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Abstract
To investigate the relationships between grip strengths and self-care activities in stroke patients using a non-linear support vector
machine (SVM).
Overall, 177 inpatients with poststroke hemiparesis were enrolled. Their grip strengths were measured using the Jamar

dynamometer on the first day of rehabilitation training. Self-care activities were assessed by therapists using Functional
IndependenceMeasure (FIM), including items for eating, grooming, dressing the upper body, dressing the lower body, and bathing at
the time of discharge. When each FIM item score was ≥6 points, the subject was considered independent. One thousand bootstrap
grip strength datasets for each independence and dependence in self-care activities were generated from the actual grip strength.
Thereafter, we randomly assigned the total bootstrap datasets to 90% training and 10% testing datasets and inputted the bootstrap
training data into a non-linear SVM. After training, we used the SVM algorithm to predict a testing dataset for cross-validation. This
validation procedure was repeated 10 times.
The SVM with grip strengths more accurately predicted independence or dependence in self-care activities than the chance level

(mean±standard deviation of accuracy rate: eating, 0.71±0.04, P< .0001; grooming, 0.77±0.03, P< .0001; upper-body dressing,
0.75±0.03, P< .0001; lower-body dressing, 0.72±0.05, P< .0001; bathing, 0.68±0.03, P< .0001).
Non-linear SVM based on grip strengths can prospectively predict self-care activities.

Abbreviations: AR = accuracy rate, FIM = Functional Independence Measure, GSB = grip strengths of both hands, N = sum of
true positive, true negative, false positive, and false negative, SA = self-care activities, SD = standard deviations, SVM = support
vector machine, TN = true negative, TP = true positive.
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1. Introduction

Upper limb hemiparesis after a stroke limits self-care activities
(SA)[1] involving movement of both arms, such as holding a rice
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bowl and using chopsticks, washing the face and body, and
fastening buttons. Previous studies noted that 50% to 85% of
stroke patients experienced upper limb hemiparesis and were
unable to perform SA.[2–4] The dominant and nondominant arms
must be coordinated to play roles that require mutual
complement, including manipulation and stabilization in daily
SA. Therefore, the unaffected upper limb of patients with
hemiparesis must vary its use for the affected limb in accordance
with the degree of hemiparesis to perform SA.
Because coordinated use of both hands is required in SA,

training for interlimb coordination is important to prepare
poststroke patients to naturally use both hands.[5,6] Previous
studies noted that frequent overall use of an upper limb can result
in faster recovery for that limb,[7] while disuse often leads to
“learned non-use.”[8] Therefore, using the upper limbs as much
as possible in SA, such as eating, dressing, toileting, and bathing is
important.
As a basis of SA, muscle weaknesses are the most common

impairments related to upper limb hemiparesis following
stroke.[9,10] Studies on patients after stroke use grip strength to
measure muscle weakness and characterize hemiparesis as it is
correlated with elbow and shoulder strengths.[11] In older
community-dwelling populations, grip strength could predict a
decline in motor and cognitive functions and mortality.[12,13]

Therefore, grip strengths of both hands (GSB) could be an
important predictor of SA among patients with hemiparetic
stroke.[14] However, most previous studies[15,16] focused on
upper limb hemiparesis and functional movement on body side
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contralateral to the brain lesion after stroke. Because the
dominant and nondominant arms coordinate to perform
complementary movements, including manipulation and stabili-
zation, the upper limb of the body side ipsilateral to the brain
lesion must vary its use in accordance with the degree of
hemiparesis to carry out SA. Therefore, the focus was not only on
the body side contralateral to the brain lesion after stroke but also
on the ipsilateral side (i.e., both hands) with poststroke
hemiparesis.
Despite the benefit of upper limb use in daily life, little is known

about the relationship between GSB and SA or whether grip
strengths predict independence and dependence in SA in patients
with poststroke hemiparesis. Therefore, prediction of the ability
to perform SA based on GSB remains difficult. In recent years,
non-linear support vector machine (SVM) with kernel functions
to map data to a higher dimension space has been recognized as a
powerful learning method to predict patient outcome.[17]

The non-linear prediction of SVM can analyze the complex
relationship between patient outcomes; thus, in this study, the
SVM was used to predict SA by GSB, which could establish an
evidence-based approach in the training and instruction of
poststroke patients using bilateral upper limbs in daily life. To the
best of the authors’ knowledge, no study has demonstrated the
non-linear machine learning method based on GSB prediction of
independence and dependence in SA. If GSB reflecting bilateral
arm functions predicts SA including both arms, this knowledge
could help patients, their caregivers, and clinicians understand
the prognosis for bilateral arm functions and SA. Therefore, this
study aimed to assess the relationships between grip strengths and
SA in patients with poststroke hemiparesis and to predict SA by
grip strengths. As a hypothesis, SA and GSB, whichever included
hemiparesis, were stochastically related, and GSB could predict
SA in stroke patients.

