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A B S T R A C T   

Herein, copper indium diselenide ternary (CuInSe2) thin film has been deposited on Indium Tin 
Oxide (ITO) coated glass substrate by electrochemical deposition technique with different po-
tential and pH solutions. CuInSe2 thin films were deposited by one-step electrodeposition before 
post-depot selenization at 450 ◦C for 30 min. The effect of potential and pH on the structural and 
optical properties of CuInSe thin film have been studied using X-ray diffraction (XRD), Scanning 
electron microscopy (SEM), and UV–Visible spectrometer. According to the X-ray diffraction 
(XRD) measurements, it was observed that all samples exhibit prominent reflections (112), (204/ 
220), and (312/116) of tetragonal CuInSe2. The films electrodeposited at − 0.8 V potential shows 
growth and peak values increasing in the (204/220) crystal direction within a pH range of 2.2, 
whereas the films electrodeposited at pH 2.6 tend to favor an increase in (112) peaks. We also 
noticed an improvement in surface morphology and adherent of CuInSe2 thin films electro-
deposited at − 0.8 V applied potential from the solution having pH 2.6. The band gaps of samples 
electrodeposited at − 0.8V potentials from pH 2.6, 2.4, and 2.2 solutions were 1.15 eV, 1.25 eV, 
and 1.21 eV, respectively. As part of our investigation, we used a Solar Cell capacitance simulator 
(SCAPS) to perform our electrodeposited films. The most effective Power conversion efficiency 
(PCE) was obtained for thin films electrodeposited at − 0.8 V within the solution having pH 2.4.   

1. Introduction 

CIGS-based thin-film solar cells are continuously being explored to improve thin-film solar cell efficiency. New records in terms of 
efficiency and productivity are achieved almost every year. The Centre for Solar Energy and Hydrogen Research Baden-Württemberg 
(ZSW) has improved its thin film CIGS record power conversion efficiency (PCE) of 0.9% from the previous value of 20.8% in 2014 [1]. 
The latest Solibro published record is 18.72% CIGS module efficiency on a 0.94 m2 [2]. In 2019, Solar Frontier K.K. achieved a record 
power conversion efficiency of 23.35% on a 1 cm2, exceeding the 22.9% achieved in 2017 [3]. These reported values remain quite 
close to the result obtained from the crystalline silicon solar cell, which is about 26.7% for crystalline silicon cells [4]. In these solar 
cells, CIGS absorbers can absorb over 90% of solar radiation with a thickness of only 2–3 μm and even with a thickness of 1 μm [5]. 
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There are different phases of this alloy depending on the growth conditions. The substrate, element flux, and temperature are some of 
the parameters that affect the phases and properties of the alloy during growth. The high efficiency of these materials was generally 
produced using vacuum techniques. However, CuInSe and Cu(In1− xGa1− x)(S,Se)2 thin films are classified as photovoltaic materials 
with a low-cost elaboration because of the large variety of deposition techniques with high-efficiency including non-vacuum technique 
such as spray pyrolysis, spin coating, and electrodeposition [5–10]. Electrodeposition is a suitable process for growing an economically 
large area of CIGS thin film. Electrodeposited Cu–In–Se layers have achieved efficiencies up to 14% for a small area and efficiencies 
exceeding 11% for a large area [11]. The Deposition of CIS and CIGS absorber layer can be electrodeposited in one set or by two sets 
[12,13]. However, several parameters such as electrolyte composition, deposition pH and the potential need to be controlled to obtain 
adequate thickness and good structural and optical properties of deposited thin films. Changing these parameters leads to a significant 
variation in the material properties. In the case of one set process, these parameters need to be adjusted using complexing agents so that 
all metal precursors’ reduction potential becomes closer [14]. The two-step process involves the deposition of pure elements or 
combinations with binary or ternary stacked films structure, followed by the selenization or sulfurization of the films [12,15]. 

The majority of studies have examined the co-deposition (one-step) potential of elements, but very few have examined subse-
quently the impact of both pH and applied potential on the crystal orientation, optical band gap, and solar cell performance on CuInSe2 
thin films electrodeposited [16–18]. In this work, we investigate the effects the effect of potential and pH on the structural and optical 
properties of CuInSe2 (CISe) absorber layer after co-deposition (one-step) Cu–In–Se layers and selenization. We also exhibit optical 
bandgap parameters and performed the solar cell by using SCAPS 1-D. 

