
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8373  | https://doi.org/10.1038/s41598-022-12355-6

www.nature.com/scientificreports

An air quality index prediction 
model based on CNN‑ILSTM
Jingyang Wang1, Xiaolei Li1, Lukai Jin1, Jiazheng Li1, Qiuhong Sun1 & Haiyao Wang2*

Air quality index (AQI) is an essential measure of air pollution evaluation, which describes the air 
pollution degree and its impact on health, so the accurate prediction of AQI is significant. This paper 
presents an AQI prediction model based on Convolution Neural Networks (CNN) and Improved 
Long Short‑Term Memory (ILSTM), named CNN‑ILSTM. ILSTM deletes the output gate in LSTM and 
improves its input gate and forget gate, and introduces a Conversion Information Module (CIM) to 
prevent supersaturation in the learning process. ILSTM realizes efficient learning of historical data, 
improves prediction accuracy, and reduces the training time. CNN extracts the eigenvalues of input 
data effectively. This paper uses air quality data from 00:00 on January 1, 2017, to 23:00 on June 
30, 2021, in Shijiazhuang City, Hebei Province, China, as experimental data sets, and compares this 
model with eight prediction models: SVR, RFR, MLP, LSTM, GRU, ILSTM, CNN‑LSTM, and CNN‑GRU 
to prove the validity and accuracy of CNN‑ILSTM prediction model. The experimental results show 
the MAE of CNN‑ILSTM is 8.4134, MSE is 202.1923,  R2 is 0.9601, and the training time is 85.3 s. In this 
experiment, the performance of this model performs better than other models.

The problem of urban air pollution is becoming increasingly severe, which has become an important factor 
hindering the sustainable development of Chinese cities and the construction of ecological  civilization1,2. Air 
quality affects people’s lives, production, and health. AQI is an essential basis for measuring air quality.

The AQI is divided into six  levels3,4. The first level of the AQI is between 0 and 50, and there is little air pol-
lution. The second level is between 51 and 100, and the pollutants may have a weak effect on the health of a 
very small number of exceptionally sensitive people. The third level is between 101 and 150, and the symptoms 
of susceptible people are mildly aggravated, and healthy people have irritating symptoms. The fourth level is 
between 151 and 200, which means that the heart and respiratory system of healthy people are affected. The fifth 
level is between 201 and 300, patients with heart and lung disease significantly increase symptoms. AQI above 
300 is the sixth level, healthy people reduce exercise tolerance, have obvious and strong symptoms, and certain 
diseases appear in  advance5,6.

Therefore, it is crucial to accurately predict the changes of AQI in a short time in the future by using historical 
observation  data7–9. In recent years, China has been increasing investment in the construction of air pollution 
indicators monitoring. In 2010, China established an active monitoring system of air pollution indicators in key 
cities. By the end of 2015, the automatic monitoring of air quality indicators has covered more than 300 cities. 
Although China’s the monitoring system is good, the problems of high cost, high energy consumption, and low-
level efficiency appear sometimes. It is necessary to build a more reasonable prediction model to enhance the 
effectiveness and accuracy of air quality monitoring and reduce production costs.

The traditional fully connected method in a neural network has many problems, such as the inability to uti-
lize time-series information in data and too many parameters. With the proposal of Recurrent Neural Network 
(RNN), RNN has achieved a significant breakthrough in time series analysis, language model, speech recogni-
tion, and machine  translation10–14. Because of the traditional RNN’s long-term dependence on data, the issues 
of “gradient explosion” and “gradient disappearance” often appear in model training when the amount of data is 
 large15–19. The emergence of LSTM can alleviate the issues of “gradient explosion” and “gradient disappearance” 
in RNN’s training  process20,21. It uses gated technology to determine the participation degree of historical data.

