman operator).

Embedding States. A dual construction to the representation
π : A → B of observables can be carried out for states. Let
ωp ∈ S∗(A) be a normal state induced by a probability density
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p ∈ A∗. Since p is a positive function with ‖p‖A∗ = 1, we have
that √p is a real unit vector in H , and thus ρ = 〈√p, ·〉√p is a
rank-1 orthogonal projection. Every such projection is a density
operator inducing a normal state ωρ ∈ S∗(B), where

ωρA = tr(ρA) = 〈
√
p, A
√
p〉, ∀A ∈ B. [3]

Such states ωρ induced by unit vectors in H are called vector
states. In fact, ωρ is a pure state, i.e., it is an extremal point of
the state space S(B) (which is a convex set). Defining the map
0 : S∗(A) → S∗(B) such that 0(ωp) = ωρ , one can readily
verify that 0 is compatible with the regular representation π ; i.e.,
for every observable f ∈ A and probability density p ∈ A∗,

ωpf = 0(ωp)(π f ). [4]

Next, analogously to the transfer operator Pt : S(A)→ S(A),
we define P t : S(B) → S(B) as the adjoint of U t : B → B
from Eq. 2, P tω = ω ◦ U t . Note that U t and P t form a dual
pair, i.e., (P tω)A = ω(U tA) for every state ω ∈ S(B) and
element A ∈ B. Moreover, if ωρ ∈ S∗(B) is induced by a
density operator ρ ∈ B∗, then P tωρ = ωρt , where ρt is the
density operator given by ρt = U−tρ = U t∗ρU t .

In quantum mechanics, the evolution ρ 7→ ρt is known as
the Schrödinger picture, and it is the dual of the Heisenberg
picture from Eq. 2. In the particular case that ρ = 〈ξ , ·〉ξ is
a vector state induced by ξ ∈ H (which would be called a
wavefunction in quantum mechanical language), we have ρt =
〈ξt , ·〉ξt , where ξt = U t∗ξ . Using this fact and Eq. 3, it follows
that 0 is compatible with the evolution on S∗(A) and S∗(B)
under the transfer operator; that is, P t

◦ 0 = 0 ◦ Pt . This
relation is represented by the commutative diagram

S∗(A)

0

��

Pt // S∗(A)

0 ,
��

S∗(B) P t
// S∗(B)

[5]

which also captures the correspondence between the abelian and
quantum mechanical forecast steps in Fig. 1.

Probabilistic Forecasting. In both abelian and nonabelian data
assimilation, we can describe probabilistic forecasting of observ-
ables of the dynamical system using the formalism of positive
operator-valued measures (POVMs) (23). First, we recall that
an element a of a C∗-algebra W is i) self-adjoint if a∗ = a;
ii) positive (denoted as a ≥ 0) if a = b∗b for some b ∈ W;
and iii) a projection if a∗ = a = a2. Supposing that W is
also a von Neumann algebra, a map E : 6 → W on the σ -
algebra of a measurable space (�,6) is said to be a POVM if
i) for every set S ∈ 6, E(S) ≥ 0; ii) E(�) = I , where I is
the unit of W; and iii) for every countable collection S1, S2, . . .
of disjoint sets in 6, E(

⋃
i Si) =

∑
i E(Si), where the sum

converges in the weak-∗ topology of W (i.e., for every γ ∈W∗,
E(
⋃

i Si)γ = limn→∞
∑n

i=1 E(Si)γ .) These properties imply
that for every γ ∈W∗, the map PE,γ : 6→ C given by

PE,γ (S) = E(S)γ , [6]

is a complex normalized measure. In particular, if γ induces a
normal state ωγ ∈ S∗(W), then PE,γ is a probability measure
on �. We say that the POVM E is a projection-valued measure
(PVM) if E(S) is a projection for every S ∈ 6.

In quantum mechanics, a triple (�,6, E) where E is a
POVM is referred to as an observable. We alert the reader
to the fact that in dynamical systems theory, an observable is
generally understood as a function f : X → V on state space
X taking values in a vector space, V . Thus, in situations where
the space of dynamical observables forms an algebra (e.g., the
A = L∞(X,µ) algebra corresponding to V = C), the term
“observable” is overloaded, and its meaning must be understood
from the context.

Given a POVM (�,6, E) as above, and a bounded, measur-
able function u : �→ C, we define the integral

∫
�
u(ω) dE(ω)

as the unique element a of W such that for every γ ∈ W∗,
aγ =

∫
�
u(ω) dPE,γ (ω). If a is a self-adjoint element of W,

i.e., a∗ = a, the spectral theorem states that there exists a unique
PVM E : B(R)→W on the Borel σ -algebra B(R) of the real
line such that a =

∫
R ω dE(ω).

In abelian data assimilation, the self-adjoint elements are
the real-valued functions f in the von Neumann algebra A,
and every such f has an associated PVM Ef : B(R) → A.
Explicitly, we have Ef (S) = χf −1(S), where χf −1(S) : X → R
is the characteristic function of the set f −1(S) ⊆ X . If, at
time t, the data assimilation system is in a state ωpt ∈ S∗(A)
induced by a probability density pt ∈ A∗, then the forecast
distribution for f at lead time τ ≥ 0 is Pf,t,τ ≡ PEf ,pt,τ ,
where pt,τ is the probability density associated with the state
ωpt,τ = Pτωpt .

The forecast distribution Pf,t,τ is equivalent to the distribution
obtained via classical probability theory. That is, given an
observable f ∈ L∞(X,µ), the density pt,τ ∈ L1(X,µ) induces a
probability measure on R such that Prob(S) =

∫
f −1(S) pt,τ dµ is

the probability that f takes values in a set S ∈ B(R). It follows
by definition of Pf,t,τ that Prob(S) = Pf,t,τ (S).

In the non-abelian setting of B, the spectral theorem states
that for every self-adjoint operator A ∈ B, there exists a unique
PVM EA : B(R) → B, such that A =

∫
R y dEA(y). If, at time

t, the nonabelian data assimilation system is in a normal state
ωρt induced by a density operator ρt ∈ B∗, then the forecast
distribution for A at lead time τ≥0 is given by PA,t,τ ≡ PEA,ρt,τ ,
where ρt,τ is the density operator associated with ωρt,τ = Pτωρt .
This distribution is compatible with the embeddings of states
0 : S∗(A) → S∗(B) and observables π : A → B introduced
above. That is, for every observable f ∈ A, probability density
pt,τ ∈ S∗(A), and Borel set S ∈ B(R), we have Pf,pt,τ (S) =
Pπ f,ρt,τ (S), where 0(ωpt,τ ) = ωρt,τ .

