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ABSTRACT

In recent years, the dramatic increase in the num-
ber of applications for massively parallel reporter as-
say (MPRA) technology has produced a large body
of data for various purposes. However, a computa-
tional model that can be applied to decipher reg-
ulatory codes for diverse MPRAs does not exist
yet. Here, we propose a new computational method
to predict the transcriptional activity of MPRAs, as
well as luciferase reporter assays, based on the
TRANScription FACtor database. We employed re-
gression trees and multivariate adaptive regression
splines to obtain these predictions and considered a
feature redundancy-dependent formula for conven-
tional regression trees to enable adaptation to di-
verse data. The developed method was applicable to
various MPRAs despite the use of different types of
transfected cells, sequence lengths, construct num-
bers and sequence types. We demonstrate that this
method can predict the transcriptional activity of pro-
moters in HEK293 cells through predictive functions
that were estimated by independent assays in eight
tumor cell lines. The prediction was generally good
(Pearson’s r = 0.68) which suggested that common
active transcription factor binding sites across dif-
ferent cell types make greater contributions to tran-
scriptional activity and that known promoter activity
could confer transcriptional activity of unknown pro-
moters in some instances, regardless of cell type.

INTRODUCTION

In metazoan cells, the processes of gene expression are regu-
lated by various protein–protein, DNA–DNA interactions
as well as protein–DNA interactions that involve transcrip-
tion factors (TFs) binding to functional DNA segments

that are pervasive in transcriptional initiation, elongation
and termination. To reveal the regulatory processes of gene
expression, many experimental approaches were developed
by taking different biological features into account, includ-
ing the ENCODE Project (1) for investigating epigenetic
modifications and transcription factor binding; MPRA (2)
(massively parallel reporter assays), CRE-seq (3,4) (cis-
regulatory element analysis by sequencing) and STARR-
seq (5) (self-transcribing active regulatory region sequenc-
ing) for measuring reporter activity of putative regulatory
sequences; and Hi-C technology (6) for investigating the in-
teraction of promoters and distal enhancers (7) by captur-
ing three-dimensional chromatin structures. Additionally,
cis-regulatory elements, which contain promoters and en-
hancers, regulate gene expression via TF binding, and thus,
cis-regulatory elements have been used frequently to explore
TF binding affinity in transcription processes (3,8,9).

In recent years, the dramatic increase in the number of ap-
plications of MPRA technology (2,3,8–13) produced a large
body of data from cis-element reporter assays for different
purposes, such as data for investigating genomic variants
(10), distinguishing functions between promoters and en-
hancers (11), analyzing motifs or transcription factor bind-
ing sites (TFBSs) (8,13). MPRA is a kind of transient re-
porter assay in which the target sequences are cloned into
reporter gene vectors and random barcodes are attached to
the 3′ end of a reporter gene to label different sequences. The
target sequences to be assayed by MPRA are mainly pro-
duced in two ways: DNA synthesis (equal lengths and <200
bp) or captured chromatin segments (with different lengths)
according to different purposes (2,3,8–13). The plasmid li-
braries are subjected to transfection, and then, the barcodes
of mRNA are detected by high-throughput sequencing. In
MPRA, the transcriptional activities are generally identi-
fied by the ratios of barcode counts of mRNA to the tem-
plate DNA.

Several previous studies investigated cis-regulatory ele-
ments via conventional luciferase reporter assays (14,15).
However, the throughput of luciferase reporter assays is
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generally up to several thousand, and therefore, compu-
tational approaches for predicting transcriptional activity
were mostly used for small and high-similarity data sets.
In addition, existing computational processes for analyzing
MPRAs were mostly designed in customized and dedicated
ways, such as summarizing SNPs (10) and testing the effects
of order, orientation, and copy number for specified TFBSs
or motifs (12,13). In the previous study of (2), a quantitative
sequence-activity model (16) (QSAM) performed well in
predicting transcriptional activities using the MPRA data
sets. However, a QSAM has limited adaptability for data
sets with unequal sequence lengths. Therefore, a computa-
tional method that is applicable to deciphering regulatory
codes for diverse MPRA data types does not exist yet.

In various computational biology studies, diverse ma-
chine learning algorithms have been applied to construct
a quantitative model to predict biological levels. These al-
gorithms are roughly separated into ‘white-box’ algorithms
and ‘black-box’ algorithms. The response functions of the
white-box algorithms, which are generally constructed as a
mathematical combination of predictors (or features), are
obvious and understandable. In contrast, black-box algo-
rithms hide the details of trained functions. Namely, mul-
tiple linear regression (17) (MLR), Lasso regression (18),
multivariate adaptive regression splines (19) (MARS) and
regression tree (20) are white-box algorithms. For these al-
gorithms, their visible response functions would not only
obtain quantitatively predicted values through data training
but also allow for extraction of the computational relation-
ship among different features of input data by analyzing the
structures of response functions.

In this research, we propose a new computational method
to predict the transcriptional activity of different MPRA, as
well as luciferase reporter assay via combined usage of the
TRANScription FACtor database (21,22) (TRANSFAC)
and the computational processes of regression trees and
MARS. TRANSFAC, which is a well-known eukaryotic
TFBS profile database, was introduced into the proposed
method to encode cis-element sequences into TFBS enrich-
ment. MARS is a well-known algorithm that builds re-
sponse functions through the summation of hinge functions
and products of multiple hinge functions. A hinge function
takes the form of max(0,x-c) or max(0,c-x), where c is a
constant estimated by MARS and x is given by explanatory
variables. A regression tree is a kind of a white-box and deci-
sion tree learning algorithm that is frequently utilized both
for classification and regression. The estimated result of the
regression tree is demonstrated via the tree structure, which
is understandable and interpretable. However, a limitation
of regression tree analysis is its vulnerability to over-fit er-
rors, and it is unreasonable to tune the tree size manually
for different properties of the input data. In this study, we
considered a feature redundancy-dependent formula to au-
tomatically tune the tree size for different data sets.

