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Simple Summary: PRC2 (Polycomb repressive complex 2) is a catalytic multi-subunit complex in-
volved in transcriptional repression through the methylation of lysine 27 at histone 3 (H3K27me1/2/3).
Dysregulation of PRC2 has been linked to tumor development and progression. Here, we performed
a comprehensive analysis of data in the genomic and transcriptomic (cBioPortal, KMplot) database
portals of clinical tumor samples and evaluated clinical correlations of EZH2, SUZ12, and EED.
Next, we developed an original Python application enabling the identification of genes cooperating
with PRC2 in oncogenic processes for the analysis of the DepMap CRISPR knockout database. Our
study identified cancer types that are most likely to be responsive to PRC2 inhibitors. By analyzing
co-dependencies with other genes, this analysis also provides indications of prognostic biomarkers
and new therapeutic regimens.

Abstract: PRC2 (Polycomb repressive complex 2) is an evolutionarily conserved protein complex
required to maintain transcriptional repression. The core PRC2 complex includes EZH2, SUZ12,
and EED proteins and methylates histone H3K27. PRC2 is known to contribute to carcinogenesis
and several small molecule inhibitors targeting PRC2 have been developed. The present study
aimed to identify the cancer types in which PRC2 targeting drugs could be beneficial. We queried
genomic and transcriptomic (cBioPortal, KMplot) database portals of clinical tumor samples to
evaluate clinical correlations of PRC2 subunit genes. EZH2, SUZ12, and EED gene amplification
was most frequently found in prostate cancer, whereas lymphoid malignancies (DLBCL) frequently
showed EZH2 mutations. In both cases, PRC2 alterations were associated with poor prognosis.
Moreover, higher expression of PRC2 subunits was correlated with poor survival in renal and liver
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cancers as well as gliomas. Finally, we generated a Python application to analyze the correlation of
EZH2/SUZ12/EED gene knockouts by CRISPR with the alterations detected in the cancer cell lines
using DepMap data. As a result, we were able to identify mutations that correlated significantly
with tumor cell sensitivity to PRC2 knockout, including SWI/SNF, COMPASS/COMPASS-like
subunits and BCL2, warranting the investigation of these genes as potential markers of sensitivity to
PRC2-targeting drugs.

Keywords: PRC2; EZH2; cancer; oncology; PRC2 inhibitors; EZH2 inhibitors; biomarkers; SWI/SNF;
SMARCB1; BCL2; Polycomb

1. Introduction

The maintenance of tissue-specific gene expression profiles is required for a normal
development and physiology of multicellular organisms. In particular, epigenetic control
of transcriptional repression is implemented by the Polycomb group (PcG) proteins that
function as a part of multiprotein complexes recruited to the chromatin [1–5]. The Polycomb
repressive complex 2 (PRC2) in mammals consists of three core subunits: EZH2 (Enhancer
of Zeste Homolog 2), SUZ12 (Suppressor of Zeste 12), and EED (Embryonic Ectoderm
Development) proteins [6–8]. The enzymatic component of the complex is EZH2, a histone
methyltransferase (HMT) that catalyzes an addition of up to three methyl groups to the
histone H3 lysine 27 (H3K27me1/2/3) via its SET domain [9–12]. The HMTase activity of
EZH2 requires the presence of the SUZ12 and EED subunits [13–15].

The PRC2 complex is vital for mammalian development. Mouse embryos with dele-
tions in the EZH2, EED or SUZ12 genes fail to develop and die during the post-implantation
period [15–17], while EZH2−/− human ESCs (hESCs) demonstrate self-renewal and differ-
entiation defects [18].

Numerous studies have shown that PRC2 is broadly implicated in cancer biology,
and alterations of its subunits can be associated with poor survival [2,4,19–23]. These
alterations include both the overexpression of PRC2 genes and mutations that either
enhance or inhibit PRC2 catalytic activity. EZH2 overexpression is frequently accompanied
by amplification of the EZH2 gene; less is known about SUZ12 and EED. The suppression
of PRC2 activity has been shown to inhibit the growth of certain tumors. Several small
molecule inhibitors targeting PRC2 have been developed; some are undergoing clinical
trials [24,25]. The first-in-class compound tazemetostat targeting the EZH2 protein was
recently approved in the USA for the treatment of patients with metastatic or locally
advanced epithelioid sarcoma [26–28] and for adult patients with relapsed or refractory
(R/R) follicular lymphoma (FL) [29]. In epithelioid sarcoma, the sensitivity to tazemetostat
is associated with a loss of SMARCB1, a component of the SWI/SNF remodeling complex
of Trithorax group (TrxG) proteins that antagonize PcG repression [27].

Despite the progress made in recent years, many aspects of the role of PRC2 in cancer
remain unaddressed. Are SUZ12 and EED implicated in various tumor types? What are
the clinical implications of different PRC2 subunits? What other mutations, besides for
the SWI/SNF members, could confer tumor sensitivity to inhibitors of PRC2 subunits and
could be used as clinically relevant markers?

In the present study we analyzed publicly available genomic and transcriptomic
database portals to identify cancers in which the PRC2 subunits are likely to play
essential roles.

2. Materials and Methods

The cBioPortal for cancer genomics (https://www.cbioportal.org/, accessed on 2
November 2020) [30] was used to query alterations in EZH2/SUZ12/EED genes in clinical
samples. DNA analysis was carried out using a set of 185 studies (TCGA- and non-
TCGA) that were manually curated with no overlapping samples (total 48,045 samples).

https://www.cbioportal.org/


Cancers 2021, 13, 3155 3 of 26

In the analysis of the frequency of a specific alteration, only samples tested with available
information (e.g., the copy number or missense/gain-of-function (GOF) mutations) were
taken into account.