The time series prediction based on LSTM has too many parameters, so the calculation of the model is too 
complex, resulting in too long a training  time22–24. Therefore, ILSTM proposed in this paper deletes the output 
gate in LSTM, improves the input gate and forget gate in LSTM, and introduces a CIM to prevent supersaturation 
in the learning process. ILSTM aims to reduce the model’s training time and improve model prediction accu-
racy on the premise that the model can alleviate the issues of “gradient explosion” and “gradient disappearance” 
of the RNN. ILSTM realizes the effective control of "forget gate" and "input gate" to time series data through 
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simplified calculation. This paper presents an AQI prediction model based on CNN-ILSTM. In the model, 
CNN can achieve eigenvalues extraction well and make up for the insufficient feature extraction and learning 
of ILSTM. The experiment introduces eight different models as baseline models to verify this model’s effective-
ness. The prediction results are evaluated as a whole by using Mean Absolute Error (MAE), Mean Squared Error 
(MSE), R Squared  (R2), and training time. The experiment shows that the MAE, MSE,  R2, and training time 
of CNN-ILSTM are 8.4134,202.1923, 0.9601, and 85.3 s, respectively. Comparative experiment shows that the 
CNN-ILSTM prediction model is superior to other models in the overall evaluation. To sum up, the contribu-
tions of this paper are as follows:

1. Through the research of RNN and LSTM and time-series data, this paper presents an improved LSTM net-
work, ILSTM, which deletes the output gate of LSTM, improves the input gate and forget gate of LSTM, and 
introduces a CIM to prevent supersaturation in the learning process.

2. Compared with LSTM, ILSTM proposed in this paper has fewer parameters, lower computational complexity, 
and less training time on the premise of ensuring the prediction accuracy of AQI.

3. This paper presents an AQI prediction model based on CNN-ILSTM. The introduction of CNN can well 
extract eigenvalues of input data. Through comparative experiment, the combination of CNN and ILSTM 
can improve the accuracy of AQI prediction. And compared with the other eight prediction models, the AQI 
prediction result based on CNN-ILSTM performs better.

Related work
Traditional regression models for time series prediction include Random Forest Regression (RFR), Support Vec-
tor Regression (SVR), and Multi-Layer Perceptron (MLP). Ganesh et al. used SVR to forecast the AQI of Delhi 
and  Houston25. However, because of the unstable characteristics of AQI data, it was difficult for SVR to achieve 
a high fitting degree. Zhang et al. proposed the RFR based on Spark clustering for air quality  prediction26, but for 
the prediction of nonlinear air quality data, the RFR had the risk of over-fitting. Duro et al. used MLP to forecast 
the concentration of PM10, and  O3 in industrial  areas27. However, for many non-stationary time series data, the 
traditional MLP prediction model had the problem of low prediction fitting degree.

RNN significantly improved the fitting degree of time series prediction. Compared with standard neural net-
works, the calculation results of RNN’s every hidden layer were related to the current input and the last hidden 
layer’s result. By this method, the calculation result of RNN had the characteristic of remembering the previous 
results. For example, Wang used RNN to predict air  quality28. Because of RNN’s long-term dependence on data, 
the issues of “gradient explosion” and “gradient disappearance” will appear during model  training29.

The gated technology has alleviated the issues of “gradient explosion” and “gradient disappearance” caused 
by the RNN’s long-term dependence on data to a great extent. For example, Ysc et al. used LSTM to forecast 
changes in air  pollutants30. Because of the single prediction model, the extraction of eigenvalues was often insuf-
ficient, making it difficult to achieve high precision prediction. Dsa et al. proposed air quality prediction based on 
 LSTM31. Alhirmizy et al. used LSTM to forecast the multivariate time series of air pollution in Madrid,  Spain32. To 
improve the prediction accuracy,  Dsa31 and  Alhirmizy32 used diversified data with increased data volume, which 
would lead to the problem of increasing model training time. Cwa et al. proposed an AQI prediction model based 
on CNN-LSTM, which combines CNN and LSTM to improve the ability for extracting features and integrating 
air quality data, thus improving the prediction  accuracy33. Zhu et al. used the CNN-LSTM hybrid model in the 
process of PM2.5  prediction34. Cwa and Zhu et al. used CNN to make up for the problem of insufficient feature 
extraction of LSTM to a great extent, but LSTM itself often takes a long time to train because of many parameters.