We demonstrate that the proposed method should be ap-
plicable to diverse MPRA (as well as luciferase reporter as-
say) data sets despite differences in transfected cell types
(HEK293, HepG2, K562 and other tumor cell lines of
human, yeast and mouse), sequence lengths (87 bp to
>1300 bp), construct numbers (several hundred to >27 000)

and sequence types (promoters, enhancers, designed motifs,
ChIP-seq peaks and genomic variants) (Table 1).

This paper consists of two parts. First, we developed a
new computational method to predict transcriptional activ-
ity by using the method on MPRA data. Second, we deci-
phered the TFBSs that are active during transcriptional reg-
ulation by analyzing the response functions of MPRA data
training. For that approach, the proposed method utilized
the TRANSFAC database to construct biological features
from DNA sequences and the computational processes for
predicting transcription activities based on two white-box
algorithms called regression tree and MARS. We found that
our method could calculate the data fitting values as pre-
dicted values and, furthermore, the structure of correspond-
ing response functions, which model the input features in
mathematical ways. Additionally, the method could esti-
mate the biological significance and relationship of features.
Moreover, the prediction of the transcription activities by
this method allowed us to estimate the transcription activ-
ities of new sequences by using known transcription activi-
ties. By analyzing the corresponding response functions, we
could even obtain important information clues for the se-
quence design of cis-elements, which would further decipher
the regulatory code of transcription.

MATERIALS AND METHODS

Data sets

We selected 10 public data sets from eight previous works
(Table 1) that contain eight MPRA data sets and two lu-
ciferase reporter assay data sets. The DNA sequences and
corresponding transcriptional activities were required to
construct predictive functions. Among the different data
sets, the sequence patterns could be roughly separated into
three types: (i) target sequences that were designed by in-
troducing random mutations into an original sequence (2);
(ii) artificial sequences in which different permutations of
motifs or TFBSs of interest were inserted into template se-
quences (12,13) and (iii) chromosomal segments selected
based on prepared criteria (8,10,11). The transcriptional
activity of diverse sequence patterns was measured in dif-
ferent cell lines and different species, including HEK293,
HepG2, K562 and other human tumor, yeast and mouse
cell lines. Different experimental designs led to having tar-
get sequences with both equal and unequal lengths within
the same data set, and the sequence lengths across 10 data
sets ranged from 87 bp to >1300 bp. The library sizes also
had a wide range, from several hundred constructs to sev-
eral tens of thousands. In contrast to MPRA, data sets of
luciferase reporter assays generally have relatively longer se-
quences and smaller library sizes (Table 1).

The data set of Melnikov et al. (2) has the transcrip-
tional activities of 27 000 mutant CRE (cAMP response
element) enhancers in HEK293 with the equal length of
87 bp. The study of Shen et al. (8) employed MPRA for
3500 DNase I hypersensitive sites (DHS) in mouse retina
with unequal sequence lengths (181–703 bp). Designed se-
quences were used by Sharon et al. (13) to investigate the
contributions of different TFBS properties, such as loca-
tion, number and orientation, to the transcriptional activi-
ties of 75 yeast TFBSs via MPRA. The studies of Irie et al.
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Table 1. Basic information contained in the data sets

Data sets Description Construct lengths Cell types Assayed loci #Constructs References

Melnikov et al. CRE enhancer
with 10% random

mutations

87 bp HEK293 Ex vivo 27000 (2)

Shen et al. 3500 DNase I
hypersensitive

sites

181–703 bp
(median 466 bp)

Mouse retina Ex vivo 27161 (8)

Sharon et al. Designed 75 yeast
TFBSs

103 bp Yeast In vivo 6016 (13)

Smith et al. 12 liver-specific
TFBSs assayed in

HepG2 and
mouse cells

168 bp Mouse, HepG2 In vivo, ex vivo 4742 (12)

Ulirsch et al. 2756 SNPs
assayed in
GATA1

overexpression
+/- K562 cells

145 bp K562 Ex vivo 15733 (10)

Irie et al. Promoters 755–1201 bp
(median 1081 bp)

HEK293 Ex vivo 734 (14)

Nguyen et al. 253 distal
enhancers and
234 promoters

assayed by
MPRA and
STARR-seq

139 bp Mouse cortical
neurons

Ex vivo 3409 (11)

Landolin et al. Promoters
assayed in eight

cell types

614–1301 bp
(median 983 bp)

Ags, G402,
HCT116, Hela,

Hepg2, HT1080,
T98G, U87mg

Ex vivo 4575 (15)

(14) and Landolin et al. (15) both assayed promoter se-
quences using luciferase reporter assays, and their sequence
lengths ranged from several hundred bp to >1 kb. Several
studies applied MPRA under different experimental condi-
tions: the study by Smith et al. (12) assayed the designed
sequences of 12 liver-specific TFBSs inserted into template
sequences in mouse and HepG2 cells; a study by Ulirsch
et al. (10) employed MPRA for 2756 genomic variants of
red blood cells (RBC) in K562 cells and GATA1 overex-
pression (OE) K562 cells. For the data sets with double ex-
perimental conditions, we used the proposed method to es-
timate the transcriptional activities under different experi-
mental conditions to detect experimental condition-specific
features. In addition, there are two data sets that contain re-
porter assays under multiple (>2) experimental conditions:
the data set of Nguyen et al. (11) has the transcriptional
activities in mouse cortical neurons and KCL (potassium
chloride)-stimulated mouse cortical neurons, obtained us-
ing both MPRAs and STARR-seq; the data set of Landolin
et al. has the transcriptional activities of 4575 promoters
in 8 tumor cell lines (Ags, G402, HCT116, Hela, Hepg2,
HT1080, T98G, U87mg), obtained using luciferase reporter
assays. For the data sets with multiple (>2) experimental
conditions, we constructed integrated predictive functions
across different conditions.