2. Methods

2.1. Eligibility criteria

Average values and standard deviations (SD) of grip strength in
21 people with poststroke hemiparesis from a previous study[18]

were used to determine the sample size. The average±SD of
paretic and nonparetic grip strengths for 21 subjects were 7.6±
9.2kg and 16.3±8.7kg, respectively, in the previous study.[18]

Sample size calculation was based on a desired 80% statistical
power to detect a 3-kg difference (standard effect size, 0.30) in
grip strength, with a 2-sided a of 5%. A sample size of 174 was
derived by insertion of a (0.05), 1-b (0.80), and standard effect
size (0.30) values in the Hulley matrix.[19] Therefore, for this
study, we planned to retrospectively recruit a total of 174 stroke
patients from a hospital database.
Eligibility criteria included hemiplegia, a period of less than 1

month since the stroke event, and grip strength that can be
assessed in accordance with the testing protocol. Experimental
procedures were approved by the Research Ethics Committee of
the St. Marianna University, Yokohama City Seibu Hospital
(approval number, 320), and were performed in accordance with
the principles of the Declaration of Helsinki.

2.2. Grip strength

Grip strength was measured with a Jamar dynamometer
(Sammons Preston, Mississauga, Ontario, Canada) on the first
day of the rehabilitation training (first assessment). The second
2

handle position was used for grip strength measurement because
this position was best for exerting maximum voluntary grip
strength.[20] Subjects were seated in a hard chair, with the arm
hung to the side in an upright posture, the elbow flexed at 90°, the
forearm in a neutral position between supination and pronation,
and the wrist in a neutral position between flexion and extension
in accordance with a standard testing position.[9,13,21] When the
subject could not maintain this position, the tester held the
subject’s elbow and wrist in this position. The same verbal
commands were used for all participants to encourage maximal
force during the assessments. Measurements were performed on
each hand once, randomly starting with the dominant or
nondominant hand and alternating hands in between measure-
ment trials. The test–retest reliability of the grip strength test with
the same position has previously been found to be excellent.[11,21]

We determined handedness through an interview about the side
of the hand used in daily life activities, such as using chopsticks,
brushing teeth, and writing.
2.3. SA

Functional Independence Measure (FIM)[22] consists of 18 daily
living items, graded on a scale of 1 to 7, with 1 indicating total
assistance and 7 indicating complete independence. We focused
on 5 FIM items that require bimanual coordination of the upper
limbs: eating, grooming, dressing the upper body, dressing the
lower body, and bathing. The FIM items were assessed by an
occupational therapist or physical therapist who maintained
contact with the subject at the time of discharge (second
assessment). This ensured sensitivity or responsiveness of grip
strengths as a prospective prediction scale for SA after stroke. In
this study, when a subject had a score of ≥6 points for each of the
5 FIM items, the subject was considered independent. All patients
received arm and leg training and training for activities of daily
living for 5 days per week by an occupational therapist and
physical therapist.
2.4. Data analysis

Grip strengths at the first assessment were used as features in a
non-linear SVM. The SVM focuses on grip strength patterns of
both hands and finds a hypersurface that maximizes the margin
between 2 distributions to classify them into each subject’s
independence or dependence in SA. One thousand bootstrap
datasets for each independence and dependence in SA, including
eating, grooming, dressing the upper body, dressing the lower
body, and bathing, were generated by randomly drawing a series
of actual sample datasets from the grip strength to reduce the
classification variability of SVMdue to limited actual sample size.
This bootstrap resampling method is widely used in demographic
studies.[23] Total bootstrap datasets for GSB and SA were then
randomly and blindly assigned 90% training and 10% testing
datasets, and 90% bootstrap training data were inputted into a
non-linear SVM. This inputting of non-linear SVM with
bootstrap training data ensured the stability of the SVM
classification, eliminating the influence of sample size limita-
tion.[23,24] Using the bootstrap training dataset, the SVM
algorithm was proposed to establish a prediction model. After
the training, the SVM prediction model using the 90% bootstrap
training dataset was used to predictively classify 10% testing
dataset into either each subject’s independence or dependence in
SA at the second assessment for cross-validation. This validation
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procedure, including random assignment into training and testing
datasets and prediction of independence or dependence in SA, was
repeated 10 times, and the accuracy rate for each activity (eating,
grooming, dressing the upper body, dressing the lower body, and
bathing) was calculated as AR=TP+TN/N, where AR was the
accuracy rate, TP was true positive, TN was true negative, and N
was the sum of true positive, true negative, false positive, and false
negative. If the prediction of independence and dependence is by
chance level, then the accuracy rate should be 0.5. Therefore, to
assess the clinical utility of SVM,whether the accuracy rate of SVM
was significantly higher than that of chance level,Wilcoxon signed-
rank test was performed. We defined statistical significance as
P< .05. This ensured that a trained SVM could prospectively be
generalized.[25] All analyses were performed using the Sklearn
package with Python language and R 3.5.2 software (R
Foundation for Statistical Computing, Vienna, Austria).
Figure 1. Gray columns denote ratios of independent patients for self-care
activities, including eating, grooming, dressing the upper body, dressing the
lower body, and bathing at the second assessment.
3. Results