2. Experimental method 

CuInSe2 (CISe) films are grown on tin oxide (ITO) coated glass substrate. The electrochemical deposition technique has been used 
by applying a different value of potential and pH. The electrochemical setup consists of a tin oxide-coated glass substrate (ITO), an Ag/ 
AgCl electrode, and a platinum (Pt) electrode used as working, reference, and counter-electrodes respectively. The substrates were pre- 
treated with 2 ml of Hellmanex III dissolved in distilled water and sonicated for 15 min in acetone, ethanol, and isopropanol. Sub-
sequently, the substrates were dried and finally subjected to UV light in a UV ozone cleaner for 15 min. Different electrolytic baths 
containing 2.10− 3 M copper chloride (CuCl2), 10.10− 3 M indium tri-chloride (InCl3), 4.10− 3 M selenous acid (H2SeO3) in an aqueous 
solution were prepared. Potassium thiocyanate KSCN (0.04 M), lithium chloride LiCl (0.3 M), and ammonium chloride NH4Cl2 (0.1 M) 
mixed electrolytes were used as a complexing agent, supporting electrolyte and brightener respectively. Potassium hydroxide (KOH) 
was used to adjust the pH of the bath at different deposition potentials (− 0.7 V, − 0.8 V, and − 0.9 V). The electrodeposition process was 
performed for 60 min at room temperature. The optimization of the co-deposition process leads us to maintain the potential at − 0.8V 
for different pH values 2.2 (set A), 2.4 (set B), and 2.6 (set C). The as-deposited films were annealed for 30 min at 450 ◦C in a tubular 
furnace under a selenium atmosphere and subsequently used for further characterization. Electrodepositing CISe involves the ex-
change of 13 electrons based on the following reaction (1):  

Cu2+ + In3+ + 2SeO3 
2− + 12H+ + 13e− → CuInSe2 + 6H2O                                                                                                       (1)  

Fig. 1. CuInSe2 CV in combined precursor baths.  
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3. Results and discussion 

3.1. Cyclic voltammetry 

Fig. 1 shows the cyclic voltammetry (CV) of CuInSe2 aqueous solution in ambient temperature. The cathodic peak at − 0.78 V is 
attributed to the reduction of the precursor bath as shown in equation (1) with a pH of around 2.4, demonstrating that CuInSe2 can be 
successfully deposited on an ITO-based glass substrate. In order to analyze the impact of both pH and applied potential various batch of 
solutions has been prepared, and Potassium hydroxide (KOH) was used to adjust the pH values (2.2, 2.4, and 2.6) at different applied 
potentials (− 0.7 V, − 0.8 V, and − 0.9 V). 

3.2. Structural measurements 

The crystallinity with different applied potential and pH values can be seen in the XRD results shown in Fig. 2a and b, and 3. The 
peaks identified with (#) indicate peaks from ITO substrate. It is seen that the preferential orientation (112) of CuInSe2 can be seen in 
all samples. At − 0.7V, similar peak intensity is observed for the CISe (112) peak at pH 2.4, as seen at pH 2.2, where the In2Se3 (InSe) 
phase can also be observed. At − 0.8V, peak intensities are more significant with a growing film in the CISe (112) direction at pH 2.4. 
Furthermore, the planes (204/220), and (116/312) of CISe appear in all electrodeposited films at − 0.8 V deposition potential. At 
− 0.9V, similar behavior can be observed at − 0.8 v and − 0.7 v for pH values 2.2 and 2.4 respectively. 

We found that as well as the pH of the bath remaining constant, the peaks vary with the deposition potential, and increasing applied 
potential leads to poor adherence of as-deposited films. We observed that the crystallinity tends to improve for − 0.8V, and − 0.9V with 
binary InSe and Cu3Se2 (CuSe) phases (JCPDS No. 85–0184, JCPDS No. 86–1240), and more preferential orientation peaks for − 0.8V 
[19]. 