Representing Observations by Effects. For a unital C∗-algebra
W, an effect is an element e ∈ W satisfying 0 ≤ e ≤ I .
Intuitively, one can think of effects as generalizations of logical
truth values, used to model outcomes of measurements or
observations (24, 25). In Boolean logic, truth values lie in the
set {0, 1}. In fuzzy logic, truth values are real numbers in the
interval [0, 1]. In unital C∗-algebras, the analogs of truth values
are elements e satisfying 0 ≤ e ≤ I (26). We denote the set
of effects in a C∗-algebra W as E(W). It can be shown that
E(W) is a convex space, whose extremal points are projections.
Given a state ω ∈ S(W) and an effect e ∈ E(W), the number
ωe ∈ [0, 1] is called the validity of e. Note that every effect
e ∈ E(W) induces a binary POVM E : {0, 1} → W such that
E({1}) = e and E({0}) = I − e.

Suppose now that W is a von Neumann algebra, let ωρ ∈
S∗(W) be a normal state induced by an element ρ ∈ W∗, and
let e ∈ E(W) be an effect. If the validity ωe is nonzero, we can
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define the conditional state ωρ |e ∈ S∗(W) as the normal state
induced by ρ|e ∈W∗, where

ρ|e =
√
ep
√
e

ωpe
. [7]

The map ωρ 7→ ωρ |e generalizes the Bayesian conditioning rule
employed in the analysis step of classical data assimilation.

As an example, let W = A and χS : X → {0, 1} be the
characteristic function of measurable set (event) S ∈ B(X ).
According to Bayes’ theorem, if p ∈ A∗ is a probability density
and

∫
S p dµ > 0, the conditional density of p given S is

q =
pχS∫

X pχS dµ
=
√
χSp
√
χS∫

X pχS dµ
. [8]

Since χS(x) ∈ {0, 1} for every x ∈ X , it follows that χS is an
effect in A, and since

∫
X pχS dµ = ωpχS , the Bayesian formula

above is a special case of Eq. 7 with p|χS = q. Note that to obtain
the second equality in Eq. 8, we made use of the commutativity
of function multiplication, which does not hold in a nonabelian
algebra.

An important compatibility result between effects in the
abelian algebra A and effects in the nonabelian algebra B is
as follows: The regular representation π : A → B maps the
effect space E(A) into the effect space E(B). As a result, and by
virtue of Eq. 4, for every normal state ωp ∈ S∗(A) and effect
e ∈ E(A), the conditioned state ωp|e satisfies

0(ωp|e) = (0ωp)|πe. [9]

This means that conditioning by effects in E(A) consistently
embeds to conditioning by effects in E(B).

Next, let Y be a set. In first-order logic, a predicate is a map
F : Y → {0, 1} such that F (y) = 1 means that the proposition
F (y) is true, and F (y) = 0 means that it is false. In fuzzy logic,
predicates are generalized to maps F : Y → [0, 1]. In quantum
logic, predicates are represented by effect-valued maps F : Y →
E(W). Applying Eq. 7 for e = F (y) leads to the update rule
p 7→ p|F(y), which represents the conditioning of the normal
state associated with p by the truth value of the proposition F (y)
associated with y ∈ Y .

In our algebraic data assimilation framework, we use an effect-
valued map to carry out the analysis step given observations of
the system in a space Y (Fig. 1). Specifically, let h : X → Y be
a measurable observation map, such that y = h(x) corresponds
to the assimilated data given that the system is in state x ∈ X .
Let ψ : Y × Y → [0, 1] be a measurable kernel function on Y ,
taking values in the unit interval. Every such kernel induces an
effect-valued map F : Y → E(A) given by F (y) = ψ(y, h(·)).
Possible choices forψ include bump kernels—in such cases, F (y)
can be viewed as a relaxation of a characteristic function χS of a
set S containing h−1({y}) (SI Appendix, Eq. S25).

If, immediately prior to an observation at time t + 1t, the
abelian data assimilation system has state ωpt,1t ∈ S∗(A) (recall
that pt,1t is the forecast density for lead time 1t initialized at
time t), and F (y) has nonzero validity with respect to ωpt,1t , our
analysis step updates ωpt,1t to the conditional state ωpt,1t |F(y) ≡

ωpt+1t using Eq. 7. In the nonabelian setting, we promote F to
the operator-valued function F : Y → E(B) with F = π ◦ F
and use again Eq. 7 to update the prior state ωρt,1t ∈ S∗(B) to
ωρt,1t |F(y) ≡ ωρt+1t ; see the Analysis column of the schematic
in Fig. 1. By Eq. 9, the abelian and nonabelian analysis steps are

mutually consistent, in the sense that if ωρt,1t = 0(ωpt,1t ), then
for every observable f ∈ A, we have ωρt+1t (π f ) = ωpt+1t f .

We should note that the effect-based analysis step introduced
above can naturally handle data spaces Y of arbitrarily large
dimension, overcoming an important limitation of the QMDA
framework proposed in ref. 17. It is also worthwhile pointing
out connections between effect-valued maps and feature maps
from RKHS theory (27): If ψ is positive-definite, there is an
associated RKHS H of complex-valued functions on X with
w(x, x′) := ψ(h(x), h(x′)) as its reproducing kernel. The map F
then takes values in the space E(A) ∩H and is thus an instance
of a feature map. In the nonabelian case, one can think of F as
an operator-valued feature map.

Positivity-Preserving Discretization. The abelian and non-
abelian formulations of data assimilation described thus far
employ the infinite-dimensional algebras A and B, respectively.
To arrive at practical computational algorithms, these algebras
must be projected to finite dimensions, carrying along the
associated dynamical and observation operators to finite-rank
operators. We refer to this process as discretization.

To motivate our approach, we recall the definitions of quan-
tum operations and channels (15): A linear map T : W2 →W1
between two von Neumann algebras W1 and W2 is said to be a
quantum operation if i) T is completely positive, i.e., for every
n ∈ N, the tensor product map T ⊗Idn : Mn(W2)→Mn(W1)
is positive, where Mn(W1) and Mn(W2) are the von Neumann
algebras of n×n matrices over W1 and W2, respectively; ii) T is
the adjoint of a map T∗ : W1∗→W2∗ such that ωT∗ρ1 ≤ 1 for
every normal state ωρ ∈ S∗(W1). If, in addition, ωT∗ρ1 = 1, T
is said to be a quantum channel.