For multiple myeloma survival analysis, we used RNAseq data of 674 newly diag-
nosed MM patients with longitudinal follow-up from the Multiple Myeloma Research
Foundation CoMMpass trial (NCT01454297; version IA11a), termed in the following
CoMMpass cohort [31]. The statistical significance of differences in overall survival be-
tween patients’ groups was calculated using the log-rank test and survival curves were
plotted using the Kaplan-Meier method. For other tumor types, the survival analysis was
carried out using the Pan-Cancer datasets of the online tool www.kmplot.com (accessed
on 15 January 2021) [32]. The Pan-Cancer dataset is based on TCGA data generated using
the Illumina HiSeq 2000 platform with survival information derived from the published
sources [33]. In the survival analysis, each cutoff between the lower and upper quartiles
was analyzed by Cox proportional hazards regression; the best performing cutoff was used
in the final analysis. The Kaplan-Meier survival plots were generated, and the hazard rates
with 95% confidence intervals were computed to numerically assess the difference between
the two cohorts.

DepMap (https://depmap.org/portal/, accessed on 6 October 2020) analysis of the
dependency of a panel of tumor cell lines on individual genes was conducted using the
CRISPR (Avana) Public 20Q3 (DepMap, Broad (2020): DepMap 20Q3 Public. figshare.
Dataset doi:10.6084/m9.figshare.12931238.v1.) [34,35]. The following files of the Public
20Q3 release were downloaded for the analysis: “Achilles_gene_effect.csv” (Genetic De-
pendency CRISPR (Avana) Public 20Q3, Genes 18119, 789 Cell lines, 30 Primary Diseases,
27 lineages); ”CCLE_mutations.csv” (Cellular Models Mutation Public 20Q3, 18802 Genes,
1741 Cell Lines, 35 Primary Diseases, 37 Lineages); “sample_info.csv” (Cellular Models
Cell Line Sample Info, 1804 Cell lines, 35 primary diseases, 38 lineages). For gene ontology
data the Uniprot (https://www.uniprot.org/, accessed on 22 February 2021) database was
used. The Power Query Microsoft Excel Tool was used to combine the data from different
files. In total, the DepMap 20Q3 release contains the results of the experimental analyses
of the effects of EZH2, SUZ12 or EED gene knockout by the CRISPR/Cas9 method on the
proliferation of 777 cancer cell lines (Supplementary File S1 “CRISPR (AVANA) Public
20Q3 PRC2 cell lines info”).

To calculate p-values for the dependence hypotheses between the sensitivity of cell
lines to EZH2, SUZ12, or EED knockouts and the presence of each documented non-silent
mutation, we developed an original application termed Genes.py. Genes.py is written
in Python and uses the Scipy, Numpy, and Pandas libraries. The silent mutations were
excluded from the analysis using the attribute ‘Variant_Classification’ in ‘Cellular Models
Mutation Public 20Q3′ file. Source code of the analysis is available at the following link:
https://github.com/genesolution/PRC2_data (uploaded on 25 March 2021).

3. Results
3.1. Analysis of EZH2, SUZ12, and EED DNA Alterations in Patients’ Samples

Depending on the cancer type, alterations in the PRC2 methyltransferase complex
have been demonstrated to be both pro- and anti-oncogenic [36]. Candidate cancers that
might be sensitive to PRC2 inhibitors are those in which PRC2 plays an oncogenic function.
These are the tumors characterized by overexpression of PRC2 encoding genes or by
GOF mutations in the EZH2 gene leading to an increased PRC2 catalytic activity [2,19,20].
Amplification of the EZH2 coding region has been detected in different tumors [37–40].
Similarly, the SUZ12 gene is amplified in several tumors [41], nevertheless, there is a lack
of information regarding the SUZ12 and EED amplification. Furthermore, amplification
frequencies of individual PRC2 components have not been described.

To characterize the amplification of EZH2, EED, and SUZ12 in different tumor types
we analyzed clinical samples for the amplified PRC2 subunit genes using the cBioPortal
database (https://www.cbioportal.org/, accessed on 2 November 2020) [30]. The samples

www.kmplot.com
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were grouped by tissue origin and only cohorts with at least 500 samples were analyzed.
We found that the amplification of EZH2 as well as EED and SUZ12 subunits was not
limited to a specific tumor type (Figure 1A,B). Furthermore, the amplification frequency
of specific subunits differed significantly among tumor types (Figure 1A,B). Interestingly,
simultaneous amplification of several PRC2 subunit genes can be detected in the same
clinical sample (Supplementary File S2).
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 Figure 1. Amplification of EZH2, SUZ12 and EED is frequently present in clinical cancer samples. (A) The analysis was
performed using the cBioPortal database, which includes 185 studies and 48,045 non-overlapping samples. The cancer types
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EZH2, SUZ12 and EED frequencies of the amplifications.
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The most frequent EZH2 amplification (11.4%) was observed in ovarian cancer. In
this tumor type, EED was amplified in 9.84% of cases, while amplification of the SUZ12
was not observed. Similar tendency for the higher rate of EZH2 and EED amplification
was found for skin, prostate, and soft tissue tumors (Figure 1A,B). Breast carcinomas
showed approximately similar amplification rates for each of the three PRC2 genes. In
CNS tumors, a higher amplification was observed for EZH2, while bladder/urinary tract
and esophagus/stomach cancers displayed a more frequent amplification of EED and
SUZ12. Head and neck tumors demonstrated a higher level of EED amplification than
EZH2 and SUZ12. The adrenal gland and bowel cancers, as well as lymphoid and myeloid
malignancies showed the lowest percentage of cases with amplification (Figure 1A,B). Thus,
although the amplification of the EZH2, EED, and SUZ12 genes encoding the PRC2 subunits
was detectable in the tumors derived from different tissues, the combinations of amplified
genes and the frequency of this alteration varied significantly.

The analysis of tumor subtypes revealed a distribution of alterations in the EZH2,
EED, and SUZ12 genes (amplifications, deep deletions, mutations, fusions, and multi-
ple alterations) in the 20 most common tumor subtypes (at least 50 samples per each
subtype). The highest alteration frequency for any PRC2 genes was observed for the
castration-resistant prostate cancer (CRPC; 33%), germinal center B-cell-like diffuse large
B-cell lymphoma (GCB-DLBCL) (25%), and prostate neuroendocrine carcinoma (20%)
(Figure 2A).

Individual examination of the EZH2, SUZ12, and EED genes (Figure 2B–D) showed
that CRPC and prostate neuroendocrine carcinoma demonstrated an association with
frequent alterations in each of the PRC2 encoding genes, while in GCB-DLBCL lymphoma
a high correlation was found only with alterations in the EZH2 gene. In accordance with
tissue origin data (Figure 1), the majority of alterations in the EZH2, SUZ12, and EED genes
in prostate cancer are represented by amplifications. Unlike prostate cancer, the principal
EZH2 gene abnormalities in the GCB-DLBCL are missense mutations (Figure 2).