Models
CNN. Compared with the traditional neural network model, CNN has some unique advantages. For exam-
ple, with the increase of hidden layers and nodes of the neural network, traditional neural network W weight 
parameters and B biases parameters will gradually increase, so the amount of calculation will also gradually 
increase. But CNN realizes parameter sharing, so the amount of calculation is greatly  reduced35,36, as shown 
in Fig. 1. CNN can handle more complex data environments and problems with unclear data background and 
unclear inference rules, and allow the sample to have larger defects and  distortions37–40. CNN can also well real-
ize feature extraction of local signals, and the combination of CNN, RNN, and LSTM has been widely used in 
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Figure 1.  CNN convolutional layer feature extraction process.
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feature extraction of time series  data41–43. Therefore, CNN can effectively extract features from non-linear and 
unstable air quality data.

ILSTM. Model structure. LSTM has excellent advantages in mining long-term dependence relationships of 
sequence data. Figure 2 shows three types of gates: forget gate, input gate, and output gate, respectively. A gate 
can be regarded as a full connection layer, and LSTM stores and updates information by these  gates44,45. Gated 
Recurrent Unit (GRU) has only two gates. GRU combines the input gate and forget gate in LSTM into one, which 
is called the update  gate46, as shown in Fig. 3. Based on the gated technology, the ILSTM model proposed in this 
paper consists of input gate and forget gate, as shown in Fig. 4.

Compared with LSTM, ILSTM deletes the output gate. Compared with GRU, ILSTM structure is simpler. 
The parameters of LSTM, GRU, and ILSTM are shown in Table 1. Compared with LSTM, ILSTM reduces weight 
parameters from 8 to 4 and bias parameters from 4 to 2. Compared with GRU, ILSTM reduces weight parameters 
from 6 to 4 and bias parameters from 3 to 2.

In terms of algorithm, ILSTM adds the cell state ct−1 of the previous moment to the algorithm of the forget 
gate to generate the mainline forgetting kt , which affects the data retention degree at the current time. In addi-
tion, when updating the cell state ct of the current moment, the CIM is introduced to prevent supersaturation 
in the learning process.

The forget gate of the ILSTM ft is a crucial component of ILSTM unit, which can control what information 
should be retained and what information should be forgotten. σ(x) is a Sigmoid function, as shown in formula 
(1). xt is the input data of the t-th time step. ht−1 is the hidden layer of the previous time step t − 1. Wfh is the 
weight of ht−1 of forget gate, and Wfx is the weight of xt . bf  is the bias of forget gate, as shown in formula (2).

Mainline forgetting kt is calculated by cell state ct−1 and ft . Mainline forgetting represents the influence of 
information on current cell state ct , where ct−1 is cell state information from the beginning to the previous 
moment, as shown in formula (3).

The input gate it controls how much of the current input data xt flows into the memory cell, that is, how much 
can be saved to ct . Compared with the input gate of LSTM, ILSTM adds ct−1 to the input gate algorithm, that is, 
the cell state information up to the previous moment. The introduction of ct−1 makes the input gate of the model 
have a memory effect on the retention of data at the current time, as shown in formula (4), Wih and Wix are the 
weights of the input gate’s ht−1 and xt , respectively, and bi is the bias of the input gate.

(1)σ(x) =
1

1+ e−x
,

(2)ft = σ(Wfh · ht−1 +Wfx · xt + bf ).

(3)kt = ft × ct−1.
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Figure 2.  LSTM structure.
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Due to the characteristics of the Sigmoid activation function, when the value of x is outside − 3 and 3, the 
value of the Sigmoid activation function will fall into a supersaturation interval. Therefore, in formula (4), when 
the input data enters the input gate’s supersaturation, the value does not change significantly, decreasing learn-
ing sensitivity. A CIM is introduced into ILSTM model to prevent this phenomenon, As shown in formula (5). 
The Sigmoid function value (ranging from 0 to 1) calculated by the above formula is taken as the input of Tanh. 
Tanh and Sigmoid function as shown in Fig. 5.