In quantum theory, operations and channels characterize the
transfer of information in open and closed systems, respectively.
Here, the requirement of complete positivity of T : W1 →W2
(as opposed to mere positivity) ensures that T is extensible to a
state-preserving map between any two systems that include W1
and W2 as subsystems. If W1 is abelian, then positivity and
complete positivity of T are equivalent notions. If W2 = B(H2)
for a Hilbert space H2, Stinespring’s theorem (28) states that T
is completely positive if and only if there is a Hilbert space H1,
a representation $ : W1 → B(H1), and a bounded linear map
V : H2 → H1 such that T a = V ∗$ (a)V .

It follows from these considerations that the Koopman opera-
torU t : A→ A is a quantum operation (sinceU t is positive, the
transfer operator preserves normal states, and A is abelian), and
so isU t : B→ B (by Stinespring’s theorem). In fact,U t andU t

are both quantum channels. It is therefore natural to require that
the discretization procedure leads to a quantum operation in both
of the abelian and nonabelian cases. A second key requirement
is that the discretization procedure is positivity preserving;
that is, positive elements of the infinite-dimensional algebra
are mapped into positive elements of the finite-dimensional
algebra associated with the projected system. This requirement
is particularly important when modeling physical systems, where
failure to preserve signs of sign-definite quantities may result in
loss of physical interpretability and lead to numerical instabilities
(29). Our third requirement is that the finite-dimensional
approximations converge in an appropriate sense to the original
system as the dimension increases. One of the main perspectives
put forward in this paper is that the construction of discretization
schemes meeting these requirements is considerably facilitated by
working in the nonabelian setting of B rather than the abelian
setting of A.
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First, as an illustration of the fact that a “naive” projection will
fail to meet our requirements, consider the Koopman operator
U t : H → H . Fix an orthonormal basis {φ0,φ1, . . .} of H
with φl ∈ A, and let 5L : H → H be the orthogonal
projection that maps into the L-dimensional subspace HL :=
span{φ0, . . . ,φL−1}. A common approach to Koopman and
transfer operator approximation (30, 31) is to orthogonally
project elements of H to elements of HL, f 7→ fL := 5Lf and
similarly approximate U t by the finite-rank operator U (t)

L :=

5LU t5L. The rank of U (t)
L is at most L, and it is represented

in the {φl } basis by an L × L matrix U with elements Uij =
〈φi, U tφj〉. Note the inclusions HL ⊂ A ⊂ H and that HL

and A are invariant subspaces of H under U (t)
L . Moreover, U (t)

L

maps f ∈ H to g = U (t)
L f ∈ HL such that g =

∑L−1
i,j=0 φiUij f̂j,

where f̂j = 〈φj, f 〉. Letting f = (f̂0, . . . , f̂L−1)> and g =
(ĝ0, . . . , ĝL−1)> with ĝl = 〈φl , g〉 be the L-dimensional column
vectors giving the representation of 5Lf and g in the {φl } basis
of H , respectively, we can express the action of U (t)

L on f as the
matrix–vector product g = Uf .

Unfortunately, such methods are not positivity preserving;
that is, if f is a positive function in A,5Lf need not be positive.
A classical example is a tophat function on the real line, which
develops oscillations to negative values upon Fourier filtering
(the Gibbs phenomenon). Even if f is a positive function in the
finite-dimensional subspace HL (so that5Lf = f ), the function
g = U (t)

L f need not be positive. Thus, standard discretization
approaches based on orthogonal projections fail to meet the
requirements laid out above.

Next, we turn to positivity-preserving discretizations utilizing
the abelian algebra A, as opposed to the Hilbert space H .
Recalling that the projections in A are the characteristic functions
of measurable sets, let S be a measurable subset of X , and consider
the multiplication operator MS : A→ A such that MS f = χS f .
The map MS is positive, and the projected Koopman operator,
MSU tMS is a quantum operation. However, in order for MS
to be a discretization map, we must have that its range is a
finite-dimensional algebra. This is equivalent to asking that the
restriction of µ to S is supported on a finite number of atoms,
i.e., measurable sets that have no measurable subsets of positive
measure. This is a highly restrictive condition that fails to hold
for broad classes of dynamical systems (e.g., volume-preserving
flows on manifolds), so the abelian algebra A does not provide
an appropriate environment to perform discretizations meeting
our requirements.

We now come to discretizations based on the operator algebra
B. Working with B allows us to use both Hilbert space
techniques to construct finite-rank operators by orthogonal pro-
jection and algebraic techniques to ensure that these projections
are positivity preserving. With HL as above, consider the von
Neumann algebra BL := B(HL). This algebra has dimension L2

and is isomorphic to the algebra ML ≡ML(C) of L×L complex
matrices. In particular, each element A ∈ BL is represented by a
matrix A ∈ML with elements Aij = 〈φi, Aφj〉. Correspondingly,
we refer to data assimilation based on BL as matrix mechanical;
see M in Fig. 1.

Next, note that BL can be canonically identified with the
subalgebra of B consisting of all operators A satisfying kerA ⊇
H⊥L and ranA ⊆ HL. Thus, we can view the projection �L :
B → B with �LA = 5LA5L as an operator from B to BL.

By Stinespring’s theorem, �L is completely positive. As a result,
i) the projection A ∈ B 7→ �LA ∈ BL is positivity preserving,
and thus, so is the projected representation πL : A → BL
with πL = �L ◦ π ; and ii) the projected Koopman operator
U (t)
L : BL → BL with U (t)

L A = U (t)
L AU (t)∗

L is a quantum
operation. Moreover, since {φl } is an orthonormal basis of H ,
for any f ∈ H , we have limL→∞5Lf = f . This implies that for
every A ∈ B, the operators AL = �LA ∈ BL converge strongly
to A, i.e., limL→∞ ALg = Ag, for all g ∈ H . In particular, πLf
with f ∈ A converges strongly to π f . Further details on these
approximations can be found in SI Appendix, sections 2.D–2.H.
Note that, in general, πLf is not a multiplication operator. That
is, the act of embedding A in the nonabelian algebra B using π :
A→ B and then projecting to the finite-dimensional subalgebra
BL using �L : B→ BL is not equivalent to projecting A into
HL using 5L and then embedding HL into B using π .