Next, we queried the cBioPortal database to identify the prognostic role of PRC2 im-
pairment in prostate cancer and in DLBCL lymphoma. Figure 3A,B show that amplifications
of both EZH2 (logrank p = 1.8 × 10−7 ) and EED (logrank p = 1.4 × 10−10) in prostate
cancer were associated with poor prognosis (data from [33,42,43]). For the SUZ12 gene,
only two samples with amplifications and survival data are available, making the results
uninterpretable.

In GCB-DLBCL, up to 21.7% of samples contained GOF missense mutations in the
EZH2 SET domain [44,45] leading to an increased PRC2 catalytic activity [46,47]. In a
previous study, a high GOF frequency in GCB-DLBCL was correlated with longer patient
survival [48]. However, using the available prognostic data for the DLBCL lymphoma
patients from three independent studies [33,49,50], we found that GOF mutations cor-
relate with negative overall survival (logrank p =3.6 × 10−3) (Figure 3C). These results
strongly suggest that EZH2 amplification in prostate cancer, and GOF mutations in DLBCL
lymphoma, are predictors of disease progression.
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Figure 2. PRC2 genes are most frequently altered in subtypes of prostate and lymphoid cancers. (A) Alterations of any
PRC2 core genes. The frequencies of alterations (gene amplifications, mutations, deep deletions, fusions or multiple
alterations) of PRC2 genes in clinical samples of different cancer types were analyzed using cBioPortal. Red—CRPC and
prostate neuroendocrine carcinoma; Green - GCB-DLBCL lymphoma. (B–D) Data for EZH2, SUZ12 and EED, respectively.
Please note that for some cases, the gene values for PRC2 subunits individually are lower due to co-occurrence of two or
three cases of impairments (demonstrated in Supplementary File S2).
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Figure 3. Alterations in PRC2 subunits at DNA level correlate with shorter patient survival in prostate cancer (EZH2 and
EED) and DLBCL (EZH2). Analysis of correlation between alterations in DNA with patient survival was performed using
cBioPortal. (A) Correlation between the overall survival and amplification of the EZH2 gene in prostate cancer. The
amplification (red) vs. unaltered group (blue) is shown. (B) Correlation between the overall survival and amplification of
the EED gene in prostate cancer. (C) Correlation between the overall survival and the presence of EZH2 GOF mutations in
DLBCL. The group with EZH2 GOF mutation (red) vs. unaltered group (blue) is shown.

3.2. Correlations between the EZH2, SUZ12, EED Transcription and Patient Survival

We next investigated the correlation of transcription of the EZH2, SUZ12 and EED
genes with patient prognosis. Investigating the survival prognosis in multiple myeloma
(MM) patients, we have shown that PRC2 core genes, EZH2, SUZ12 and EED, were sig-
nificantly overexpressed in MM cells compared to normal plasma cells, making these
cells sensitive to EPZ-6438, an inhibitor of EZH2 [51]. Moreover, high EZH2 expression
correlated with poor prognosis in MM [52]. Herein, we studied the correlation of the ele-
vated transcription of PRC2 core genes with the survival rate. RNAseq data were obtained
from 674 newly diagnosed MM patients with longitudinal follow-up (Multiple Myeloma
Research Foundation CoMMpass trial; NCT01454297; version IA11a). Patients were di-
vided into two cohorts based on high (Figure 4A, red lines) or low (Figure 4A, green lines)
mRNA levels of PRC2 subunits. The life expectancy (overall survival; OS) was analyzed
for these two groups. Figure 4A demonstrates that the increased EZH2 transcription was
significantly (logrank p = 2.98 × 10−13) correlated with poor prognosis. At the same time,
high abundance of SUZ12 and EED transcripts showed no significant correlation with
survival, suggesting that EZH2 expression is the strongest PRC2 prognostic marker in MM.

To analyze the correlations of EZH2, SUZ12 and EED expression with the survival
of patients with other tumors, we used RNAseq data in the Pan-Cancer dataset of the
Kaplan-Maier plotter website (www.kmplot.com, accessed on 15 January 2021). The results
are summarized in Table 1.

In total, in 10 tumor types, the higher expression of at least one of the EZH2, SUZ12,
or EED genes was significantly correlated with poor prognosis (logrank p < 0.05) (Table 1).
In renal papillary cell carcinoma, low-grade glioma and hepatocellular carcinoma, poor
prognosis was significantly correlated with high expression of all three genes, EZH2, SUZ12,
and EED (Table 1, Figure 4B–D).

www.kmplot.com
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Figure 4. Correlation between the overall survival and the levels of EZH2, SUZ12 or EED gene expression. (A) Data from
the Multiple Myeloma Research Foundation CoMMpass trial (NCT01454297; version IA11a). The patients were divided into
two cohorts—with low (green) or high (red) levels of gene expression. (B–D) The analysis was performed using the KMplot
resource for renal papillary cell carcinoma (B), low-grade glioma (C) and hepatocellular carcinoma (D). The cohort with low
level of gene expression is colored in black, cohort with high expression is colored in red.
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Table 1. Correlations of EZH2, SUZ12 and EED gene expression with overall survival in different tumor types. The hazard
ratio (HR) and p-values are shown in red when higher gene expression is correlated with a shorter survival, and in blue
in case of a longer survival. logrank p < 0.05 are boldfaced. The “Refs to poor prognosis” columns indicate references to
previous studies showing the correlation with poor survival of the respective PRC2 subunit.