Based on this analysis, the deposition potential has been fixed to − 0.8V (vs. SCE). In order to analyze the impact of pH on deposition 
setup and electrodeposited film properties different solutions of 2.2, 2.4, and 2.6 pH values were prepared. It is observed from Fig. 3 
that the intensity of some of the peaks changes with pH. Cu, In, and Se co-deposition potentials at − 0.8V lead to film growing in the 
preferential direction (112) when the pH value changes from 2.2 to 2.6 as reported in Refs. [20–22]. XRD results indicate that typical 
peaks of the chalcopyrite structure, (112), (204/220), and (312/116) start showing up in the sample deposited at a pH value of 2.4. As 
the pH of the bath changes, the intensity of these peaks increases, with a strong peak in the (112) preferential orientation without any 
secondary phases at 2.6 pH. CuInSe2 films electrodeposited at pH 2.4 show growth and increased crystallinity in (204/220) crystal 
direction whereas the films electrodeposited at pH 2.6 depict the direction along (112). 

3.3. FWHM and crystal size 

The crystallinity parameters of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 

Fig. 2. XRD patterns of electrodeposited CISe thin films with pH (a) 2.4 and (b) 2.2 at − 0.7 V, − 0.8 V, and − 0.9V applied potential.  
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(set B), and 2.6 (set C) were obtained from XRD results, as shown in Table 1. 
Based on the grain size, we can determine the dislocation density per unit volume of the crystal using equations (2) and (3) from 

Williamson and Smallman [20,23]: 

δ=
1

D2 (2) 

The grain deformation ε of the films is examined according to the β values obtained for each angle according to equation (3) [24]: 

ε= β
4 tan θ

(3)  

3.4. Morphology and distribution of elements 

Fig. 4a, b, 4c, and 5 show the SEM images and X-ray Energy Dispersive Spectroscopy (EDS) elemental mapping of CuInSe2 thin films 
electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 (set B), and 2.6 (set C) with the presence of others 

Fig. 3. XRD patterns of CuInSe2 thin films electrodeposited at − 0.8 V applied potential from 2.2, 2.4, and 2.6 pH solution.  

Table 1 
Crystal parameters of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 (set B), and 2.6 (set C).  

Samples ID 2 theta hkl β(FWHM) d (Ang) D (nm) δ × 10− 3 (nm− 2) ε × 10− 3 

Set A 26.76 112 0.22 3.33 39.40 0.64 23.13 
44.73 204/220 0.94 2.02 9.50 11.08 57.14 

Set B 26.79 112 0.12 3.32 70.70 0.20 12.60 
44.19 204/220 0.06 2.04 138.00 0.05 3.70 
52.53 116/312 0.16 1.74 57.00 0.31 8.11 

Set C 26.34 112 0.24 3.38 35.30 0.80 25.65 
44.05 204/220 0.35 2.05 25.60 1.52 21.64 
52.39 116/312 0.44 1.74 21.10 2.24 22.37  
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elements (O, C, S …). The improvement in surface morphology and the growth process is evident in Fig. 5 when the pH increases from 
2.2 to 2.6. 

Table 2 shows the elemental concentrations of each Cu, In, and Se elements for CuInSe2 thin films electrodeposited at − 0.8 V 
applied potentials with 2.2, 2.4, and 2.6 pH values. 

The electrodeposition thin films at 2.2, and 2.4 pH values are highly rich in indium as determined by EDS, in agreement with XRD 
which can be associated to the electrolytic bath composition. However, as pH increases Cu and Se concentrations become more 
important so that the stoichiometry of the CISe layer is improved. This could be associated to the improvement of complexing agents’ 
ability to form complexes and the adjustment of the reduction potential of precursors [22]. 

Fig. 4. SEM image of Cu–In–Se layers electrodeposited at potentials − 0.8 V from the solution having pH a) 2.2 (set A), b) 2.4 (set B), and c) 2.6 
(set C). 

Fig. 5. SEM image and EDS elemental mapping of Cu–In–Se layers electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 
(set B), and 2.6 (set C). 