Consider now a normal state ωp ∈ S∗(A) induced by a
probability density p ∈ A∗, and letωρ = 0(ωp) be the associated
normal state on B obtained via Eq. 3. For L sufficiently large,
CL(ρ) := �Lρ is nonzero, and thus, ρL = �Lρ/CL(ρ) is a
density operator in BL inducing a state ωρL ∈ S∗(BL), which
extends to S∗(B). In Fig. 1, we denote the mapωρ 7→ ωρL as�′L.
By construction, the stateωρL satisfiesωρLA = ωρ(�LA)/CL(ρ)
for all A ∈ B. Setting, in particular, A = π f with f ∈ A, it
follows from Eq. 4 and the strong convergence of πLf to π f that

lim
L→∞

ωρL(πLf ) = ωρ(π f ) = ωpf ; [10]

SI Appendix, section 2.E. It should be kept in mind that, aside
from special cases, ωρL is not the image of a state ωpL ∈ S∗(A)
under 0 for a probability density pL ∈ A∗; that is, in general,
ωρL is a “nonclassical” state. Note also that ωρL is a vector state
(Eq. 3) induced by the unit vector ξL = 5L

√p/‖5L
√p‖H ,

which, as just mentioned, is generally not the square root of a
probability density.

Let now P(t)
L : S(BL) → S(BL) with P(t)

L ω = ω ◦ U (t)
L

be the projected transfer operator on S(BL). Unless HL is a
U t -invariant subspace, P(t)

L ◦ �
′
L is not equal to �′L ◦ P t ;

see the dashed arrow in the third column of the schematic
in Fig. 1. Nevertheless, we have the asymptotic consistency
limL→∞

(
(P t

L ◦�
′
L)ωρ

)
AL = (P tωρ)A, which holds for all

ωρ ∈ S∗(B) and A ∈ B; SI Appendix, section 2.I. Applying
this result for A = π f and ωρ = 0(ωp), with f ∈ A and
ωp ∈ S∗(A), it follows that

lim
L→∞

(
(P(t)

L ◦�
′
L)ωρ

)
(πLf ) = (P tωρ)(π f ) = (Ptωp)f .

[11]

Eq. 11 implies that the matrix mechanical data assimilation
scheme consistently recovers forecasts from data assimilation in
the abelian algebra A in the limit of infinite dimension L.

In SI Appendix, section 2.F.2, we describe how for any
self-adjoint element A ∈ B, the spectral measures of �LA
converge to the spectral measure of A. Since π f ∈ B is self-
adjoint whenever f ∈ A is real, the spectral convergence of
πLf to π f implies that the forecast distributions PπLf,t,τ induced

by ωρt,τ ,L = (P(τ)
L ◦ �′L)ωρt,L consistently recover the forecast

distributions Pπ f,t,τ and Pf,t,τ from the infinite-dimensional
quantum mechanical and abelian systems, respectively.
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With a similar approach (SI Appendix, section 2.J), one can
deduce that the analysis step is also consistently recovered:
Defining the effect-valued map FL : Y → E(BL) with
FL = �L ◦ F , it follows from Eq. 9 and Eq. 10 that for every
f ∈ A and ωp ∈ S∗(A),

lim
L→∞

ωρL |FL(y)(π f ) = ωρ |F(y)(π f ) = ωp|F(y)f, [12]

whereωρ = 0(ωp) andωρL = �′LωρL , so the matrix mechanical
analysis step is asymptotically consistent with the infinite-
dimensional quantum mechanical and abelian analyses.

On the basis of Eqs. 11 and 12, we conclude that as the
dimension L increases, the matrix mechanical data assimilation
scheme is consistent with the abelian formulation of sequential
data assimilation. Moreover, the discretization leading to this
scheme is positivity preserving, and the projected Koopman
operator U (t)

L is a quantum operation. Thus, matrix mechani-
cal data assimilation provides a nonabelian, finite-dimensional
framework that simultaneously meets all of the requirements
listed in the beginning of this subsection.

Data-Driven Approximation. The matrix mechanical data as-
similation scheme described above admits a consistent data-
driven approximation using kernel methods for machine learning
(17, 20, 22). The data-driven scheme employs three, possibly
related, types of training data, all acquired along a dynamical
trajectory XN = {x0, x1, . . . , xN−1} ⊂ X with xn = 8n1t(x0),
where 1t > 0 is a sampling interval: i) samples yn =
h(xn) from the observation map h : X → Y ; ii) samples
fn = f (xn) from the forecast observable f ∈ A; iii) samples
zn = z(xn) from a map z : X → Z , used as proxies of
the dynamical states xn. If the xn are known, we set Z = X
and z = Id. Otherwise, we set Z = Y 2Q+1 for a parameter
Q ∈ N and define z as the delay-coordinate map z(x) =
(h(8−Q 1t(x)), h(8(−Q+1)1t(x)), . . . ,8Q 1t(x)), giving zn =
(yn−Q , yn−Q+1, . . . , yQ). By delay-embedding theory (32), for
sufficiently large Q and typical observation maps h and sampling
intervals 1t, z is an injective map.

The dynamical trajectory xn has an associated sampling mea-
sureµN :=

∑N−1
n=0 δxn/N and a finite-dimensional Hilbert space

ĤN := L2(X,µN ). By ergodicity, as N increases, the measures
µN converge to the invariant measure µ in weak-∗ sense, so
we can interpret ĤN as a data-driven analog of the infinite-
dimensional Hilbert space H (SI Appendix, section 1). Given the
training data z0, z1, . . . , zN−1, and without requiring explicit
knowledge of the underlying states xn, we use kernel integral
operators to build an orthonormal basis {φ0,N , . . . ,φL−1,N } of
an L-dimensional subspace HL,N ⊆ ĤN that plays the role of
a data-driven counterpart of HL. More specifically, the basis
elements φl,N are eigenvectors of a kernel integral operator
KN : ĤN → ĤN induced by a kernel function κ : Z ×Z → R.
The operator KN is represented by an N ×N kernel matrix K N
constructed from the training data zn; SI Appendix, section 2.A.
We let BL,N = B(HL,N ) be the L2-dimensional algebra of linear
maps on HL,N , which, as in the case of BL, is isomorphic to the
matrix algebra ML.

Every operator employed in the matrix-mechanical scheme
described in the previous section has a data-driven counterpart,
represented as an L × L matrix with respect to the {φl,N }
basis. Specifically, the projected Koopman operator U (t)

L at time

t = q1t, q ∈ Z, is replaced by an operator U (q)
L,N ∈ BL,N

induced by the shift map on the trajectory xn (30), with a
corresponding quantum operation U (q)

L,N : BL,N → BL,N .
Moreover, the projected multiplication operator πLf is replaced
by πL,N f̂N ∈ BL,N , and the effect-valued map FL by a map
FL,N : Y → E(BL,N ). Here, f̂N is the restriction of f on X̂N .
Further details are provided in SI Appendix, sections 2.D–2.J.