Cancer Type № of
Samples

EZH2
Refs to

Poor
Prognosis

SUZ12
Refs to

Poor
Prognosis

EED
Refs to

Poor
Prognosis

HR Logrank p HR Logrank p HR Logrank p

Statistically significant correlation with poor survival upon higher expression of any PRC2 subunits

Renal papillary cell
carcinoma 285 2.72 0.0012 [53–55] 2.07 0.015 ND 1.87 0.043 ND

Low grade glioma 506 2.39 6.8 × 10−7 ND 1.8 0.0014 ND 2.27 1.6 × 10−5 ND

Hepatocellular
carcinoma 365 2.26 2.2 × 10−6 [56] 1.68 0.0031 [57] 2.13 1.7 × 10−5 ND

Statistically significant correlation upon higher expression of some of PRC2 subunits

Prostate
adenocarcinoma 494 6.52 0.0027 [58–60] 5.11 0.088 [60] 5.16 0.0087 ND

Sarcoma 259 1.81 0.015 [61,62] 1.65 0.032 [61] 1.21 0.36 [61]

Lung adenocarcinoma 504 1.4 0.038 NSCLC
[63–66] 1.44 0.019 ND 1.16 0.36 ND

Breast cancer 1402 1.31 0.014 [67–69] 1.16 0.17 ND 1.03 0.75 ND

Ovarian cancer 1435 1.21 0.0052 [70] 1.12 0.091 [70] 1.32 2 × 10−5 ND

Opposite statistically significant correlation with survival

Renal clear cell
carcinoma 530 2.08 3.9 × 10−6 [53–55] 0.58 0.00034 ND 1.71 0.00074 ND

Uterine corpus
endometrial carcinoma 542 1.71 0.013 ND 1.47 0.13 ND 0.61 0.017 ND

Statistically significant correlation with positive prognosis upon higher expression of any PRC2 subunits

Gastric cancer 873 0.75 0.0015 [71,72] 0.65 3.5 × 10−7 [73] 0.57 3.8 × 10−9 ND

Thymoma 118 0.13 0.0012 ND 0.07 0.00076 ND 0.25 0.059 ND

Other cancers analyzed

Acute myeloid
leukemia 132 0.5 0.0029 ND 0.77 0.25 ND 0.78 0.26 ND

Lung squamous cell
carcinoma 494 0.68 0.017 NSCLC

[63–66] 0.75 0.047 ND 0.8 0.16 ND

Head-neck squamous
cell carcinoma

(HNSCC)
499 0.61 0.0039 [74] 0.79 0.15 [75] 0.76 0.043 ND

Stomach
adenocarcinoma 354 0.57 0.00071 ND 0.83 0.28 ND 0.81 0.22 ND

Thyroid carcinoma 501 0.54 0.23 [76] 2.87 0.056 ND 0.43 0.083 ND

Cutaneous melanoma 458 1.15 0.3 [58] 0.55 6.1 × 10−5 ND 0.6 0.00039 ND

Rectum
adenocarcinoma 159 0.57 0.19 ND 0.43 0.034 ND 0.31 0.014 ND

Esophageal Squamous
Cell Carcinoma 81 0.62 0.24 ND 0.28 0.017 ND 0.37 0.015 ND

Bladder Carcinoma 404 0.76 0.063 [77] 1.28 0.13 [77,78] 0.51 7 × 10−6 ND

Glioblastoma 152 1.35 0.16 ND 0.8 0.31 ND 0.78 0.17 ND

The strongest correlation between high mRNA abundance and poor survival was
observed for EZH2 and EED in prostate adenocarcinoma (logrank p < 0.01; hazard ratio
6.52 and 5.16, respectively). The high expression of SUZ12 in this tumor also marked a
tendency to poor prognosis (hazard ratio = 5.11, logrank p = 0.088) (Table 1, Figure 5A). A
significant correlation with poor prognosis was also observed for high EZH2 and SUZ12
expression in sarcoma (Table 1, Figure 5B) and in lung adenocarcinoma (Table 1, Figure 5C);
for EZH2 in breast cancer (Table 1, Figure 6A); for EZH2 and EED expression in ovarian
cancer (Table 1, Figure 6B).
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Intriguingly, in several cases, higher expression of PRC2 genes was differently but
significantly correlated with patient survival. In renal clear cell carcinoma, higher ex-
pression of EZH2 and EED was significantly correlated with poor prognosis, whereas
high levels of SUZ12 were associated with longer survival (Table 1, Figure 6C). For the
uterine corpus endometrial carcinoma, high expression of EZH2 was correlated with poor
survival, although higher expression of EED was associated with a longer survival (Table 1,
Figure 6D).



Cancers 2021, 13, 3155 11 of 26Cancers 2021, 13 11 of 28 
 

 

 

Figure 6. Correlation between the overall survival and the levels of EZH2, SUZ12 or EED gene expression. (A) Breast 

cancer, (B) ovarian cancer, (C) renal clear cell carcinoma, and (D) uterine corpus endometrial carcinoma. 

Intriguingly, in several cases, higher expression of PRC2 genes was differently but 

significantly correlated with patient survival. In renal clear cell carcinoma, higher expres-

sion of EZH2 and EED was significantly correlated with poor prognosis, whereas high 

Figure 6. Correlation between the overall survival and the levels of EZH2, SUZ12 or EED gene expression. (A) Breast cancer,
(B) ovarian cancer, (C) renal clear cell carcinoma, and (D) uterine corpus endometrial carcinoma.



Cancers 2021, 13, 3155 12 of 26

Remarkably, opposite correlations were observed for EZH2, SUZ12, and EED in some
cancers, with higher expression being associated with a longer survival, suggesting a tumor
suppressor role for PRC2 in those cases. In particular, the higher expression of either of
the PRC2 genes correlated with a longer patient survival in gastric cancer and thymoma
(Table 1, Supplementary File S3).

3.3. Dependency of Tumor Cell Lines on EZH2, SUZ12, and EED

An alternative approach to identifying PRC2-dependent tumors is the screening
of a large panel of cell lines of different tissues-of-origin for growth inhibition upon
suppression of PRC2 function. Currently, an online project called DepMap (www.depmap.
org, accessed on 6 October 2020) allows one to predict and approximate the results of such
screening [34,35]. In DepMap, a comprehensive library of human genes has been knocked
down by RNAi or, more recently, knocked out through CRISPR technology in large panels
of human cell lines representing different tumor types. The probability of dependency of
each cell line on the queried gene is represented as the dependency scores, where strong
negative values mark the cases where a given gene is especially important for growth or
survival of the respective cell lines. The cell line is considered dependent if the probability
of dependency is >0.5; a score of 0 is equivalent to a non-essential gene, whereas a score of
−1 corresponds to the median of all common essential genes, respectively. For gene effects,
a score of <−0.5 indicates sensitive cell lines (depletion of most cells), while <−1 represents
strong killing.