Table 2 
Chemical composition of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 (set B), and 2.6 (set C) 
from Energy-dispersive X-ray Spectroscopy (EDS).  

pH of the bath Potential applied (V) Atomic percentages (%) 

Cu In Se 

2.2 (set A) − 0.8 3.12 85.26 11.62 
2.4 (set B) 9.31 71.86 18.83 
2.6 (set C) 12.89 68.42 18.74  
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3.5. Optical proprieties CuInSe2 

UV–vis spectrophotometer was used to record CuInSe2 thin films’ electrodeposited absorption and transmittance spectrum in the 
range of 350–850 nm for a solution having pH 2.2 (set A), 2.4 (set B), and 2.6 (set C) at potentials − 0.8 V. Fig. 6a and 6b shows that all 
the materials have good absorption and transmission in the visible region as an absorber layer. 

The bandgap Eg values, as shown in Fig. 7, were obtained from absorption spectra data converted into (α.hv)2 vs hv plot using the 
Tauc equation (4) which matches well with other methods used in Refs. [23,24]. 

(αhν)
1
n =A

(
hν − Eg

)
(4)  

h, A, and ν refer to Planck’s constant, a constant, and photon frequency, respectively; n is a constant related to electron transitions. The 
band gap values were found to be 1.16 eV, 1.38 eV, and 1.26 eV for samples electrodeposited at potentials − 0.8 V from the solution 
having pH 2.6 (set C), 2.4 (set B), and 2.2 (set A), respectively. A similar optical properties behavior of electrodeposited films at 
different pH values was reported in Refs. [21,22,25,26]. As we can observe, the change in bandgap can be attributed to structural 
modifications arising as a result of grain growth orientation of CISe films, moreover to secondary phases such as InSe and CuSe [27,28]. 
This can explain why films deposited at 2.6 to secondary phases show the closest bandgap to values reported in the literature [22,29, 
30]. However, the absorption and transmission can be affected an increasing way when the pH decreases from 2.6 to 2.2 [21]. 

4. Numerical devices performance 

4.1. Digital structure 

CuInSe2 thin films electrodeposited at different pH values impact both the structural and optical properties. A numerical evaluation 
of CuInSe2 layers electrodeposited using SCAPS-1D was made in order to further analyze the impact of varying band gaps related to the 
pH solution. We used the same structure and parameters as SCAPS-1D CIGS (example CIGS.def) solar cells, which consists of the 
following stacking: back contact/p-CuInSe2/OVC/CdS/ZnO-i/Ag, as shown in Fig. 8. The front of the cell is illuminated under a 
spectrum of AM1.5G equivalent to a density of 100 mW/cm2 at 300 K. A list of the SCAPS-1D software simulation parameters included 
the Table 3 of varying band gap related to the different pH values solution at − 0.8 V applied potential. 

The solar cell studied in this simulation has front and back contact with four other layers where FTO coated glass substrate is the 
back contact et Ag the front one modeled in flat bande mode. i-ZnO is a transparent conductive oxide (TCO) with optical transparency 
of about 90% [31] and worked as a windows layer. In CIGS applications, CdS serves as a buffer layer that transports most incident 
photons to the CIGS absorber layer [32]. OVC (Ordered Vacancy Compound) OVC layer with a thickness of 15 nm and a higher gap 
energy than CuInSe2 [33] would reduce interfacial recombination [34,35]. SCAPS solves Poisson equations and continuity equations 
for one-dimensional electrons and holes based on equations (5) and (6, 7) respectively [36,37]: 

− ε0εr
∂2V(x, t)

∂2x
= q[p(x, t) − n(x, t)+ND(x) − NA(x)] +

∑

piège

ρpiège (5)  

−
1
q

∂Jn(x, t)
∂x

=G(x, t) − Rn(x, t) −
∂n(x, t)

∂t
(6)  

Fig. 6. a) absorbance and b) transmission spectra of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set 
A), 2.4 (set B), and 2.6 (set C). 
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1
q

∂Jp(x, t)
∂x

=G(x, t) − Rp(x, t) −
∂ρ(x, t)

∂t
(7) 

εr and ε0 are the relative dielectric and vacuum constants, respectively, V the electric potential, p, and n are the carrier densities, NA 
and ND concentrations of acceptor and donor atoms, Jn and Jp are current densities of electrons and holes, G and Rp,n are the gen-
erations and recombination rates of holes and electrons. The current density for each type of carrier is given by one-dimensional 
transport equation (8) and (9): 