The data-driven scheme is positivity preserving and constitutes
a quantum operation analogously to the matrix mechanical
scheme. Moreover, by results on spectral approximation of kernel
integral operators (33) and ergodicity of the dynamics, the kernel
matrices K N exhibit spectral convergence in the large-data limit,
N → ∞, to a kernel integral operator K : H → H in a
suitable sense (SI Appendix, Theorem 1). Correspondingly, all
matrix representations of operators, and thus all predictions
made by the data-driven scheme, converge to the predictions
of the matrix mechanical scheme M in Fig. 1. Overall, we
obtain a data-driven, positivity-preserving, and asymptotically
consistent data assimilation scheme. The data requirements
and computational complexity of this scheme are comparable
to standard kernel methods for supervised machine learning
(SI Appendix, section 2.K).

Lorenz 96 Multiscale System

As our first numerical example, we apply QMDA to assimilate
and predict the slow variables of the Lorenz 96 (L96) multiscale
system (34). This system was introduced by Lorenz in 1996
as a low-order model of atmospheric circulation at a constant-
latitude circle. The dynamical degrees of freedom include K
slow variables x1, . . . , xK , representing the zonal (west to east)
component of the large-scale atmospheric velocity field at K
zonally equispaced locations. Each slow variable xk is coupled to
J fast variables y1,k, . . . , yJ,k, representing small-scale processes
such as atmospheric convection. The dynamical state space is
thus X = RJ(K+1) with x = (xk, yj,k)

J,K
j,k=1,1 ∈ X .

The governing equations are

ẋk = −xk−1(xk−2 − xk+1)− xk + F +
hx
J

J∑
j=1

yj,k,

ẏj,k =
1
ε

(
−yj+1,k(yj+2,k − yj−1,k)− yj,k + hyxk

)
, [13]

xk+K = xk, yj,k+K = yj,k, yj+J,k = yj,k+1,

where the parameter F represents large-scale forcing (e.g., solar
heating), hx and hy control the coupling between the slow and
fast variables, and ε is a parameter that controls the timescale
separation between the fast and slow variables. The governing
equations for xk feature large-scale forcing, F, a quadratic non-
linearity, −xk−1(xk−2 − xk+1), representing advection, a linear
damping term, −xk, representing surface drag, and a flux term,
hx
∑J

j=1 yj,k/J , representing forcing from the fast variables. The
terms in the yj,k equations have similar physical interpretations.
In general, the dynamics becomes more turbulent/chaotic as F
increases.

Here, we focus on the chaotic dynamical regime studied in
refs. 35 and 36 with K = 9, J = 8, ε = 1/128, F = 10,
hx = −0.8, and hy = 1. In this regime, ε is sufficiently small so
that the dynamics of the (x1, . . . , xK ) variables is approximately
Markovian. We consider that the observation map h : X → Y
projects the state vector x ∈ X to the slow variables, i.e., Y = RK
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and h(x) = y := (x1, . . . , xK ). Our forecast observable f ∈ A
is the first slow variable, f (x) = x1.

Training. We employ a training dataset consisting ofN = 40,000
samples y0, . . . , yN−1 ∈ Y and f0, . . . , fN−1 ∈ R with yn =
h(xn), fn = f (xn), and xn = 8n1t(x0), taken at a sampling
interval 1t = 0.05. To assess forecast skill, we use N̂ = 7,000
samples ŷ0, . . . , ŷN̂−1 with ŷn = h(x̂n) and x̂n = 8n1t(x̂0),
taken on an independent dynamical trajectory from the training
data. The data z0, z1, . . . , zN−1 ∈ Z for computation of the
data-driven basis {φl,N } of HL,N consist of snapshots of the slow
variables, zn = yn. That is, we have Z = R(2Q+1)K = Y
with Q = 0 delays and z = Id. This choice is motivated by
the fact that the evolution of yn is approximately Markovian
for ε � 1, and the forecast observable f (x) = x1 depends on
x ∈ X only through y = h(x). Following ref. 21, we compute
the φl,N using a variable-bandwidth Gaussian kernel (37) with a
bistochastic normalization (38). Further details on this kernel and
the L96 data are provided in SI Appendix, sections 2.B and 5.A,
respectively.

Using the basis vectors, we compute L × L matrix repre-

sentations of the projected Koopman operators U
(τj)
L,N for lead

times τj = j1t with j ∈ {0, 1, . . . , Jf}, Jf = 150 (SI Appendix,
Algorithm S9). Moreover, using the φl,N and the training
samples fn, we compute the L × L matrix representation AL,N
of the operator AL,N := πL,N f associated with the forecast
observable. To evaluate forecast distributions for f , we compute
the PVM EAL,N of AL,N , which amounts to computing an
eigendecomposition of AL,N (SI Appendix, Algorithm S7). To
report forecast probabilities, we evaluate EAL,N on a collection of
bins S1, . . . , SM ⊂ R of equal probability mass in the equilibrium
distribution of f . As our observation kernelψ : Y ×Y → [0, 1],
we use a variable-bandwidth bump function. The corresponding
effect-valued map FL,N : Y → E(BL,N ) is represented by
a matrix-valued function; further details are provided in SI
Appendix, section 2.J. In Figs. 2 and 3, we show results for
Hilbert space dimension L = 2,000, though forecast skill does
not change appreciably for values of L in the range 500 to 2,000
(SI Appendix, Fig. S1).

Data Assimilation. We perform data assimilation experiments
initialized with the pure state ω0 ≡ ωρ0 ∈ S(BL,N ) induced by
the density operator ρ0 = 〈1X , ·〉ĤN

1X ∈ BL,N . We interpret
this state as an uninformative equilibrium state, in the sense that
i) ω0AL,N = tr(ρ0AL,N ) = f̄N , where f̄N =

∑N−1
n=0 fn/N is the

empirical mean of f , and ii) ωρ0 is invariant under the action of
the transfer operator, i.e., P(t)

L,Nω0 := ω0 ◦ U
(t)
L,N = ω0.