Figure 7A–C demonstrates that, for all PRC2 subunits, CRISPR knockout showed
a stronger inhibitory effect on cell growth than RNAi knockdown. Figure 7B,C shows
that upon CRISPR knockout the SUZ12 and EED genes appeared as ‘strongly selective’
and were important for growth/survival of 86/777 and 238/777 cell lines, respectively.
For EZH2, only 15/777 lines were sensitive (Figure 7A). One factor of the differential
roles of individual PRC2 subunits is the EZH2 paralog protein EZH1 (Enhancer of Zeste
Homolog 1). This paralog has much lower methyltransferase activity [79] and is less
important for development [80]. However, EZH1 can partially replace EZH2 in cells
where EZH2 expression is impaired [81–83]. Consistent with this possibility, there are no
homologs for the SUZ12 and EED proteins in humans. Due to a higher sensitivity of cell
lines upon gene knockout, further analysis was based on CRISPR/Cas9 data.

We thus queried the DepMap CRISPR EZH2, SUZ12, or EED knockout data for Top
Co-dependency Pearson correlations. In the case of each gene knockout (EZH2, SUZ12,
or EED), two other subunits were identified as Top co-dependent (Table 2). This is in
accordance with their cooperative function in regulation of transcription. Thus, DepMap
corroborates biochemical data indicating the validity of this analysis.

We next analyzed cell lines of various tissue origin. Among the most sensitive
types for each of the PRC2 gene knockouts were lymphoma cell lines including DLBCL
(Figure 7A–C). This is consistent with findings suggesting that lymphoma cells, in par-
ticular, DLBCL, are sensitive to EZH2 depletion and EZH2 inhibitors [84–87]. Because
this malignancy is frequently characterized by GOF missense mutations of the EZH2 SET
domain [44,45,88], we focused on lymphocyte cell lines. The panel in the DepMap project
includes three DLBCL cell lines with EZH2 GOF mutations: DB (Y641N), KARPAS422
(Y641N) and SUDHL4 (Y641S). Noteworthy, these cell lines are among the most sensitive
to knockouts of each of PRC2 subunits (Figure 7D), with DB being among the Top10 of the
sensitive lines upon depletion of any of PRC2 subunit (Table 3). This suggests that GOF
mutations in the SET domain of EZH2 can augment the sensitivity of lymphoma cells to
the inhibition of either EZH2, SUZ12, or EED.

www.depmap.org
www.depmap.org
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Figure 7. Lymphoid cancer cell lines are particularly sensitive to PRC2 knockout. The analysis was performed using
DepMap database. (A) EZH2, (B) SUZ12 and (C) EED. (A–C) UP: schematic representation of the effects of gene knockout
(by CRISPR, blue) or knockdown (by RNAi, purple) on cells growth and viability. X-axis: dependency scores (Gene Effect)
reflect the dependence of cell growth and survival upon depletion of a particular gene. Negative values indicate that
cell proliferation is decreasing upon the gene depletion and score less than −0.5 indicates that the gene is required for
survival of a given cancer cell line. Numbers next to “CRISPR” and “RNAi” indicate the amount of sensitive cell lines with
score <−0.5/total number of cell lines in each case. DOWN: The TOP sensitive cancer cell types to knockout of EZH2 (A),
SUZ12 (B), and EED (C) by CRISPR are shown. (D) Lymphoma lines carrying EZH2 GOF mutations are in TOP of cell lines
sensitive to EZH2, SUZ12 or EED knockout. UP: The dependency scores for a panel of lymphoma lines upon knockout of
PRC2 genes by CRISPR. Asterisks indicate the cell lines with GOF mutations in the EZH2 SET domain, grey circles—lines
without GOF mutations. DOWN: The GOF mutations in test cell lines are indicated.
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Table 2. The Top Co-dependency Pearson correlations upon knockout of PRC2 components by CRISPR/Cas9 technology in
tumor cell lines (DepMap project data). Bold—subunits of PRC2 complex.

Top 5 Co-Dependencies
upon EZH2 Deletion

Top 5 Co-Dependencies
upon SUZ12 Deletion

Top 5 Co-Dependencies
upon EED Deletion

Rank Gene Pearson
Correlation Rank Gene Pearson

Correlation Rank Gene Pearson
Correlation

1 EED 0.67 1 EED 0.64 1 EZH2 0.67

2 SUZ12 0.61 2 EZH2 0.61 2 SUZ12 0.64

3 DOT1L 0.41 3 RING1 0.37 3 DOT1L 0.40

4 RING1 0.36 4 PCGF1 0.32 4 RING1 0.36

5 PCGF1 0.33 5 DOT1L 0.29 5 MEN1 0.35

Table 3. Top cell lines most sensitive to EZH2, SUZ12, and EED knockouts by CRISPR/Cas9. Red—cancer cell lines
present in TOP15 sensitive upon depletion of any PRC2 subunit; purple—present in case of depletion of any of two of
PRC2 subunits.