Jn = qμnn (x)ε + qDn
dn (x)

dx
(8)  

Jp = qμpp (x)ε − qDp
dp (x)

dx
(9)  

4.2. Effect of pH variation on the performances of the devices 

Fig. 9a and b shows J-V and P–V curves for CuInSe2, respectively, and illustrate how varying the pH of CuInSe2 electrodeposited at a 

Fig. 7. Optical bandgap (α.hv)2 vs hv of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 (set B), 
and 2.6 (set C). 

Fig. 8. Schematic of back contact/CuInSe2/OVC/CdS/i-ZnO/Ag Solar Cell.  

Table 3 
Band gap variation of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having 
pH 2.2 (set A), 2.4 (set B), and 2.6 (set C).  

pH of the bath Potential applied (V) Bandgap (eV) 

CuInSe2 

2.2 (set A) − 0.8 1.26 
2.4 (set B) 1.38 
2.6 (set C) 1.16  
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constant potential affects the cell’s performance. The most efficient current density (Jsc) and power density (P) are obtained when 
CuInSe2 is deposited at pH 2.4, resulting in the largest band gap (1.38 eV). 

The simulation results, as illustrated in Fig. 9 and Table 4, show that the current density (Jsc) decreases as the open circuit voltage 
(Voc), fill factor (FF), and efficiency (Eta) increase so that when the pH value changes from 2.2 to 2.6 cells’ performance was affected 
by the bandgap. This is indicated by the efficiency of 10.45%, 11.50%, and 12.43% with 1.16 eV, 1.26 eV, and 1.38 eV bandgap at 2.6, 
2.2, and 2.4 pH values respectively. Voc and FF are affected in an increasing way by the bandgap whereas Jsc is probably reduced by 
carrier recombination in the device, particularly at the CISe/OVC/CdS interfaces. Power density or power conversion efficiency in-
creases as long as the bandgap value is closer to the optimal theoretical value (around 1.4 eV) [38–44]. 

In summary, a pH of around 2.4 is more suitable under the above experimental conditions. This is taking into account the depo-
sition of the CuInSe2 layer and the solar cell’s performance [45–47]. 

5. Conclusion 

CuInSe2 thin films were successfully deposited by one-step electrodeposition onto ITO back contact at − 07 V, − 08V, and − 0.9V 
potential. An aqueous bath with 2.2, 2.4, and 2.6 pH values were used at each applied potential as well and subsequently, the films 
were selenized at 450 ◦C for 30 min. According to the X-ray diffraction (XRD) measurements, it was found that CuInSe2 films elec-
trodeposited at − 0.8 V potential show growth and increased crystallinity in (204/220) crystal direction from the solution having pH 
2.4, whereas the films electrodeposited at pH 2.6, tends to favor the direction along (112) with increasing pH values. Electrodeposited 
samples from solutions with 2.6, 2.4, and 2.2 pH values showed band gaps of 1.16 eV, 1.38 eV, and 1.26 eV, respectively. The 2.4 pH is 
more suitable under the above conditions considering the deposition of the CuInSe2 layer and solar cell’s performance. The pH of the 
bath has an impact on the properties of the CuInSe2 electrodeposited film and thus on cell performance. 
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Fig. 9. a) J-V and P–V curves of CuInSe2 thin films electrodeposited at potentials − 0.8 V from the solution having pH 2.2 (set A), 2.4 (set B), and 2.6 
(set C). 

Table 4 
Experimental Characteristics Parameters of CuInSe2 thin films electrodeposited at − 0.8 V applied potential from the solution having pH 2.2 (set A), 
2.4 (set B), and 2.6 (set C).  

Solar cell model pH of the bath Voc Jsc FF Eta 

(V) (mA/cm2) (%) (%) 

ITO/CuInSe2/OVC/CdS/i-ZnO 2.2 (set A) 0.61 29.91 62.50 11.50 
2.4 (set B) 0.73 26.66 64.09 12.43 
2.6 (set C) 0.52 33.17 60.44 10.45  
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