The value of tanh(it) will be between [0, 0.762), as shown in the dotted line part by the tanh function in Fig. 5, 
so the obtained value will be more uniform and significant. Therefore, the value output by the CIM will greatly 
reduce the supersaturation degree, and the significant difference makes the model calculation more recognizable, 
thereby making the model learning more sensitive.

Formula (6) shows that ct is the information kept from the beginning to the present.

ht indicates the information preserved at the current time. ct controls how much information can be kept 
through tanh function, as shown in formula (7).

Formula derivation of ILSTM. ILSTM is proposed to improve the model’s prediction accuracy and reduce the 
model’s training time on the premise that the model can alleviate the issues of “gradient explosion” and “gradient 
disappearance” of the RNN. Input gate and forget gate use two parameter matrices [Wfh,Wfx] and [Wih,Wix] . 
Record Wf = [Wfh,Wfx] , Wi = [Wih,Wix],and W = [Wf ,Wi] . The Lt function of W is the loss corresponding 
to ht . L is the total loss. As for the derivative of W of L , as shown in formula (8):

The RNN updates the W parameter by formula (9):

where ∂Lt
∂W can be written as formula (10):

(4)it = σ(Wih · ht−1 +Wix · xt + ct−1 + bi).

(5)CIM = tanh(it).

(6)ct = kt + CIM.

(7)ht = tanh(ct).

(8)
∂L

∂W
=

T
∑

t=1

∂Lt

∂W
.

(9)W = W −
∂Lt

∂W
,

Table 1.  The parameters of LSTM and ILSTM model.

LSTM GRU ILSTM

3 gates 2 gates 2 gates

8 weight parameters 6 weight parameters 4 weight parameters

4 bias parameters 3 bias parameters 2 bias parameters

Figure 5.  Tanh and Sigmoid function.
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Formula (10) can be simplified to formula (11):

where ct is shown in formula (12):

The CIM = tanh(it) , so formula (12) can be written as formula (13):

The derivative of ct can be obtained by formula (14):

Then the total loss can be written as formula (15):

Then record that x is equal to formula (16):

Then that ft can be written as formula (17):

Then record that y is equal to formula (18):

Then that it can be written as formula (19):

Then the formula (15) can be written as formula (20):

Then record that z(x, y) is equal to formula (21):

Then the formula (20) can be written as formula (22):

As shown in formula (22), the gradient of the function is ∂Lk
∂hk

∂hk
∂ck

(

∏k
t=2

(

z(x, y)
)

)

∂c1
∂W . When z(x, y) is greater 

than 1, the gradient may be too large with the increase of data amount. When z(x, y) is too small, the gradient 
disappears easily.

In this model, the σ(x) function is shown in Fig. 6, and the (1− tanh
(

σ(y)
)2
)σ ′(y ) function is shown in 

Fig. 7. σ(x) ’s range is [0,1] and σ(y) ’s range is [0, 1], so the function range of (1− tanh
(

σ(y)
)2
)σ ′(y) is (0.1720, 

0.1880). Function gradient z(x, y) is shown in Fig. 8. It can be seen from the figure that the value range of function 
gradient z(x, y) will be more reasonable. Therefore, this model can alleviate the problems of "gradient disappear-
ance" and "gradient explosion" to a great extent.

CNN‑ILSTM. The structure of CNN-ILSTM is shown in Fig. 9. The CNN-ILSTM model is generally divided 
into four parts. The first layer is the data input layer. This paper takes AQI as the research object and air quality 
data as the model input. The second layer is the data preprocessing layer. To ensure the reliability of the predic-
tion results and improve the accuracy of the prediction results, it is necessary to conduct standardized processing 
of the original data, three-dimensional time series construction and other pre-processing operations. The third 
layer is the feature extraction layer, which realizes feature extraction of air quality data by taking advantage of 
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∂Lk

∂hk

∂hk

∂ck

∂ck

∂ck−1
. . .

∂c2

∂c1

∂c1

∂W
.

(11)
∂Lk

∂W
=

∂Lk

∂hk

∂hk

∂ck
. . .