Data pre-processing

The sequences and corresponding transcriptional activ-
ity within data sets were required for training predictive
functions. The forms of transcriptional activity are diverse
across different data sets because they are produced by dif-
ferent studies of MPRAs, and we estimated the transcrip-

tional activity using the same method. The transcriptional
activity of MPRAs was calculated by the log2 ratios of the
mRNA tag counts to DNA tag counts of identical barcodes
(except for the data set of Sharon et al.; see Supplemental
materials), and the transcriptional activities were identified
by the log2 expression of the reporter gene using luciferase
reporter assays. Moreover, the experimental precision of in-
dividual data sets was estimated by experimental replicates,
and the relatively inaccurate and irregular samples were re-
moved from the data sets (Figure 1 and Supplemental ma-
terials).

Explanatory variable encoding

The sequence patterns of different data sets showed a great
deal of variety (Supplemental Figure S1) because they were
designed for diverse purposes, and we sought to encode se-
quence patterns in a uniform and compact way such that
the variable complexity is not altered by sequence lengths
and sequence similarities. Here, we utilized a database to
characterize sequence patterns.

TRANSFAC (21,22) (TRANScription FACtor
database), which is a well-known eukaryotic TFBS profile
database, was introduced into this study to encode DNA
sequences into TFBS enrichment scores as explanatory
variables (Figure 1). For each sequence, TFBS enrichment
scores were calculated by the summation of the Position
Weight Matrix (PWM) scores of the corresponding TFBS,
and the TFBS enrichment scores of all the sequences were
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Figure 1. Schematic of the proposed method and examples. (Left) The method consists of four steps: (1) the data were pre-processed; (2) the sequences were
characterized as TFBS enrichment scores through the use of TRANSFAC database and used as the explanatory variables, while the explanatory variables of
different sequences were assembled into an explanatory variable matrix; (3) the explanatory variable matrix and the corresponding transcriptional activity
were input into a feature redundancy-dependent sizing regression tree, which has a proposed feature redundancy-dependent formula to enable adaption to
diverse data sets to construct clusters; and (4) MARS was used to construct predictive functions for individual clusters estimated in the third step. Detailed
procedures for each step are described in Material and Methods. (right) The explanatory variables were determined by the summation of the PWM scores
of each kind of TFBS. For data with multiple experimental conditions, different conditions were encoded into binary codes 0–1 and were added to the
matrix of TFBS enrichment scores. Regression tree analysis separated the whole data set into different clusters according to the logic conditions shown in
the nodes of the tree. Predictors and corresponding coefficients of predictive functions were estimated by applying MARS to each cluster.

arrayed as an explanatory variable matrix.

TFBS enrichment scorei j

=
∑

k
PWM matrix scores of k − th TFBS i in sequence j

The TRANSFAC matrices of fungi were utilized for the
data set of Sharon et al.; matrices of a liver-specific profile
were used for the data set of Smith et al.; and non-redundant
vertebrate matrices were used for the other data sets. All the

matrix profiles with cut-offs were set to minimize the false
negative rates.

A high false positive rate is a common limitation of com-
putational approaches based on the TRANSFAC database,
and we wanted to develop a simple and interpretable pre-
dictive method with a small number of predictors that make
significant contributions to transcriptional activity. There-
fore, only the sequence feature of TFBS enrichment scores
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was adopted, and we ignored other relatively trivial features,
such as TFBS position and orientation (Figure 1).

Several reporter assays were applied to the same sequence
library under more than two experimental conditions, such
as assaying in different cell lines (15) and different types
of transcription-associated activity (11). For data sets that
contain multiple experimental conditions, we considered
additional explanatory variables to characterize different
experimental conditions. The additional variables were en-
coded into binary code (0–1) to represent different condi-
tions (e.g. cell types) and for combination with the corre-
sponding TFBS enrichment scores as an explanatory vari-
able matrix (Figure 1).

Feature redundancy-dependent sizing regression tree

After constructing the explanatory variable matrix, regres-
sion tree analysis was performed to assemble samples into
different clusters. The building process of a regression tree
consists of two steps: (i) the data are recursively separated
into two clusters (binary tree) until the clusters either reach
a pre-defined size (in the R package ‘rpart,’ the parameter
is named minbucket) or until no improvement can be made;
(ii) cross-validation is used to trim back the tree. For differ-
ent data sets that do not have similar feature patterns (Sup-
plemental Figure S1), it is not sufficient to control the tree
size only by splitting the tree such that the cross-validation
increases in the second step, as in the conventional regres-
sion tree.

In this study, a feature redundancy-dependent formula
was proposed to specify the minimum number of samples
in any terminal cluster of the regression tree. In the R pack-
age ‘rpart,’ we used as the formula to specify the minbucket
parameter (see also Supplemental materials).

The parameter of minbucket was determined by:

minbucket

= variation parameter ∗ number of observations

variation parameter

= 2−Proportion of variance of the first principal component∗1e + 07
number of observations2

The proportion of variance of the first principal compo-
nent could be calculated by principal component analysis
(23) (PCA). The first principal component (PC1) is defined
by the first eigenvector of the covariance matrix of features,
and the variance of PC1 indicates how redundant all the
features are. Here, we estimated the redundancy of TFBS
enrichment scores (Table 2), and we found that the data set
of Melnikov et al. had the smallest value of proportion of
variance of PC1. This probably occurred because the data
set has different sequences with non-biased random mu-
tations and exhibited the lowest feature redundancy. This
value was transformed into a negative exponent form and
divided by the squared number of observations, which indi-
cates that the relatively larger data sets should build more
complex trees because a large number of samples is easy to
assemble into compactly terminal clusters. In other words,
data sets with a small number of samples (e.g. the data set of

Table 2. Values of ‘Variation parameter’ and ‘minbucket’ for different data
sets

Data sets
Proportion

of PC1
Variation
parameter minbucket

Nguyen et al. 0.37 0.04 566.06
Melnikov et al. 0.10 0.01 354.31

Shen et al. 0.47 0.01 266.57
Landolin et al. 0.78 0.00 159.29

Iriel et al. 0.71 11.33 8318.43
Ulirsch et al. 0.48 0.03 456.04
Smith et al. 0.35 0.35 1657.98

Sharon et al. 0.50 0.20 1177.21

Irie et al.) do not split the data set into different clusters be-
cause the features are sparse and vulnerable to over-fitting
(see Table 2; the minbucket of Irie et al. is larger than its
number of observations, hence no clustering). Other con-
stants in the formula of the variation parameter are used to
make the variation parameter load within a desired scale.