The number of stroke events consecutively recorded in the
database of the Department of Rehabilitation Medicine, St.
Marianna University, Yokohama City Seibu Hospital from 2009
to 2012 was 440. A total of 177 (40.2%) stroke inpatients were
retrospectively enrolled in the present study. Table 1 shows the
characteristics of patients who met the eligibility criteria. The
mean±SD of grip strength at the first assessment was 21.6±12.9
kg and 20.2±10.8kg for dominant and nondominant hands,
respectively. Figure 1 shows the ratio of independent patients for
SA at the second assessment. Of all the patients, 80.2% could eat
independently, 68.9% could groom independently, 70.1% could
dress the upper body independently, 57.6% could dress the lower
body independently, and 50.8% could take a bath independently
Table 1

Characteristics of patients who satisfied the eligibility criteria.
Participants (n) 177
Age (yr) 70.1±11.0
Sex (n)
Male 114
Female 63

Dominant hand (n)
Right 164
Left 13

Diagnosis (n)
Infarction 152
Hemorrhage 25

Paralysis side (n)
Right 94
Left 83

Since stroke event (d)
First assessment 3.4±2.8
Second assessment 21.3±16.6

Grip strength (kg) at first assessment
Dominant hand 21.6±12.9
Nondominant hand 20.2±10.8

FIM score at second assessment
Eating 7 (6–7)
Grooming 7 (5–7)
Upper-body dressing 7 (5–7)
Lower-body dressing 6 (4–7)
Bathing 6 (4–7)

Values are mean± standard deviation, and n.
FIM= Functional Independence Measure.
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at the second assessment. The relationship between GSB and
independence or dependence in SA (eating, grooming, dressing
the upper body, dressing the lower body, and bathing) is shown in
Figure 2. As shown, GSB that exist across independence and
dependence in SA were randomly scattered. Clearly, the GSB
were not linearly divided by independence and dependence in SA.
Subsequently, 1000 bootstrap data for each independent and
dependent SA were generated from the actual grip strength. The
actual and bootstrapping data were almost equivalent for mean,
standard deviation, and data distribution (Table 2 and Fig. 3).
One thousand datasets in total were then randomly and blindly

divided into 90% training and 10% testing datasets. After
establishing the SVM prediction model by training the bootstrap
GSB, the testing dataset was predictively classified as indepen-
dence or dependence in SA individually related to eating,
grooming, dressing the upper body, dressing the lower body, and
bathing. For SVMprediction, the average±SDaccuracy rateswere
0.711±0.038 for eating, 0.769±0.026 for grooming, 0.751±
0.026 for dressing the upper body, 0.724±0.045 for dressing the
lower body, and 0.677±0.034 for bathing (Fig. 4). These indicate
that 71%, 77%, 75%, 72%, and 68% data were correctively
predicted for independence or dependence in eating, grooming,
dressing the upper body, dressing the lower body, and bathing,
respectively. The accuracy rate of SVM was significantly higher
than that of chance level (Wilcoxon signed-rank test: eating,
P< .0001; grooming, P< .0001; upper-body dressing, P< .0001;
lower-body dressing, P< .0001; bathing, P< .0001).