∂c2

∂c1

∂c1

∂W
=

∂Lk

∂hk

∂hk

∂ck

(

k
∏

t=2

∂ct

∂ct−1

)

∂c1

∂W
,

(12)ct = ft × ct−1 + CIM.

(13)ct = ft × ct−1 + tanh(it).

(14)
∂ct
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= ft + (1−tanh(it)

2)(it)
′.
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.

(16)x = Wfh · ht−1 +Wfx · xt + bf .

(17)ft = σ(Wfh · ht−1 +Wfx · xt + bf ) = σ(x).

(18)y = Wih · ht−1 +Wix · xt + ct−1 + bi.

(19)it = σ(Wih · ht−1 +Wix · xt + ct−1 + bi) = σ
(

y
)

.

(20)
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Figure 6.  σ(x) Function.

Figure 7.  (1− tanh
(

σ(y)
)2
)σ ′(y) Function.

-1.0
-0.5

0.0
0.5

1.0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

-1.0
-0.5

0.0
0.5

1.0

z(x,y)

Z

YX

Figure 8.  z (x, y) function.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8373  | https://doi.org/10.1038/s41598-022-12355-6

www.nature.com/scientificreports/

CNN’s significant advantages in feature extraction. The last layer is the prediction layer. Through the optimized 
ILSTM model, the prediction of AQI is realized and the prediction accuracy is improved.

The AQI prediction process of CNN-ILSTM is shown in Fig. 10.

Experiment
Experiment environment. This experiment runs on Windows 10 operating system, and the hardware 
device is Intel(R) Core(TM) I5-10300H CPU @ 2.50ghz, RAM:8.00 GB, and NVIDIA GTX1660Ti. The pro-
gramming language is Python3.7.0, and the compiler is PyCharm 2018 3.5 × 64. Anaconda4.5.11 is the basic 
platform for deep learning training. TensorFlow 1.14.0 and keras2.1.0 are deep learning frameworks.

Data collection and preprocessing. The air quality data used in this experiment are obtained from 
http:// data. epmap. org/. There are often some problems in the original data, such as missing and duplicating 
some data. Some of the original data of the summarized air quality data are shown in Table 2.

In this experiment, the original data are processed as follows:

1. Delete duplicates. There are duplicate data in the original data, for example, there are duplicate data in the 
data at 3:00 on February 1, 2021 and 3:21 on February 1, 2021. In this experiment, keep the last data and 
delete the previous duplicate data.

2. Data filling. In the process of air quality data detection, data loss may be caused by network interruption, 
storage failure, and other reasons, such as the data at 1:00 on February 1, 2021. These low-quality data will 
affect the model’s learning effect. As a result, the final prediction accuracy is not high, and there is a problem 
of missing values in the original data. Considering that the air pollution data changes smoothly with time 
in most cases, and there is generally no sudden change in values, this experiment uses the average value of 
the data of one hour before and one hour after to fill in the missing  parts47, as shown in formula (23).

where Vt−1 is the data of one hour before time t, Vt is the missing value at time t, and Vt+1 is the data of one 
hour after time t.

Because the environmental protection department calculates AQI through six main pollution indexes: 
PM2.5, CO,  O3,  NO2, PM10, and  SO2, these six indexes are introduced as input items of the data set in this 
 experiment48–50. Air quality data from 00:00 on April 4, 2019 to 23:00 on June 30, 2021 in Shijiazhuang city, 
Hebei Province, China are used as experimental data set. There are 39,408 pieces of data in this data set. The 
data obtained after data preprocessing in Table 2 are shown in Table 3.

(23)Vt =
Vt−1 + Vt+1

2
,
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Figure 9.  CNN-ILSTM structure overview.
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Figure 10.  CNN-ILSTM network AQI prediction process.

Table 2.  Part of the original data.