MARS performed in each cluster

The regression tree analysis separated whole sample li-
braries into different clusters, and then, explanatory vari-
ables of subpopulations and the corresponding transcrip-
tional activity were input into MARS for training predictive
functions of individual clusters (Figure 1). In this study, we
constructed predictive functions of transcriptional activity
in each terminal cluster using MARS as follows:

transcriptional activityj
= ∑

c′ ∗ h(TFBS enrichment scorei ′ j ) ∗ h(TFBS enrichment scorei ′′ j )
+ ∑

c′′ ∗ h(TFBS enrichment scorei ′′′ j ) + c

Here, TFBS enrichment scorei ′ j represents the ith TFBS
enrichment score in DNA sequence j, and h(–) is a hinge
function and c is a coefficient, both estimated by MARS.
In the training process of MARS, MARS recursively adds
a new predictor that reduces the sum-of-squares residual
(RSS) error and removes the least effective predictor by
generalized cross validation (GCV) that penalizes the num-
ber of predictors to avoid over-fitting (19). The predictors,
for which TFBS enrichment scores were characterized by
hinge functions, captured the switch-like features that TFBS
enrichments along a sequence larger (or smaller) than a
scale (estimated by MARS) make contributions to tran-
scriptional activity. Moreover, the products of the hinge
functions of two TFBS enrichment scores indicate the es-
timated interactions between corresponding TFBSs.

RESULTS

General descriptions

In this study, we propose a new computational method to
predict transcriptional activity using DNA sequences and
the corresponding transcriptional activity using MPRAs.
The method consists of four steps (Figure 1): (1) the data
were pre-processed; (2) the TRANSFAC database was in-
troduced and the sequences were characterized as TFBS
enrichment scores and used as the explanatory variables,
while the explanatory variables of different sequences were
assembled into an explanatory variable matrix; (3) the
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explanatory variable matrix and the corresponding tran-
scriptional activity were input into a feature redundancy-
dependent sizing regression tree, which has a proposed fea-
ture redundancy-dependent formula to enable adaption to
diverse data sets to construct clusters and (4) MARS was
used to construct predictive functions for individual clus-
ters estimated in the third step. The detailed procedures for
each step are described in Materials and Methods.

To demonstrate the usability, we applied the proposed
method to 10 different data sets and obtained predictive
functions that consisted of 16–50 predictors for each clus-
ter and averaged 33.1 predictors across all data sets. The
correlation coefficients between predictive values and ex-
perimental values for individual data sets were ∼0.5–0.9
(Figure 2 and Supplemental table 1), and the correlation
coefficients of the open test, which were evaluated by 100-
fold cross-validation, approached the closed test. Based on
the series of evaluations, we concluded that the proposed
method should provide useful means to investigate the pri-
mary DNA sequence encoding the potential transcriptional
activities under various conditions.

Construction and evaluation of the method

Construction of the method. The improvements of pre-
dictive precision by introducing the feature redundancy-
dependent formula of minbucket into a conventional regres-
sion tree are shown in the results (Figure 2A). The proposed
formula of minbucket, which aims to balance the over-fit
and under-fit of predictive function training, was added
to conventional processes so that regression tree analysis
could be adapted to different data types. For the data sets
of Shen et al. and Sharon et al., the conventional regression
tree analysis fell into over-fitting, and the usage of the min-
bucket formula increased the performance of 100-fold cross-
validation approximately 3.0 and 0.9 times, respectively. For
the data sets of Nguyen et al., Irie et al., Ulirsch et al. as-
sayed in GATA1 OE K562 cells and Smith et al. assayed in
HepG2 cells, the formula of minbucket also contributed to
increasing the performance of the open tests by ∼10–26%
(Figure 2A).

The proposed method was constructed for estimating
the quantitative scale of transcriptional activity, and we at-
tempted to quantitatively validate the predictive results, not
only by the 100-fold cross-validation method but also by
predicting transcriptional activity for new data from inde-
pendent experiments.

Other MPRAs were applied by (11) to measure the tran-
scriptional activity of 18 selective motifs (6–17 bp) under
the same experimental conditions as the data set in Nguyen
et al., and the artificial sequences were designed so that cor-
responding motif repeats were separated by three types of
11 bp spacers (Figure 2C). We calculated the average activ-
ity of the motif sequences with different spacers as the mo-
tif activity to reduce the influence of the spacers (see also
Supplemental materials and Supplemental Figure S5). To
evaluate the predictive precision of the proposed method for
new data, we used the predictive functions for Nguyen et al.
data to predict the transcriptional activity of the 18 motifs.
Because the predictive functions for Nguyen et al. data in-
tegrated multiple experimental conditions, we could predict

the activity both in common mouse cortical neurons and in
KCL-stimulated mouse cortical neurons using MPRAs. We
predicted 18 individual motifs and obtained correlation co-
efficients between predictive values and experimental values
of approximately 0.75 and 0.80 (Figure 2C) for the assays in
KCL-stimulated and normal cells, respectively.

However, we also found that the correlation coefficients
between observations and predictive values were influenced
by the high transcriptional activities of two RFX (regu-
latory factor X) motifs (‘RFX’ and ‘RFX long’ in Fig-
ure 2C), and the correlation coefficients decreased to ap-
proximately 0.2 and 0.02 for the assays in KCL-stimulated
and normal cells if the two RFX motifs were removed
(see also Supplemental Figure S7). This probably occurred
because there are different feature patterns between the
trained data set (genomic segments) and predicted data
set (designed sequences), and the relatively low sensitiv-
ity of the proposed method also limits the performance
for samples that have low activities. For example, in con-
trast, the predictive precision of the five motifs (‘ELK1’,
‘NFY long’,‘atoh1 long’,‘atoh1 short’ and ‘NFI half’ in
Figure 2C and Supplemental Figure S7) that have the high-
est transcriptional activities in mouse cortical neurons if
the two RFX motifs were removed was ∼0.56 (Pearson’s r).
This result suggests that, albeit with relatively low sensitiv-
ity, the proposed method could quantitatively predict the
transcriptional activity of new sequences using predictive
functions that were estimated based on known data sets.