EZH2 SUZ12 EED

Cell Line Name, Primary
Disease

Dependency
Score

Cell Line Name,
Primary Disease

Dependency
Score

Cell Line Name,
Primary Disease

Dependency
Score

1 DB, Lymphoma,
DLBCL −0.848 SUM52PE, Breast

Cancer −1.162041582 TUHR10TKB,
Kidney Cancer −1.369846119

2 KARPAS422, Lymphoma,
DLBCL −0.75998 SNU216, Gastric

Cancer −1.101402111 TE8,
Esophageal Cancer −1.240713197

3 MUTZ8, Leukemia, AML −0.75646 SKBR3, Breast
Cancer −1.020127652 L33, Pancreatic

Cancer −1.111219428

4 OC316, Ovarian Cancer −0.75617 VCAP, Prostate
Cancer −0.990346606 DB, Lymphoma,

DLBCL −1.103548203

5 MERO14, Lung Cancer −0.69188 KU812, Leukemia,
CML −0.982683494 SKBR3,

Breast Cancer −1.054003392

6 UHO1, Lymphoma,
Hodgkins −0.65357 TUHR10TKB,

Kidney Cancer −0.977821458 OC316,
Ovarian Cancer −1.040763201

7 SMZ1, Lymphoma,
unspecified −0.61017

CL11,
Colon/Colorectal

Cancer
−0.972156719 EN, Endometrial/

Uterine Cancer −1.031582739

8 U2OS, Bone Cancer −0.58734 DB, Lymphoma,
DLBCL −0.903542458 U2OS,

Bone Cancer −1.018695817

9 TUHR10TKB, Kidney
Cancer −0.58528 SKMM2, Myeloma −0.887244551

EMTOKA,
Endometrial/

Uterine Cancer
−1.006987228

10 VCAP, Prostate Cancer −0.58264
KARPAS422,
Lymphoma,

DLBCL
−0.886750388

SUDHL4,
Lymphoma,

DLBCL
−0.981011953

11 KO52, Leukemia, AML −0.57416 TE8, Esophageal
Cancer −0.837851667 SKPNDW, Bone

Cancer −0.979992815

12 SUDHL4, Lymphoma,
DLBCL −0.5526 GIMEN,

Neuroblastoma −0.823007681 TGW,
Neuroblastoma −0.940803109

13 TM87, Rhabdoid −0.54929 AU565, Breast
Cancer −0.815466703 L1236, Lymphoma,

B-cell, Hodgkins −0.933248593

14 SLR23, Kidney Cancer −0.51258 SNU349, Kidney
Cancer −0.813774633 TM87, Rhabdoid −0.913530271

15 JMURTK2, Rhabdoid −0.49178 BIN67, Ovarian
Cancer −0.806004209 IPC298, Skin Cancer −0.911426595
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Along with lymphoma, the cell lines of other tissue origins were among the most
sensitive to PRC2 knockouts (Table 3, Supplementary File S1). These included TUHR10TKB
kidney cancer cell line sensitive to depletion of either of the PRC2 subunits (Table 3); the
OC316 ovarian cancer line that was in the Top10 for EZH2 and EED (Table 3) and in the
Top40 for SUZ12 (Supplementary File S1) and, finally, the VCAP prostate cancer line—in
the Top10 for EZH2 and SUZ12 (Table 3) and in the Top40 for EED (Supplementary File S1).

Recent data retrieved a few genetic markers associated with sensitivity of tumor cells
to PRC2 inhibition. The epithelioid sarcoma (for which tazemetostat has been approved by
the FDA [26–28]) is deficient in the SMARCB1 (also known as INI1 or SNF5) subunit of
the SWI/SNF family [27]. Several other SMARCB1 mutant cancers, including malignant
rhabdoid tumors (MRT) and atypical teratoid rhabdoid tumors (ATRT) are candidates for
treatment with EZH2 inhibitors [89,90]. Several components of the SWI/SNF complex
(SMARCA2, SMARCA4, ARID1A, PBRM1) are also promising targets for the PRC2 inhibitor
therapy. Preclinical and Phase 1 studies suggest an efficacy of tazemetostat in the treatment
of SCCOHT (small cell carcinoma of the ovary hypercalcaemic type) deficient in SMARCA4
(also known as BRG1) and SMARCA2 (a.k.a. BRM) [91]. In addition, cell lines carrying
ARID1A- and PBRM1 mutants are sensitive to EZH2 inhibition [92–94].

With this information, we aimed to identify more gene candidates as markers for
sensitivity to PRC2 inhibition. In so doing, we generated a Python application to challenge
a hypothesis of dependence between the growth inhibition upon knockout of EZH2,
SUZ12, or EED, and the presence of each documented mutation (https://github.com/
genesolution/PRC2_data, uploaded on 25 March 2021). For the test hypothesis, a cell line
was considered to be “sensitive” if it had a score <−0.5 (inhibition of the majority of cells).
This value was provided to us as the universal effect limit for the DepMap tables due to
the normalization that had been previously done by the DepMap table authors. In our
analysis, we used all types of genetic alterations, except synonymous mutations marked as
“silent” (using Variant_Classification column).

The level of p-value significance was set at p < 0.05. All mutations for which the
test hypothesis was found to be significant (p < 0.05) are listed in Supplementary File
S4 “PRC2 significant p-value_no_silent EZH2, SUZ12, EED”. The number of some gene
mutations is very low (there are initially only a few of them, or most are classified as
“Silent”). In this case, it is inappropriate to use the p-value to draw a reliable conclusion
about their effect. However, we kept all the obtained values to indicate the possibly
promising genes for further analysis. For the detailed analysis, the cases with the mutation
present in at least 10 cell lines were suggested as statistically relevant.

To validate the analysis, we first tested the presence of SMARCB1 and other SWI/SNF
subunits in the resulting list (Figure 8). Additionally, we paid attention to mutations of
transcriptional activators from the Trithorax group, i.e., the subunits of COMPASS- and
COMPASS-like complexes that antagonize PcG activity [2,4,5,95]. Figure 8 shows that
SMARCB1 alteration was correlated with the sensitivity of cell lines to EZH2 (p = 0.0019)
and SUZ12 (p = 0.0457) knockdown. Impairment of two SWI/SNF subunits, SMARCA4
(p = 0.0317) and ARID1B (p = 0.0479), was correlated with the sensitivity to EED knock-
out. Furthermore, among COMPASS/COMPASS-like complexes, depletion of KMT2D
(p = 0.0435) and KMT2B (p = 0.0325) histone methyltransferases correlated with knockouts
of SUZ12 and EED, respectively.

https://github.com/genesolution/PRC2_data
https://github.com/genesolution/PRC2_data
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Figure 8. Mutations in genes encoding subunits of the SWI/SNF and COMPASS-like complexes correlate with sensitivity to
PRC2 knockout. (A) EZH2, (B) SUZ12 and (C) EED. The X-axis shows the dependency scores of the lines with alterations
of a particular gene (orange, grey and yellow circles) vs. all cell lines (blue circles, 777 in total). Black bold vertical line
indicates the dependency score −0.5 (the score <−0.5 mean that gene is critical for cells survival). p-value—the statistical
significancy for hypothesis that the cell lines with SWI/SNF or COMPASS mutations will have a score of less than −0.5.
The number of cancer cell lines bearing an altered gene with a score <−0.5/total number of cell lines bearing the altered
gene is indicated at the right.