4. Discussion

Our results showed that the non-linear SVM for bootstrap grip
strength patterns of both hands could predict each patient’s
independence and dependence in SA. Particularly, in approxi-
mately 70% of data, either independence or dependence in
eating, grooming, and dressing the upper body was accurately
predicted by non-linear SVM. To the best of the authors’
knowledge, this is the first systematic study to show that grip
strength patterns of both hands non-linearly predicted indepen-
dence in SA.

http://www.md-journal.com


Figure 2. Scatterplots showing the relationship between the actual data for GSB and SA, including eating (A), grooming (B), dressing the upper body (C), dressing
the lower body (D), and bathing (E). Black circles denote independent patients, whereas white circles denote dependent patients. They were not linearly divided into
independence and dependence in SA by GSB. Eat=eating, Groom=grooming, GSB=grip strengths of both hands, L-Dress=dressing the lower body; Bath,
bathing, SA=self-care activities, U-Dress=dressing the upper body.
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The relationships between upper limb hemiparesis and
associated daily activities have been extensively investigated
in stroke patients.[15] Previous studies[9,10,26–28] suggested a
Table 2

Actual and bootstrapping grip strengths.

Grip strengths in the dominant hand (kg)

Actual Bootstrap

Eating
Independ 23.5±12.3 24.0±12.3
Depend 13.8±12.3 14.0±12.8

Grooming
Independ 24.9±12.2 25.5±12.4
Depend 14.2±11.1 14.2±11.1

Upper-body dressing
Independ 24.7±12.2 24.5±12.2
Depend 14.3±11.4 14.4±11.5

Lower-body dressing
Independ 25.4±12.6 25.6±12.5
Depend 16.3±11.3 16.2±11.3

Bathing
Independ 25.2±12.8 24.3±12.9
Depend 17.8±11.9 17.8±11.7

Values are mean± standard deviation.
Actual= actual data, Bootstrap=bootstrap data.
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correlation between grip strength and upper limb functions in
stroke patients. Moreover, weakness of grip strength has been
recognized as a contributor of upper limb dysfunction. Therefore,
Grip strengths in the nondominant hand (kg)

Actual Bootstrap

21.8±10.6 21.6±10.8
13.8±9.2 14.2±9.2

23.1±10.5 22.8±10.4
13.9±8.5 14.0±8.4

23.1±10.5 23.0±10.6
13.6±8.3 13.5±8.1

23.7±10.6 24.1±10.7
15.5±9.1 15.3±9.2

24.0±10.6 24.0±10.5
16.4±9.6 16.5±9.7



Figure 3. Histograms of actual and bootstrap data for independence in eating (A), dependence in eating (B), independence in grooming (C), dependence in
grooming (D), independence in dressing the upper body (E), dependence in dressing the upper body (F), independence in dressing the lower body (G), dependence
in dressing the lower body (H), independence in bathing (I), and dependence in bathing (J). The actual and bootstrapping data were almost equivalent in data
distribution. Eat=eating, Groom=grooming, L-Dress=dressing the lower body; Bath, bathing, U-Dress=dressing the upper body.

Suzuki et al. Medicine (2020) 99:11 www.md-journal.com
evaluation of grip strength is commonly performed in the
rehabilitation setting.[27,29] Nascimento et al[9] investigated the
relationship between paretic grip and shoulder strengths in
5

patients after stroke and noted significant correlation between the
2 strengths. Mercier and Bourbonnais[28] also investigated the
relationship between paretic grip strength and upper limb motor

http://www.md-journal.com


Figure 3. (Continued).
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function and noted significant correlation between grip strength
and upper limb motor function. These studies[9,28] suggested that
paretic grip strength linearly correlates with paretic limb motor
functions and can become the predictor of paretic upper limb
functions. Additionally, Faria-Fortini et al[27] evaluated the
6

relationship between the ratio of paretic grip strength to
nonparetic grip strength and SA in patients after stroke and
noted correlation between the ratio of paretic grip strength and
SA. On the contrary, Dromerick et al[15] noted that hemiparesis
and SA do not equally recover and indicated that severity of
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Suzuki et al. Medicine (2020) 99:11 www.md-journal.com
hemiparesis cannot translate to SA. They[15] also suggested that
motor impairment does not necessarily predict upper limb use in
daily living. However, these studies[9,15,27,28] focused only on
paretic limb impairment. Therefore, prediction of independence
and dependence in SA using impairment level is difficult. These
7

are serious gaps in the current evidence, and an important issue in
stroke rehabilitation is how to predict SA by impairment level. An
additional novel observation in the present study was that the
non-linear SVM based on GSB predicted each patient’s
independence in SA in daily life. In this study, independence

http://www.md-journal.com


Figure 3. (Continued).
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and dependence in SA in each subject with poststroke
hemiparesis were clearly predicted by non-linear SVM with
GSB. Therefore, this machine-learning method contributes
toward prediction of the extent or duration of the loss of SA by
GSB and to an increasingly evidence-based approach for
8

advocating rehabilitation training for patients with poststroke
hemiparesis.
Previous studies suggested that grip strength is affected by

muscle tone and spasticity.[10,21,30] Another study[18] investigat-
ing the recovery patterns of grip strengths on both contra- and