Comparisons with machine learning algorithms. Conven-
tional computational approaches that focus on decoding
regulatory codes are mostly considered at either the motif
resolution or single nucleotide resolution level. An analy-
sis of the motif resolution commonly uses motif similarity
scores as explanatory variables, and for an analysis at single-
nucleotide resolution, individual nucleotides at different po-
sitions are encoded into explanatory variables. Regarding
method comparisons, the two aspects of motif resolution
and single-nucleotide resolution were taken into account.

Here, we constructed three predictive methods at motif
resolution using different machine learning algorithms that
are widely applied in bioinformatics. MLR (17) and Lasso
regression (18) are both linear models that could be used to
investigate the linear relationship among different explana-
tory variables. Lasso regression could also be used for fea-
ture selection. Bayesian quantile regression (24) (BQR) is
a kind of quantile regression that estimates the quantiles of
response variables rather than the means, as MLR does. The
explanatory and response variables that were input into dif-
ferent algorithms were the same as for the proposed method
(Materials and Methods).

For all the data sets, the proposed method exhibited bet-
ter performance than MLR, Lasso regression or BQR (Fig-
ure 2B and Supplemental Table S1). The correlation co-
efficients between the experimental values and predictive
values of the proposed method were superior to those for
MLR, Lasso and BQR at a maximum of 60% (both data
sets of Shen et al. and Nguyen et al.), 72% (data set of
Nguyen et al.) and 151% (data set of Nguyen et al.), respec-
tively. The average predictive precision of this study across
different data sets was improved by 22%, 26% and 51% in
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Figure 2. The predictive precision and the corresponding number of predictors of the proposed method and compared methods. The bar graphs show the
correlation coefficients between predictive values and experimental values for different data sets of the closed test and open test (100-fold cross-validation).
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contrast to MLR, Lasso and BQR, respectively. Addition-
ally, the maximum number of predictors of terminal tree
clusters for individual data sets was much smaller (average
of 2.3–4.7 times smaller) than those for MLR, Lasso and
BQR.

Regarding the open test of 100-fold cross-validation, the
average correlation coefficients increased by 14%, 16% and
43% for all data sets compared to MLR, Lasso and BQR,
respectively.

Comparisons with QSAMs. A QSAM (16) is a compu-
tational model for sequence pattern recognition at single-
nucleotide resolution, and in the former study of (2), they
considered QSAMs to analyze functional elements for their
MPRA data. Here, we constructed two QSAMs for the
MPRA data sets that have equal sequence lengths (Figure
2B and Supplemental Table S1).

We could see that the proposed method also has better
predictive precision with a much smaller number of predic-
tors than the QSAM or QSAM combined with the meth-
ods of Lasso (see also Supplemental materials). Compared
to the two QSAMs, the proposed method improved the av-
erage predictive precision by 24% and 35%, respectively.

For the open test, we obtained an increased average pre-
dictive precision of 30% and 37% relative to the QSAM
and QSAM combined with Lasso, respectively. QSAMs en-
coded sequence patterns at the single nucleotide level, and
thus, we obtained 3 times the number of variables. In this
study, the QSAMs required, on average, 12.3 times the num-
ber of predictors as the new proposed method, and after
variable selection using the methods of Lasso with restric-
tion of model fitting, there were, on average, 6.5 times the
number of predictors compared to the proposed method.

Re-evaluations of the proposed method compared to previ-
ous studies. A previous study (2) included a computational
model based on a linear QSAM to predict the transcrip-
tional activity of the Melnikov et al. data set and obtained
a correlation coefficient of ∼0.79 for the closed test be-
tween predictive values and experimental values with 261
predictors. Another previous study (14) proposed a com-
putational method for predicting the transcriptional activ-
ity using luciferase reporter assays and obtained correlation
coefficients of the closed test and open test of 0.85 and 0.83,
respectively, for the data set of Irie et al. They also applied
their model for individual cell types to the data set of Lan-
dolin et al. and obtained an average correlation coefficient
of approximately 0.6 with approximately 167 predictors. In
this study, we obtained better performance with a much
smaller number of predictors compared to the predictors re-
ported in these previous studies (Figure 2 and Supplemental
Table S1).

Application of the method to investigating candidate-active
TFBSs

As described above, we constructed and evaluated the per-
formance of the proposed method on global and computa-
tional scales. Then, we attempted to examine whether the
mathematical correlation observed above could capture the
biological relevance. For this purpose, we analyzed the indi-
vidual results estimated by the proposed method for the bio-
logical details of different data sets. We conducted the eval-
uations using the following three approaches, in which we
attempted comparison of the methods and re-interpretation
of the previous studies.

Characterizing candidate-active TFBSs via tree structures.
The MPRAs of Melnikov et al. measured the transcrip-
tional activity of mutant CRE enhancers, which were de-
signed by introducing 10% random mutations into wild type
87 nt CRE enhancers. From the estimated results for the
data set of Melnikov et al., we found that the TFBS of
the CREB (cAMP response element binding protein) oc-
curred under almost all tree splitting conditions (4/5), and
the transcriptional activity increased along with CREB en-
richment score (Figure 3A). Known active TFBSs along the
CRE enhancer were four non-overlapping CREB sites, as
described in (2), and we obtained a similar result. Further-
more, the root split condition of the TFBS tree represents
whether CREB enrichment scores are larger than 3.9. In
this study, enrichment scores of exactly 3.9 indicate that the
copy number of CREB is 4 (the cut-off of V.CREB1 Q6 to
minimize false negative rates is 0.866). The regression tree
just captured the consensus copy number of CREB, and it
also suggested that de novo CREBs, which were generated
by random mutations (Figure 3A), also make large contri-
butions to transcriptional activity (Figure 3A; the average
transcriptional activity increased from –1.2 to 0.22 with the
occurrence of de novo CREB, two sided t-test P-value <
2.2e–16).