Starting from ω0, QMDA produces a sequence of states
ω0,ω1, . . . ,ωN̂−1 by repeated application of the forecast–
analysis steps, as depicted schematically in Fig. 1 and in pseu-
docode form in SI Appendix, Algorithm S1. Specifically, for n ∈
{1, . . . , N̂−1}, we computeωn by first using the transfer operator
to compute the state ωn−1,1 := P(1t)

L,N ωn−1 (which is analogous
to the prior in classical data assimilation) and then applying
the effect map to observation ŷn to yield ωn = ωn−1,1|FL,N (ŷn)
(which is analogous to the classical posterior). For each n ∈

{0, . . . , N̂ − 1}, we also compute forecast states ωn,j = P(τj)
L,Nωn

and associated forecast distributions Pn,j for the observable f .
We evaluate Pn,j on the bins Sm and normalize the result by the
corresponding bin size, sm := length(Sm) to produce discrete

Fig. 2. Running QMDA forecasts of the x1 variable of the L96 multiscale
system in a chaotic regime. The panels show the true x1 evolution (black
lines), the logarithm of the discrete forecast probability density %n,j (colors),
and the corresponding forecast mean (red lines) as a function of verification
time for lead times in the range 0 to 5 model time units (Top to Bottom). The
assimilated observable is the K -dimensional vector (x1 , . . . , xK ) of the L96
slow variables.

probability densities %n,j = (%n,j,0, . . . , %n,j,M−1) with %n,j,m :=
Pn,n(Sm)/sm. We also compute the forecast mean and standard
deviation, f̄n,j = ωρn,jAL,N and σn,j = (ωρn,j (AL,N )2

− f̄ 2
n,j)

1/2,
respectively. We assess forecast skill through the normalized mean
square error (NRMSE) and anomaly correlation (AC) scores,
computed for each lead time τj by averaging over the N̂ samples
in the verification dataset (SI Appendix, section S4).

Fig. 2 shows the forecast probability densities %n,j (colors),
forecast means f̄n,j (black lines), and true signal f̂n+j (red lines),
plotted as a function of verification time tn+j over intervals
spanning 20 time units for representative lead times τj in the
range 0 to 5 time units. The corresponding NRMSE and AC
scores are displayed in Fig. 3. Given the turbulent nature of the

A B

Fig. 3. NRMSE (A) and AC score (B) of the L96 forecasts from Fig. 2.

8 of 12 https://doi.org/10.1073/pnas.2211115120 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211115120#supplementary-materials


dynamics, we intuitively expect the forecast densities %n,j to start
from being highly concentrated around the true signal for small
τj and progressively broaden as τj increases (i.e., going down the
panels of Fig. 2), indicating that the forecast uncertainty increases.
Correspondingly, we expect f̄n,j to accurately track the true signal
for small τj and progressively relax toward the equilibrium mean∫
X f dµ.

The results in Figs. 2 and 3 are broadly consistent with
this behavior: The forecast starts at τj = 0 from a highly
concentrated density around the true signal (note that Fig. 2
shows logarithms of %n,j), which is manifested by low NRSME
and large AC values in Fig. 3 of approximately 0.24 and 0.98,
respectively. As τj increases, the forecast distribution broadens,
and the NRMSE (AC) scores exhibit a near-monotonic increase
(decrease). In Fig. 3A, the estimated error based on the forecast
variance σn,j is seen to track well the NRMSE score, which
indicates that the forecast distribution %n,j well represents the true
forecast uncertainty. It should be noted that errors are present
even at time τj = 0, particularly for periods of time where
the true signal takes extreme positive or negative values. Such
reconstruction errors are expected for a fully data-driven driven
method applied to a system with a high-dimensional attractor.
Overall, the skill scores in Fig. 3 are comparable with the results
obtained in ref. 36 using the kernel analog forecasting (KAF)
technique (39).

El Niño Southern Oscillation

The El Niño Southern Oscillation (ENSO) (40) is the dominant
mode of interannual (3- to 5-y) variability of the Earth’s climate
system. Its primary manifestation is an oscillation between
positive sea surface temperature (SST) anomalies over the eastern
tropical Pacific Ocean, known as El Niño events, and episodes
of negative anomalies known as La Niñas (41). Through atmo-
spheric teleconnections, ENSO drives seasonal weather patterns
throughout the globe, affecting the occurrence of extremes such
as floods and droughts, among other natural and societal impacts
(42). Here, we demonstrate that QMDA successfully predicts
ENSO within a comprehensive climate model by assimilating
high-dimensional SST data.

Our experimental setup follows closely ref. 43, who performed
data-driven ENSO forecasts using KAF. As training and test
data, we use a control integration of the Community Climate
System Model Version 4 (CCSM4) (44), conducted with fixed
preindustrial greenhouse gas forcings. The simulation spans
1,300 y, sampled at an interval 1t = 1 month. Abstractly,
the dynamical state space X consists of all degrees of freedom
of CCSM4, which is of order 107 and includes variables such
as density, velocity, and temperature for the atmosphere, ocean,
and sea ice, sampled on discretization meshes over the globe.
Since this simulation has no climate change, there is an implicit
invariant measure µ sampled by the data, and we can formally
define the algebras A and B associated with the invariant measure
as described above.

In our experiments, the observation map h : X → Y
returns monthly averaged SST fields on an Indo-Pacific domain;
that is, we have Y = Rd , where d is the number of surface
ocean gridpoints within the domain. We have d = 44,414, so
these experiments test the ability of QMDA to assimilate high-
dimensional data. However, note that h is a highly noninvertible
map since Indo-Pacific SST comprises only a small subset
of CCSM4’s dynamical degrees of freedom. As our forecast
observable f ∈ A we choose the Niño 3.4 index—a commonly

used index for ENSO monitoring defined as the average SST
anomaly over a domain in the tropical Pacific Ocean. Large
positive (negative) values of Niño 3.4 represent El Niño (La Niña)
conditions, whereas values near zero represent neutral conditions.
Additional information on the CCSM4 data is included in
SI Appendix, section 5.B.