While SMARCB1 was in the resulting list, this marker was not among the top corre-
lated genes. Figure 9 shows the genes whose impairment demonstrated the best correlation
with the sensitivity of cell lines to knockouts of EZH2 (Figure 9A), SUZ12 (Figure 9B) and
EED (Figure 9C).

This analysis produced several interesting observations. First, some genes with the
lowest p-values are known to be functionally connected to PcG or TrxG systems. CPVL
(carboxypeptidase, vitellogenic-like), which was significant in SUZ12 knockout (p = 0.0007),
can be co-purified with the Polycomb repressive complex 1 (PRC1) subunits PCGF2 and
PHC2 in affinity-capture MS [96]. SMAD3 was significant for SUZ12 knockout (p = 0.0007);
it is an important component of the transforming growth factor β (TGFβ) signaling, and
interacts with the BRG1 SWI/SNF complex (subunits SMARCA4, ARID1B/BAF250b,
SMARCC2/BAF170, and SMARCC1/BAF155) [97] and CREBBP [97–99]. ESRP1 (epithelial
splicing regulatory protein 1) and FAM98B (family with sequence similarity 98, member B)
were significant in EED knockout (p = 0.0006 and p = 0.00189); they are minor components
of cPRC1 purified via BMI1 (PCGF4) [100]. Among the markers sensitive to EZH2 knockout,
CBX7 (EZH2, p = 1.5955 × 10−5) is a subunit of PRC1 [96], and ZBTB8A (EZH2, p = 0.0001)
interacts with CBX8 in two hybrid screening [101]. IGLL5 (immunoglobulin lambda-
like polypeptide 5), significant for EZH2 (p = 8.6001 × 10−7), is a minor component
of PRC2 purified via EZH2 or SUZ12, and of PRC1 purified with antibodies against
RNF2/RING1B [100].
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Second, several genes were correlated with knockouts of several PRC2 subunits
(Figure 9 and Supplementary File S4). This group is of special interest, since different
PRC2 subunits are expected to function together and all are required for the PRC2 catalytic
activity. In particular, the TOP list contains FOXRED2 gene impairment, which showed the
best correlation dependency with SUZ12 knockout (p = 1.2× 10−5) and correlated with EED
knockout (p = 0.0008). BCL2 showed the best correlation with EZH2 knockout (p = 2.3207×
10−10) and correlated with SUZ12 (p = 0.0018) knockout. The DHX57 gene was correlated
with SUZ12 (p = 0.0021) and EZH2 (p = 4.1384 × 10−6 knockout, respectively. The DHX57
gene has been attributed to the PcG system, since DHX57 interacts with CBX2 in two hybrid
screening [101,102].

Finally, we were interested in finding genes whose impairment was correlated with
inhibition of the three PRC2 subunits. Figure 10 shows that alterations in SUSD2 (sushi
domain containing 2), FIZ1 (FLT3 interacting zinc finger 1) and FBXW11 (F-box and
WD repeat domain containing 11) genes correlated with knockout of EZH2 (p = 0.0319,
p = 0.0097, p = 0.0519, respectively), SUZ12 (p = 0.0027, p = 0.0092, p = 0.0131, respectively)
and EED (p = 0.0472, p = 0.0008, p = 0.0081, respectively). Intriguingly, FBXW11 co-purifies
with EED [103], SUZ12 and EZH2 [104].
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4. Discussion

The PRC2 repressor complex plays a central role in maintaining the correct pattern of
gene expression in multicellular organisms. Dysfunction of this complex is associated with
many pathologies, including cancer. The development of small-molecule PRC2 inhibitors
requires the identification of types and subtypes of tumors that are dependent on the
PRC2 function. Current data are largely focused on the impairment of the EZH2 methyl-
transferase, a core PRC2 subunit, in cancer. Two other core PRC2 subunits, SUZ12 and
EED, have been less studied. Here, we analyzed the role of all core PRC2 subunits in a
series of clinical tumor samples (cBioPortal and Kaplan-Maier plotter resources) and in a
panel of tumor cell lines (assayed in the DepMap project).

The analysis of cBioPortal clinical data indicates that amplification of EZH2, SUZ12,
and EED genes was not limited to one particular malignancy but varied between different
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tumor types. The ovarian, skin, prostate and soft tissue tumors are characterized by over
1% amplification frequency of EZH2 and EED genes with the highest frequency in ovarian
cancer: 11.4% and 9.84%, respectively. The SUZ12 gene was amplified in >1% of breast,
esophagus/stomach, and bladder/urinary tract tumors where its amplification correlated
with >1% of EED amplification. In addition, over 1% of EED amplification was observed in
the head and neck cancer specimens.

Detailed analysis of tumor subtypes identified CRPC and prostate neuroendocrine
carcinoma as the tumors with the highest amplification rate (12–23%) of EZH2, SUZ12 and
EED genes. The amplification of EZH2 in prostate cancer was first shown by Saramaki
et al. [39] where it was significantly (p < 0.05) correlated with increased EZH2 protein
levels. Subsequent studies of prostate cancer demonstrated that high EZH2 and SUZ12
expression correlate with metastasis progression [60], and for EZH2high, with poor survival
prognosis [58,59]. Here, we show that amplification and higher expression of EZH2 and
EED correlate with poor survival, further supporting the involvement of EZH2 and its
PRC2 protein partners in prostate cancer.

Missense mutations of EZH2, but not SUZ12 or EED, were most frequent in GCB-
DLBCL (over 20%, cBioPortal clinical data). Missense mutations in GCB-DLBCL are
frequently represented by GOF mutations in the EZH2 SET domain [44,45] that enhance
PRC2 methyltransferase activity, leading to an abnormally high level of the chromatin
repressive H3K27me3 mark [46,47]. The survival analysis based on three independent
studies [33,49,50] indicates that GOF mutations in EZH2 correlate with poor prognosis in
DLBCL. Remarkably, the DLBCL cell lines (DepMap project) with GOF mutations in EZH2
were among the most sensitive to PRC2 knockout.