The study of Nguyen et al. (11) selected genomic seg-
ments bound by the coactivator of CREBBP (CREB bind-
ing protein), and reporter assays were conducted under four
experimental conditions, including both promoter assays
(MPRA) and enhancer assays (STARR-seq) applied in nor-
mal mouse cortical neurons and in KCL-stimulated mouse
cortical neurons. The analysis results reported by (11) found
that the TFBSs of CREB and RFX produced both strong
promoter activity and enhancer activity (Figure 3B and
Supplemental materials). Different from CREB and RFX,
they also found that the TFBS of AP1 (activator protein
1) bound preferentially for enhancer activity. The predic-
tive functions of Nguyen et al. estimated through the pro-
posed method were constructed for multiple experimental

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The number of predictors of the proposed method indicates the maximum number of predictors among all terminal clusters estimated by regression trees
(Figure 1). (A) The correlation coefficients between the predictive values and experimental values of the proposed method with and without using the
‘minbucket’ formula. (B) The correlation coefficients between the predictive values and experimental values of other machine learning algorithms (MLR,
Lasso regression and BQR) and QSAMs. The data sets with *indicate that QSAMs could not be applied to the corresponding data set. (C) (Upper)
Designed sequence patterns of the 18 motifs selected by (11). The corresponding motif repeats were separated by three types of 11-bp spacers. (Lower)
Scatter plots between the predictive values and observations of individual motifs for assays under different experimental conditions in mouse cortical
neurons and KCL-stimulated mouse cortical neurons. The obtained correlation coefficients between the predictive values and experimental values of the
18 individual motifs were approximately 0.75 and 0.80 for KCL-stimulated mouse cortical neurons and mouse cortical neurons, respectively.



PAGE 9 OF 13 Nucleic Acids Research, 2017, Vol. 45, No. 13 e124

Figure 3. Applications of the proposed method for investigating candidate-active TFBSs. The values shown in each cluster of the regression tree indicate
the average activity among samples within the corresponding cluster, and the percentages represent the sample proportions in the cluster. (A) (Upper)
Candidate-active TFBS tree of the data set of Melnikov et al. (Lower) Known TFBSs in CRE enhancer described in (2). (B). (Upper) Candidate-active
TFBS tree of the data set of Nguyen et al. (Lower) The average transcriptional activity of perfect motifs, two types of 2-bp mutant motifs, full mutant motifs
of CREB and RFX and negative controls described in the study by Nguyen et al. ((11); Supplemental Materials). (C) (Upper) Candidate-active TFBS tree
of the data set of Ulirsch et al. assayed in K562 cells and Ulirsch et al. assayed in GATA1 OE K562 cells. (Middle) Projection of TFBS enrichment scores
onto PC1 and PC2 calculated by PCA for the data sets of Ulirsch et al. assayed in K562 cells and assayed in GATA1 OE K562 cells. The cluster numbers
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conditions, and in the candidate-active TFBS tree, CREB
occupied the root, which suggests that CREB makes the
highest contribution to transcriptional activity across dif-
ferent assay types and stimulated conditions (Figure 3B).
The TFBS of RFX occupied three splits among all seven
regression trees, which implies that RFX has strong activity
across different conditions. Furthermore, from the predic-
tive functions of Nguyen et al., we found that AP1 is one of
eight candidate TFBSs that showed enhancer activity pref-
erences (Supplemental Table S2). According to the above
results, the predictive functions for Nguyen et al. were esti-
mated by the proposed method, and the results are consis-
tent with other independent studies.

Distinguishing candidate-active TFBSs under different ex-
perimental conditions. In the previous study conducted by
Ulirsch et al. (10), MPRAs were applied in normal K562
and in GATA1-overexpressing K562 cells for 15 733 se-
quences selected from 2756 genomic variants of RBC. We
built predictive functions for the data sets of Ulirsch et al.
obtained from assays in both normal and GATA1 OE K562
cells. In the two TFBS trees estimated for different experi-
mental conditions (Figure 3C), all the tree split determina-
tions were different, and only one TFBS (V.ZFP161 04) ap-
peared in both trees. These findings suggest that the mainly
transcriptional processes of the target sequences signifi-
cantly changed because of GATA1 overexpression.

The associations between GATA1 and TFBSs
(CPBP/KLF6, HOXB13 and ZFP161) that appeared
in the regression tree of Ulirsch et al. assayed in GATA1
OE K562 cells were unknown, and thus, we considered
the candidate-active TFBSs selected by the estimated
predictors. In the predictive functions of all tree terminal
clusters, 46 candidate TFBSs were selected for normal
K562. Regarding the predictors for the data set of Ulirsch
et al. assayed in GATA1 OE K562 cells, 42 TFBSs were
selected, and 17 of these did not overlap with the selected
TFBSs of Ulirsch et al. assayed in K562 cells. These
findings suggest that the 17 TFBSs probably led to GATA1
overexpression-responsive activity, and 10 TFBSs of the 17
were reported to associate or directly interact with GATA1
(Table 3).

Moreover, there are eight candidate TFBSs interacting
with GATA family transcription factors that were esti-
mated by the proposed method for Ulirsch et al. assayed
in GATA1 OE K562 cells, and half of these TFBSs (4/8)
intersected with the 17 candidate GATA1 overexpression-
responsive TFBSs. Additionally, 6/8 TFBSs interacting
with the GATA family were reported by several previous
studies (25–36) (Table 3 and Supplemental Table S3).