Following ref. 43, we use the SST and Niño 3.4 samples
from the first 1,100 y of the simulation as training data and the
corresponding samples for the last 200 y as test data. Thus, with
the notation of the previously described L96 experiments, our
training data are yn = h(xn) (Indo-Pacific SST) and fn = f (xn)
(Niño 3.4) for n ∈ {0, . . . , N − 1} and N = 1,100 × 12 =
13,200, and our test data are ŷn = h(xn+N ) and f̂n = f (xn+N )
for n ∈ {0, . . . , N̂ − 1} and N̂ = 200 × 12 = 2,400. Here,
xn = 8n1t(x0) ∈ X is the (unknown) dynamical trajectory of
the CCSM4 model underlying our training and test data. Using
the SST samples yn, we build the training data zn using delay-
coordinate maps with parameter Q = 5; i.e., the data zn used for
building the basis of HL,N are SST “videos” that span a total of
2Q + 1 = 11 months and have dimension 11d ' 4.9 × 105.
We compute the basis {φl,N } using a kernel κ that depends on
the pairwise Euclidean distances between points in Z as well as
Niño 3.4 trajectories evaluated on these points (SI Appendix Eq.
S5). This approach improves the ability of the basis vectors to
capture covariability between Indo-Pacific SST fields and the
Niño 3.4 index, leading to a modest improvement of short-term
forecast skill and a more significant improvement of uncertainty
quantification over kernels that depend only on SST. Aside from
the different kernel κ , the procedure for initializing and running
QMDA is identical to the L96 experiments.

Fig. 4 shows the forecast probability density (%n,j; colors),
forecast mean (f̄n,j; black lines), and true signal (f̂n+j; red lines)
for the Niño 3.4 index as a function of verification time tn+j over
20-y portions of the test dataset for lead times τj in the range 0
to 12 mo, obtained for Hilbert space dimension L = 1,000. The
corresponding NRMSE and AC scores are displayed in Fig. 5.
The skill scores do not vary significantly for values of L in the
interval 500 to 2,000 (SI Appendix, Fig. S2).

Qualitatively, the forecast density %n,j displays a similar
behavior as in the L96 experiments; that is, it is concentrated
around the true signal on short lead times (τj . 3 months) and
gradually broadens as forecast uncertainty grows with increasing
lead time τj due to chaotic climate dynamics. In Fig. 5A,
the estimated forecast error based on the forecast variance
σn,j agrees reasonably well with the actual NRMSE evolution.
Adopting AC = 0.6 as a commonly used threshold for ENSO
predictability, we see from the AC results in Fig. 5B that
QMDA produces useful forecasts out to τj ' 12 months. The
performance of QMDA in terms of the NRMSE and AC metrics
is comparable to that found for KAF in ref. 43, but QMDA has
the advantage of producing full forecast probability distributions
instead of point estimates. Compared to KAF, QMDA also has
the advantage of being positivity preserving. While this property
may not be critical for sign-indefinite ENSO indices, there are
many climatic variables where sign preservation is particularly
important.

Quantum Circuit Implementation

As a demonstration of the potential of QMDA for implemen-
tation on quantum computing platforms, we present forecasting
results for the L96 multiscale system obtained from quantum
circuit simulations performed using the Qiskit Aer Python library
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Fig. 4. As in Fig. 2, but for forecasts of the Niño 3.4 index in CCSM4.
The assimilated observable is the vector of Indo-Pacific SST gridpoint values.
The forecast lead times are in 3-mo increments in the range 0 to 12 mo. The
verification times are shown in mm/yy date format relative to an arbitrary
year in the verification interval.

(45). Our quantum circuit architecture consists of initialization,
Koopman evolution, eigenbasis rotation, and measurement
stages, depicted in Fig. 6 for a 4-qubit setup. The initialization
and Koopman stages implement the QMDA analysis and forecast
steps, respectively, via unitary operations acting on the qubits.
The eigenbasis rotation implements a unitary induced by the
eigenvectors of the quantum mechanical forecast observable AL,N
so that measurement at the output of the circuit samples the
desired probability distribution Pn,j at the given initialization
time tn and forecast lead time τj.

In more detail, associated with a quantum computational
system of n qubits is a tensor product Hilbert space Bn = B⊗n

of dimension 2n, where B = span{|0〉 , |1〉 } is the two-
dimensional Hilbert space generated by |0〉 (“up”) and |1〉

A B

Fig. 5. NRMSE (A) and AC score (B) of the Niño 3.4 forecasts from Fig. 4.

Fig. 6. Four-qubit circuit implementation of an analysis–forecast QMDA
cycle.

(“down”) vectors (46). The standard basis of Bn, known as
quantum computational basis, has the tensor product form
{|b〉 = |b1〉 ⊗ · · · ⊗ |bn〉 }b∈{0,1}n , indexed by binary strings
b = (b1, . . . , bn) of length n. A (noise-free) quantum computer
is represented as a quantum channel T : Mn → Mn on the
22n-dimensional von Neumann algebra Mn := B(Bn), which is
isomorphic to the algebra M2n of 2n

× 2n matrices. Typically,
the channel T has the form T A = T ∗AT , where T : Bn→ Bn

is a unitary map. In the circuit shown in Fig. 6, we express T as
the composition T = Trot ◦TK(j) ◦Tinit(ξ , y), where Tinit(ξ , y)
represents the initialization (analysis) step given a prior state
vector ξ ∈ HL,N , and an observation y ∈ Y , TK(j) represents
Koopman evolution over j ∈ N forecast timesteps, and Trot is
the eigenbasis rotation stage of the circuit.

In an actual quantum computational environment, Tinit,
TK, and Trot would be implemented by combining quantum
logic gates through operations such as compositions and tensor
products, the goal being to implementT by a circuit of low depth
(longest path from input to output). For instance, circuits whose
depth scales as a polynomial in n allow simulation of quantum
states and observables on the exponentially large-dimensional
Hilbert space Bn in a polynomial running time. Here, we do not
address the important questions of how to implement Tinit, TK ,
andTrot efficiently and robustly on an actual quantum computer,
so the results presented in this section should be viewed as a proof
of concept.

Suppose that the Hilbert space dimension of the matrix
mechanical data assimilation system M is L = 2n for some
n ∈ N. Given the data-driven basis {φl,N } of HL,N indexed by
integers l ∈ {0, . . . , L− 1}, we define a unitary WL : HL→ Bn

such that WLφl,N = |b〉 , where b = (b1, . . . , bn) is the
binary representation of l , i.e., l =

∑n
i=1 bi2

n−i. Using WL,
we can encode any A ∈ BL,N into an operator B = WLA :=
WLAW ∗L ∈Mn. In particular, ifωρ ∈ S(BL,N ) is a state induced
by a density operator ρ ∈ BL,N , then the transformed state
ωσ ∈ S(Mn) with σ = WLρ satisfies ωρ(A) = ωσ (B), so
predictions from the matrix mechanical and quantum compu-
tational systems are equivalent. If ωρ is a vector state induced
by unit vector ξ ∈ HL,N , then ωσ is a vector state induced by
ζ = WLξ ∈ Bn.