Figure 3. (Continued).
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ipsilateral sides to the brain lesion after stroke noted that bilateral
grip strengths improve in a similar pattern of change. This finding
implies that the dysfunction of the ipsilesional limb reflects the
bilateral descending control of the primary motor cortex over
distal movements.[18] Additionally, Hier et al[31] noted that SA
9

was associated with cognitive disorders, such as constructional
apraxia, spatial neglect, and motor impersistence. Jongbloed[32]

performed a critical review and suggested that the admission SA
status is a strong predictor of discharge SA status. In a broader
perspective on stroke recovery, the problem of defining SA status

http://www.md-journal.com


Figure 4. Accuracy rates of SVMclassificationswith bootstrapGSB for SA. The
black circles and error bars denotemean and standard deviation. Approximately
68% to 77% of bootstrap datasets for eating, grooming, and dressing the upper
body, either independence or dependence, were accurately predicted by non-
linear SVM. Eat=eating, Groom=grooming, GSB=grip strengths of both
hands, L-Dress=dressing the lower body; Bath, bathing, SA=self-care
activities, SVM=support vector machine, U-Dress=dressing the upper body.

Suzuki et al. Medicine (2020) 99:11 Medicine
in patients after stroke is complex due to the multidimensionality
of the predictors, including stroke severity,[33] metabolic
homeostasis,[34] immune activity,[35,36] inflammatory re-
sponse,[37] perfusion and hemodynamic disturbances,[38,39] and
drug actions.[40] In the present study, eligibility criteria included
hemiplegia, a period of less than 1 month since the stroke event,
and grip strength that can be assessed in accordance with the
testing protocol. These permissive criteria included many patients
with wide-ranging characteristics. The permissive criteria may
prompt the generalization of prediction based on non-linear
SVM. By contrast, these permissive criteria minimized detailed
classification in accordance with disease-specific characteristics.
Therefore, the SVM prediction in the present study does not
reflect the complexity of the covariates in GSB after a stroke,
which is multifactorial in nature, including muscle spasticity, site
of lesion associated with bilateral descending control, cognitive
disorders, admission SA status, and multiple factors of stroke
recovery, such as metabolic homeostasis, immune activity, and
inflammatory response. These permissive sampling criteria are a
potential limitation of the present study. In addition, in the
present study, the accuracy rates of SVM predictions with
bootstrap data for eating, grooming, and upper-body dressing
were slightly higher than those for lower-body dressing and
bathing. Although this study cannot explain the reason for this
difference, one possible reason is that lower-body dressing and
bathing did not only include GSB but also included lower
extremity functions, such as hip and knee flexion and extension
strengths and balance function. Another possible reason is that
some patients might have had hemiparesis dominantly in the
lower extremity and could not perform lower-body dressing and
bathing. Therefore, to investigate the relationship between GSB
and SA in consideration of multiple important covariates, a larger
number of participants are required. We used bootstrap datasets
to ensure the stability of the SVM prediction. Although bootstrap
data closely reflected actual data due to equivalence of actual and
10
bootstrap datasets, SVM did not predict actual participant’s
independence or dependence in SA. Therefore, despite the
usefulness of the bootstrap method, a larger number of
participants will be needed to predict actual patient’s SA related
to both upper and lower extremity functions in future studies.
Owing to the great heterogeneity, complexity, and interdepen-
dence of the outcomemodifiers, reliable prediction of prognosis is
difficult to achieve through the traditional, currently available
tools and models. The non-linear SVM could analyze the relation
between outcome and complicating multiple factors, and
individually predict each patient’s prognosis. Therefore, these
machine learning-based algorithmsmay offer additional resources
and can contribute in predicting SA and stroke recovery by a
personalizedapproachanddevelop integratedmodels of care in the
setting of individualized medicine. With further detailed and strict
eligibility criteria in a large number of participants, by classifying
participants by their covariates, accurate prediction of actual
independence and dependence in SA could be improved, and the
results of the present study could be more generally applicable.
In conclusion, GSB could non-linearly predict each patient’s

independence or dependence during SA by using a machine
learning method in patients with poststroke hemiparesis. These
findings have implications for rehabilitation regimen and
training. Machine-learning prediction of independence in SA
by GSB helps design individual regimen and training involving
targets with more closely matched achievable levels for specific
SA. A rehabilitative regimen can be designed with allowance for
variability in each patient’s independence level of grip strength
and SA. Therefore, the SVM with GSB contributes toward an
increasingly evidence-based approach for advocating rehabilita-
tive training for patients after stroke.
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