For another data set, in the study of Smith et al. (12),
the transcription activities of 4742 sequences with 12 liver-
specific TFBSs, in which the sequences were inserted into
template sequences according to pre-defined rules, such as
copy numbers and permutations, were assayed in HepG2
and mouse cells. The regression trees of the Smith et al.

data set only have one root, which means that no clustering
was performed according the proposed feature redundancy-
dependent formula for conventional regression trees. We
analyzed the TFBS frequencies selected by the response
functions of MPRA in HepG2 and mouse cells and found
that the motifs bound by the TFs of FOXA1, FOXA2,
HNF-1A, HNF-4A and HNF-1B showed a difference be-
tween humans and mice (Supplemental Table S5). For ex-
ample, according to the estimated response function, there
are four TFBSs that are mainly bound by HNF-1A. The
TFBS of ‘V.HNF1 C’ was bound by HNF-1A in human
HepG2 cells. In contrast, the TFBSs of ‘V.HNF1 01’ and
‘V.HNF1 Q6 01’ were bound in mice; and the TFBS of
‘V.HNF1A 01’ was bound in both species by HNF-1A.
Three of the five TFs (FOXA2, HNF-1A and HNF-4A)
have diverged binding events between humans and mice
that were reported by a previous study (37). These results
suggest the proposed method could distinguish candidate-
active TFBSs under different experimental conditions, such
as species-specific TFBSs.

Common active TFBSs across different cell types make more
contributions to transcriptional activity. The study of Lan-
dolin et al. (15) measured 4575 promoters across 8 tu-
mor cell lines (Ags, G402, HCT116, Hela, Hepg2, HT1080,
T98G, U87mg) using a luciferase reporter assay, and an-
other similarly independent study of Irie et al. measured the
transcriptional activity of promoter sequences in HEK293
cells. In this study, we considered that if most TFBSs per-
form similar activities across different cell types, then it
might be possible to predict the transcriptional activity of
unknown promoters based on the transcriptional activity
of known promoters despite the assays being performed in
different cell types.

We then attempted to predict the transcriptional activity
of Irie et al. sequences using the predictive functions esti-
mated for the data set of Landolin et al. by setting the ex-
planatory variables encoded by cell type at 0. These two data
sets were reported by different previous studies, and the se-
lected promoters are also different. The correlation coeffi-
cient between the predictive values and experimental values
of the Irie et al. data set is ∼0.68 (Figure 3D), which is close
to the correlation coefficients of 100-fold cross-validation
within the data set of Landolin et al. (that is, 0.7; see Supple-
mental Table S1). Regarding the candidate TFBSs selected
by the predictive functions of the two data sets, 8/18 selected
TFBSs of the Irie et al. data set are exactly consistent with
the selected TFBSs that occur > = 5 times in the predictors
within the predictive functions estimated for the Landolin
et al. data set (Supplemental Figure S6).

To investigate the candidate-active TFBSs that per-
formed different regulatory mechanisms in HEK293 and 8
tumor cell lines, we picked the sequences of the 5% most
over-estimated and the 5% most under-estimated by the pre-
dictive functions for the Landolin et al. data set, and we
found 13 TFBSs in which the fold changes of their enrich-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
in the PCAs were identical to the index numbers of clusters shown in the candidate-active TFBS trees. (Lower) Frequencies of TFBSs that were selected
by the predictive functions of Ulirsch et al. assayed in K562 and GATA1 OE K562 cells. (D) Plots between predictive values for the data set of Irie et al.
estimated by the predictive functions for the Landolin et al. data set and observations from the Irie et al. data set.
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Table 3. (Left) Candidate TFBSs interacting with GATA family transcription factors that were estimated by the predictive functions (see also Supplemental
Table S4) for Ulirsch et al. assayed in GATA1 OE K562 cells only. (Right) Seventeen selected TFBSs from the predictive functions of Ulirsch et al. assayed
in GATA1 OE K562 cells that did not overlap with the selected TFBSs of Ulirsch et al. assayed in K562 cells (see also Figure 3C)

TFBSs of interaction
with V.GATA Q6

estimated by
proposed model

Description or main
binding proteins

Previous reports
about biological
associations or

interactions with
GATA family

GATA1
overexpression

responsive TFBSs
estimated by

proposed model
Description or main

binding proteins

Previous reports about
biological associations or
interactions with GATA1

V.AP1 Q6 02 AP1 (28) V.AP1 Q6 02 AP1 (28)
V.COE1 Q6 COE1(EBF1) (35) V.BBX 04 Bbx -

V.CREBP1 01 CREB-binding
protein

(36) V.COE1 Q6 COE1(EBF1) -

V.HOXC13 01 HOXC13 - V.CREB1 Q6 CREB1 (36)
V.RBPJK 01 RBPJ(RBPJK) (30) V.CREBP1 01 CREB-binding

protein
(36)

V.REST Q5 REST - V.CTCF 01 CCCTC-binding
factor

(27)

V.RREB1 01 RREB-1 (29) V.EBOX Q6 01 E-box (enhancer box) (32)
V.TATA 01 TATA-binding

protein (TBP)
(34) V.GRE C GR (glucocorticoid

response element)
(26)

V.HDX 01 Hdx -
V.HIF1A Q6 HIF1A (25)

V.HOXD12 01 HOXD12 -
V.IRX2 01 Irx2 -

V.MUSCLEINI B Muscle initiator -
V.MYB 05 c-myb (33)

V.NKX25 Q6 Nkx2-5 (31)
V.POU2F1 Q6 POU2F1 -
V.RREB1 01 RREB-1 (29)

ments were > = 2 compared to the 10% best fitted sequences
(Table 4). There are several TFs, such as EGF1, HIF1A,
the E2F family and NANOG, that play different regulatory
roles in tumor cells (38–41), and it is also known that SP1
expression levels are higher in cancer cell lines than in nor-
mal cells (42). These findings suggest that cell line-specific
TFBSs definitely make contributions to transcriptional ac-
tivity, especially for samples that were not estimated well
using predictive functions based on other cell lines. How-
ever, common active TFBSs across different cell types make
higher contributions to transcriptional activity, and known
promoter activity could be used to predict unknown pro-
moters to some ex tent, regardless of cell type.