Given a prior state ωn−1,1 ∈ S(BL,N ) at time tn with
corresponding state vector ξn−1,1 ∈ HL,N , an observation
ŷn ∈ Y , and a forecast lead time τj, the circuit in Fig. 6 operates
by acting on the computational basis vector |0〉 (which is the
“default” state vector at the start of a quantum computation)
by the transformations Tinit(ξn−1,1, ŷn), TK(j), and Trot, leading
to the state vector ζn,j = Trot ◦ TK(j) ◦ Tinit(ξn−1,1, ŷn) |0〉 . At
the end of the computation, a measurement in the quantum
computational basis yields a random binary string b with
probability Pn,j({b}) = |〈ζn,j, b〉2n|. It can be shown that al ∈ R,
where l ∈ {0, . . . , L−1} is the integer with binary representation
b and al is the l-th eigenvalue in the spectrum of AL,N (ordered
in increasing order), is a sample from the distribution Pn,j({al })
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Fig. 7. Simulated quantum circuit prediction of the x1 variable of the L96
multiscale system using n = 10 qubits. The histograms show the empirical
probability density %̃n,j computed from M = 106 shots for lead times in the
range 0 to 3.75 time units. The vertical red lines show the true value of x1
at the verification time, which is held fixed in all experiments. The vertical
yellow lines show the empirical mean forecasts.

induced from the spectral measure EAL,N and the quantum
state ωn,j. Repeating this procedure over M identically prepared
circuits leads to an ensemble of measurements (or “shots”)
{al1 , . . . , alM }, which provides a Monte Carlo approximation
of the theoretical forecast distribution Pn,j. Further details are
provided in SI Appendix, section 3.

Fig. 7 shows representative forecast distributions of the x1
variable of the L96 multiscale system obtained via this approach
using n = 10 qubits (i.e., L = 210 = 1024). In these
experiments, the verification time is held fixed, so there is a
fixed true value x1 ≈ −1.86 and the lead time τj = j1t
varies from 0 to 0.75 in increments of 0.25. The panels show
histograms of the normalized counts %̃n,j(l) = Mnjl/(slM)
centered on x1 = al , where Mnjl is the number of occurrences
of eigenvalue al of the multiplication operator AL,N in the
experiment with lead time τj, M = 106 is the number of shots,
and sl = (al+1− al−1)/2 is an effective bin size. Also shown are
the empirical mean f̃n,j =

∑L−1
l=0 alMnjl/M that approximates

the forecast expectation f̄n,j and the true value of x1 (yellow and
red lines, respectively).

The time evolution of the histograms illustrates the increase
of forecast uncertainty due to chaotic dynamics in conjunction
with finite-rank operator approximation. At τj = 0, the
empirical density is strongly concentrated around the truth,
and the empirical mean f̃n,j ≈ −1.99 has an approximately
5.9% error. As τj increases, the probability density spreads
predominantly to larger values of x1, causing the mean forecast to
increasingly deviate from the truth. Intriguingly, the peak of the
histograms remains collocated with the truth, which suggests that
there may be opportunities to increase skill using an estimator
based on the mode of the distribution rather than the mean.
Overall, the quantum circuit simulation results are qualitatively
consistent with the L96 results from deterministic computation
presented earlier, which demonstrates the suitability of QMDA
for implementation on quantum computers.

Concluding Remarks

We have developed theory and methods for sequential data assim-
ilation of partially observed dynamical systems using techniques
from operator algebra, quantum information, and ergodic theory.
At the core of this framework, called quantum mechanical data
assimilation (QMDA), is the nonabelian algebraic structure of
spaces of operators. One of the main advantages that this structure
provides is that it naturally enables finite-dimensional discretiza-
tion schemes that preserve the sign of sign-definite observables
in ways that are not possible with classical projection-based
approaches.

We build these schemes starting from a generalization of
Bayesian data assimilation based on a dynamically consistent
embedding into an infinite-dimensional operator algebra acting
on the L2 space associated with an invariant measure of the
system. Under this embedding, forecasting is represented by
a quantum operation induced by the Koopman operator of
the dynamical system, and Bayesian analysis is represented by
quantum effects. In addition to providing a useful starting
point for discretizing data assimilation, this construction draws
connections between statistical inference methods for classical
dynamical systems with quantum information and quantum
probability, which should be of independent interest.

QMDA leverages properties of operator algebras to project
the infinite-dimensional framework into the level of a matrix
algebra in a manner that positive operators are represented
by positive matrices, and the finite-dimensional system is a
quantum operation. QMDA also has a data-driven formulation
based on kernel methods for machine learning with consistent
asymptotic behavior as the amount of training data increases.
We have demonstrated the efficacy of QMDA with forecasting
experiments of the slow variables of the Lorenz 96 multiscale
system in a chaotic regime and the El Niño Southern Oscillation
in a climate model. QMDA was shown to perform well in terms
of point forecasts from quantum mechanical expectations, while
also providing uncertainty quantification by representing entire
forecast distributions via quantum states.

This work motivates further application and development
of algebraic approaches and quantum information to building
models and performing inference of complex dynamical systems.
In particular, as we enter the quantum computing era, there
is a clear need to lay out the methodological and algorithmic
foundations for quantum simulation of complex classical systems.
Being firmly rooted in quantum information and operator theory,
the QMDA framework presented in this paper is a natural
candidate for implementation in quantum computers, which we
have demonstrated here by means of simulated quantum circuit
experiments. As noted in the opening section of the paper, efforts
to simulate classical dynamical systems on quantum computers
are being actively pursued (22, 47, 48). Porting data assimilation
algorithms such as QMDA to a physical quantum computational
environment presents new challenges as the iterative nature of the
forecast–analysis cycle will require repeated interaction between
the quantum computer and the assimilated classical system,
possibly using quantum sensors (49). We believe that addressing
these challenges is a fruitful area for future research with both
theoretical and applied dimensions.

Data, Materials, and Software Availability. The CCSM4 data analyzed in
this study are available at the Earth System Grid repository under accession
code https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.joc.b40.1850.
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track1.1deg.006.html (accessed January 2023). MATLAB code reproducing the
ENSO and L96 results in Figs. 2–5 is available in the repository https://doi.org/
10.5281/zenodo.7554628 under directory /pubs/FreemanEtAl23_PNAS. This
directory also contains a Python Jupyter notebook that reproduces the quantum
circuit simulation results in Fig. 7.
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