The high EZH2, SUZ12, and EED expression in tumor samples has been attributed
to the decreased patient survival in several tumor types [2,19,20]. Here we demonstrated
that along with prostate adenocarcinoma, other tumor types show a correlation between
high EZH2, SUZ12 and EED levels and a shorter survival, suggesting that these cancers
could be potential targets for EZH2/SUZ12/EED inhibitor therapy. Importantly, the high
expression of either of the PRC2 subunits correlate with poor prognosis in patients with
renal papillary cell carcinoma, low-grade glioma and hepatocellular carcinoma. Further-
more, poor prognosis was revealed for sarcoma and lung adenocarcinomas (EZH2high and
SUZ12high); ovarian, renal clear cell carcinomas (EZH2high and EEDhigh); and for MM, as
well as breast and endometrial carcinomas (EZH2high).

The EZH2 sensitivity to inhibitor therapy was shown to be dependent on the presence
of mutations in secondary genes. In particular, the SWI/SNF subunit SMARCB1 has been
approved as an effective marker of metastatic or locally advanced epithelioid sarcoma
sensitivity to tazemetostat [26–28], while SMARCA2, SMARCA4, ARID1A, and PBRM1 are
potential marker candidates [91–94,105]. The analysis of correlation between impairment
of individual genes and the sensitivity of 777 cell lines to knockout of EZH2, SUZ12, or EED
genes allowed us to predict new gene mutations as tentative markers for PRC2 inhibitor
therapy. The list of these genes includes the genes encoding SWI/SNF complex subunits,
namely, SMARCB1, SMARCA4, and ARID1B. Furthermore, impairment of KMT2D and
KMT2B COMPASS-like genes was also significant. Both SWI/SNF and COMPASS-like are
the Trithorax group complexes that counteract the repressive activity of PRC2 suggesting
that SWI/SNF and COMPASS-like members can be directly involved in the regulation of
PRC2 mediated carcinogenesis. Accordingly, loss-of-function mutations in KMT2D can
occur in B-cell lymphomas together with GOF mutations of the EZH2 gene [106]. Moreover,
similarly to EZH2 GOF, the loss of KMT2D promotes lymphomagenesis [107,108].

A significant overlap between DNA methylation and H3K27me3 binding in EZH2 in-
hibitor target genes was described in MM in association with resistance to the EZH2 in-
hibitor [51]. These two repressive marks have been shown to be mechanistically linked [109].
Of interest, the addition of a low dose of DNMT inhibitor can resensitise EZH2 inhibitor-
resistant MM cells to EZH2 inhibition [51], suggesting that combination of EZH2 and
DNMT inhibitors could be of therapeutic interest.
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Impairment of several newly identified genes showed even higher correlations with
sensitivity of tumor cell lines to PRC2 knockout. Alterations of BCL2 (B-cell CLL/lymphoma
2) showed the best correlation with EZH2 and correlated significantly with SUZ12 knockout.
Alterations in BCL2 frequently co-occur with EZH2 in DLBCL, and combined inhibition of
BCL2 and EZH2 has been considered a rational therapeutic approach [110].

Several other factors, including CPVL, SMAD3, CBX7, ESRP1, FAM98B, IGLL5,
DHX57, and FBXW11 were shown to be physically connected to PcG or TrxG systems.
Among these factors SMAD3 (significant in SUZ12 knockout) is an important component
of TGFβ signaling. In response to TGFβ SMAD3 interacts with and is acetylated by histone
acetyltransferase CREBBP [97–99]. SMAD3 acetylation has been shown to be critical for
potentially oncogenic Epstein-Barr virus lytic program [99]. Moreover, the recruitment
of RbBP5 component of COMPASS-like complexes and the formation of H3K4me3 at
SNAIL transcription start site during epithelial-mesenchymal transition are dependent on
SMAD3 and CBP in the DU145 prostate cancer cell line [111].

Finally, we note that, while higher expression of PRC2 components is frequently
associated with poor prognosis, in a significant number of cases, the opposite correlation
was observed. This is consistent with previous reports identifying inactivating PRC2 muta-
tions in hematological cancers, indicating that PRC2 can play a context-dependent tumor
suppressor role. EZH2 inactivating mutations have been reported in myeloid hemopathies
including chronic myelomonocytic leukemia (CML), myelofibrosis, myelodysplastic syn-
drome (MDS) and AML [112–114]. Furthermore, EZH2-loss-of-function mutations were
associated with a poor outcome in MDS, CML and myelofibrosis [112,113,115]. EZH2-loss
of function mutations can also contribute to the development of T-ALL [116,117]. It has
been shown that PRC2 inhibits the self-renewal potential of immature lymphoid progeni-
tors [118–120], whereas it stimulates mature cell proliferation [51,52,121–123]. Therefore,
PRC2 may act as an oncogenic factor in mature hematopoietic cells while exerting tumor
suppressor activities in undifferentiated or immature cells. While these tumors might be
insensitive to EZH2 inhibitors, a correlation between higher expression of PRC2 and good
prognosis might be of interest as it might suggest a possible sensitivity of these tumors to
inhibitors of KDM6 that demethylate H3K27me3 [124], or of active chromatin components,
such as those previously reported for SUZ12 inactivating mutations that sensitize several
cancer types to inhibitors of Bromodomain and Extra-Terminal motif (BET) proteins, a
family of proteins that counteract gene silencing with a chromatin activation function [125].

5. Conclusions

In summary, we performed bioinformatic analysis of genomic and transcriptomic data
across multiple tumor types to identify clinically significant trends related to PRC2. With
this analysis, we identified new tumors that could benefit from targeted PRC2 treatment.
Moreover, DepMap interactive genes could present new potential markers of tumors
that are more sensitive to PRC2 inhibitors. The next step would be to elucidate the
functional role of identified genes in PRC2 oncogenic function and sensitivity to inhibitors
directly. Furthermore, studies are needed to assess the cellular and molecular effects of
PRC2 inhibitors. For instance, while PRC2 is frequently overexpressed in breast cancer,
single-cell analysis suggests that drug-resistant cells may downregulate H3K27me3 at
many loci [126]. Our analysis makes it possible to filter individual genetic factors related to
tumor sensitivity to PRC2 inhibition. These factors could set the stage for the selection of
patients for individualized treatment with PRC2-targeting drugs.
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