Date PM2.5 (μg/m3) CO (μg/m3) O3 (μg/m3) NO2 (μg/m3) PM10 (μg/m3) SO2 (μg/m3) AQI

2021/2/1 0:00:00 110 1.2 16 50 161 10 144

2021/2/1 1:00:00

2021/2/1 2:00:00 105 1.2 8 52 160 8 138

2021/2/1 3:00:00 106 1.2 6 55 162 10 139

2021/2/1 3:21:00 106 1.2 6 55 162 10 139

2021/2/1 4:00:00 109 1.4 7 53 159 11 143

Table 3.  Experimental data.

Date PM2.5 (μg/m3) CO (μg/m3) O3 (μg/m3) NO2 (μg/m3) PM10 (μg/m3) SO2 (μg/m3) AQI

2021/2/1 0:00:00 110 1.2 16 50 161 10 144

2021/2/1 1:00:00 107.5 1.2 12 51 160.5 9 141

2021/2/1 2:00:00 105 1.2 8 52 160 8 138

2021/2/1 3:21:00 106 1.2 6 55 162 10 139

2021/2/1 4:00:00 109 1.4 7 53 159 11 143
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Data normalization. There is a big difference between the sample values of some features and those of 
other features in the data set, which may lead to slow convergence and reduce the training accuracy of the model. 
In this experiment, z-score normalization processes the original data, as shown in formula (24), where σ is the 
standard deviation of the original data, x is the mean of the original data, and x∗ is the value after standardiza-
tion. After the data standardization, the data is dimensionless and scaled to the same interval. In addition, the 
features are comparable, and the trend and relative size of the scaled data do not change, which speeds up the 
model convergence.

Three‑dimensional time series data construction. This experiment uses the method of constructing 
time series, takes the time of the input data as a sequence, and carries out two-dimensional segmentation and 
three-dimensional construction of the input data. In Fig. 11, assuming that there are X pieces of experimental 
data, the data is constructed in three dimensions according to the setting of step = 1 and sequence = 24. The data 
from the first to the 24th constitute layer  Y1, and data from the second to the 25th constitute layer  Y2, and so on. 
Complete a total of X-23 layers  (Y1,  Y2…  YX-32) construction; each layer contains 24 pieces of data, that is, the 
three-dimensional data construction is completed. The constructed time series data are divided into training set, 
validation set, and test set in this experiment. The prediction model takes the first 23 data of each layer as input 
and the AQI value of the 24th layer as output for training, validation and evaluation.

Data set segmentation. During the model designing and training process, model parameters (such as 
changing weights, choosing the number of layers and the size of each layer) need to be  adjusted51. In the process 
of model training, it is necessary to provide feedback information through the prediction performance of the 
validation set, to adjust the network model and parameters, which is also the role of the validation set. However, 
in the training process, the information of the validation set will be leaked. The more feedback adjustment of the 
model, the more information will be leaked, so the model will more clearly "understand" the experimental set, 
which will eventually cause the model to fail on over-fitting on the validation set. At this time, a data set which 
is completely "unfamiliar" to the model—the test set is needed to measure the overall performance of the model 
prediction.

So after presetting model parameters, the data set will be divided into the training set, validation set, and 
test set. According to experience, the data volume ratios are as follows: 8:1:1, 7:2:1, 6:3:1, 7:1:2, 6:2:2, 5:3:2, 6:1:3, 
5:2:3 and 4:3:3. In different data set segmentation ratios and different model prediction results, the prediction 
fitting degree of the validation set is shown in Table 4. In this experiment, when the data ratio of the training set, 
validation set and test set is 7:2:1, the prediction fitting degree of different models is higher. Therefore, the ratio 
of the training set, validation set and test set in this experiment is 7:2:1.

Because the neural network has a strong fitting ability, if the data set is trained in chronological order and the 
"batch" of the same combination appears repeatedly, the model may produce an over-fitting state through learn-
ing, thus affecting the test of the generalization ability of the model in the experiment. Therefore, in the process 
of this experiment, the order of data input is interrupted in every training, validation, and test of the model.