DISCUSSION

In this research, we proposed a new computational method
based on regression tree analysis and MARS for predicting
transcriptional activity via corresponding sequences. The
proposed method is applicable to diverse MPRAs, as well
as luciferase reporter assays, despite the different cell lines,
different sequence lengths, different numbers of constructs
and different sequence origins of the experimental data (Ta-
ble 1). To enable adaptation to diverse sequence patterns,
we considered a feature redundancy-dependent formula to
control the sizes of regression trees for individual data sets.
In the proposed method, the TRANSFAC database was in-
troduced, and sequences were characterized according to
TFBS enrichment scores. However, the high false positive
rate is a limitation of searching for TFBSs using motif-
finding tools. Thus, we attempted to reduce the false positive
rate and obtained a much smaller number of predictors in
the final predictive functions than were obtained through
other methods. This computational method could be ap-

plied not only to analyze candidate-active TFBSs in tran-
scriptional processes based on given reporter assays but also
to provide information for the sequence design of corre-
sponding promoters or enhancers.

Generally, conventional methods of QSAMs are only ap-
plicable for data sets with equal sequence lengths and have
a preference for high-similarity sequences because it is diffi-
cult to interpret the QSAMs unless they are derived from
data sets of mutant samples of identical sequence. Com-
pared to QSAMs, the proposed method performed better
with a smaller number of predictors, and it could be ap-
plied to diverse data sets. However, the proposed method
does not have high enough sensitivity that it could model
single-nucleotide substitutions the way that QSAMs can.

According to the predictive precision of different data
sets, we found that the proposed method performed as well
as other computational models altered with TF binding-
dependent transcriptional complexity. For example, the
data set of Sharon et al. is the data set with the best predic-
tions for all of the mentioned approaches, and the sequences
of this data set were simply designed by target TFBSs be-
ing inserted into template sequences according to several
defined rules, such as positions, copy numbers and orienta-
tions. Therefore, the data sets that were predicted well usu-
ally have simple sequence patterns.

The proposed method, as well as other methods, resulted
in limited performances for intrinsically complex transcrip-
tional processes, such as the interferon beta (IFN-beta) en-
hancer (the correlation coefficient is approximately 0.23;
MPRA data from (2)), which constructs the transcriptional
complex into an enhanceosome (43). The IFN-beta en-
hancer contains overlapping active TFBSs, and the inter-
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Table 4. TFBSs in which the fold-change of enrichments were > = 2 between the 10% best predicted samples and the 10% worst predicted samples by the
predictive functions of Landolin et al.

TFBS label Main binding proteins

V.AHR Q6 AhR
V.E2F Q6 01 E2F family
V.EGR1 Q6 EGR-1
V.HIF1A Q6 HIF-1alpha

V.MAZ Q6 01 MAZ
V.MAZR 01 MAZ related factor
V.MECP2 02 MECP2

V.NANOG 01 Nanog
V.RNF96 01 RNF96 (TRIM28, KAP1)
V.SP1 Q6 01 Sp1 family
V.SP100 04 Sp100

V.ZFP161 04 ZF5
V.ZNF333 01 ZNF333

actions among these TFBSs are insufficient to be charac-
terized by linear and exponential relationships.

We also found that the data sets in which the prediction
precision estimated by this study was lower than 0.7 were
those of Ulirsch et al. assayed in GATA1 OE K562 cells,
Ulirsch et al. assayed in GATA1 OE K562 cells, Nguyen
et al. and Shen et al., and all the sequences that were selected
were chromosomal segments rather than designed TFBS
permutations. This finding also suggests that the transcrip-
tional complexity of chromosomal segments is greater than
the complexity of artificial sequences intended for specified
purposes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Ramamoorthy,S., Diefenbach,A. and Grosschedl,R. (2013)
Transcription factor EBF1 is essential for the maintenance of B cell
identity and prevention of alternative fates in committed cells. Nat.
Immunol., 14, 867–875.

36. Blobel,G.A., Nakajima,T., Eckner,R., Montminy,M. and Orkin,S.H.
(1998) CREB-binding protein cooperates with transcription factor
GATA-1 and is required for erythroid differentiation. Proc. Natl.
Acad. Sci. U.S.A., 95, 2061–2066.

37. Odom,D.T., Dowell,R.D., Jacobsen,E.S., Gordon,W., Danford,T.W.,
Macisaac,K.D., Rolfe,P.A., Conboy,C.M., Gifford,D.K. and
Fraenkel,E. (2007) Tissue-specific transcriptional regulation has
diverged significantly between human and mouse. Nat. Genet., 39,
2006–2008.

38. Jeter,C.R., Yang,T., Wang,J., Chao,H.-P. and Tang,D.G. (2015)
NANOG in cancer stem cells and tumor development: an update and
outstanding questions. Stem Cells, 33, 2381–2390.

39. Nevins,J.R. (2001) The Rb/E2F pathway and cancer. Hum. Mol.
Genet., 10, 699–703.

40. Chiavarina,B., Whitaker-Menezes,D., Migneco,G.,
Martinez-Outschoorn,U.E., Pavlides,S., Howell,A., Tanowitz,H.B.,
Casimiro,M.C., Wang,C., Pestell,R.G. et al. (2010) HIF1-alpha
functions as a tumor promoter in cancer associated fibroblasts, and as
a tumor suppressor in breast cancer cells: autophagy drives
compartment-specific oncogenesis. Cell Cycle, 9, 3534–3551.

41. Krones-Herzig,A., Mittal,S., Yule,K., Liang,H., English,C., Urcis,R.,
Soni,T., Adamson,E.D. and Mercola,D. (2005) Early growth
response 1 acts as a tumor suppressor in vivo and in vitro via
regulation of p53. Cancer Res., 65, 12.

42. Li,L. and Davie,J.R. (2010) The role of Sp1 and Sp3 in normal and
cancer cell biology. Ann. Anat., 192, 275–283.

43. Panne,D., Maniatis,T. and Harrison,S.C. (2007) An atomic model of
the interferon-beta enhanceosome. Cell, 129, 1111–1123.