Model parameter adjustment. In deep learning, a given machine learning algorithm has model param-
eters and model hyper-parameters. Model parameters are generally internal variables, such as bias, weight, etc. 
These parameters are not set manually but are automatically learned and obtained through model training data. 
The model’s hyper-parameters are set before the model training and are often designed manually by the expe-
rience of researchers. Model hyper-parameters can be divided into structural hyper-parameters and running 
hyper-parameters. Structural hyper-parameters refer to configurations that play a decisive role in model struc-
ture, such as filters, padding, and kernel_size in convolution layer; pool_size and padding in pooling layer; 
units and kernel_initializer in ILSTM layer. Running hyper-parameters are used to run neural networks, such as 
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Figure 11.  The construction process of three-dimensional time series.
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batch_size, epochs, and learning_rate. Traditional manual design of hyper-parameters is time-consuming, inef-
ficient, and costly, and even the results of the hyper-parameters model designed by experimenters are difficult to 
reproduce and expand. This experiment combines empirical mode and hyper-parameter optimization technol-
ogy (Grid search optimization algorithm) to adjust parameters. The purpose of hyper-parameter optimization 
is to find a suitable set of parameters in the algorithm model so that the model has good expression ability and 
generalization ability. Based on experience, we select the parameters of batch_size using 110, 120, 130, 140, 
and 150. We select epochs using 80, 90, 100, and 110. We select learn_rate using 0.01, 0.005, 0.002, 0.001, and 
0.0009. After selecting filters, pool_size, units, learning_rate, and other parameters by grid search optimization 
algorithm, the details of the parameters set in the final experiment are shown in Table 5.

Experiment analysis. Model convergence. After the model is built and the parameters are set, it is nec-
essary to verify whether CNN-ILSTM normally converges during training. When all parameters are the same 
and epoch = 100, 1–0 loss function is used in this experiment to show its convergence. In this experiment, the 
convergences of CNN-ILSTM, CNN-GRU, and CNN-LSTM are shown in Fig. 12. The loss function of CNN-
ILSTM is smaller than that of CNN-LSTM before training 10 times, so the convergence speed of CNN-ILSTM 
is faster than that of CNN-LSTM in this experiment. The loss function of CNN-ILSTM is smaller than that of 
CNN-GRU before training 5 times, so the convergence speed of CNN-ILSTM is faster than that of CNN-GRU 
in this experiment.

Table 4.  Fitting degree of different prediction models in segmentation of data sets with different ratios.

Model

8:1:1 7:2:1 6:3:1 7:1:2 6:2:2 5:3:2 6:1:3 5:2:3 4:3:3

R2 R2 R2 R2 R2 R2 R2 R2 R2

SVR 0.8852 0.8762 0.8633 0.8232 0.8269 0.8132 0.7795 0.7487 0.7516

RFR 0.9001 0.8969 0.8425 0.8356 0.8125 0.8019 0.7851 0.7421 0.7359

MLP 0.8932 0.9061 0.8821 0.8692 0.8793 0.8611 0.7932 0.7752 0.8003

LSTM 0.9355 0.9365 0.9210 0.8716 0.8921 0.8862 0.8856 0.8236 0.8526

GRU 0.9492 0.9507 0.9315 0.8796 0.8880 0.8760 0.8569 0.8525 0.8210

ILSTM 0.9420 0.9470 0.9399 0.8890 0.8965 0.8890 0.8611 0.8499 0.8511

CNN-LSTM 0.9410 0.9487 0.9280 0.9001 0.9034 0.8962 0.8960 0.8321 0.8561

CNN-GRU 0.9498 0.9512 0.9392 0.9030 0.9164 0.8836 0.8695 0.8530 0.8312

CNN-ILSTM 0.9510 0.9638 0.9330 0.9068 0.9186 0.9020 0.8741 0.8499 0.8501

Table 5.  Model parameter.

Layer Parameter

CNN parameter Filters = 16; kernel_size = 1; padding = ‘valid’

MaxPooling1D parameter Pool_size = 1; padding = ‘valid’

ILSTM parameter Units = 16; kernel_initializer = ‘he_normal’

Other parameter Loss = ‘mae’; batch_size = 130; learning_rate = 0.001; epochs = 100

Figure 12.  Convergence of CNN-LSTM, CNN-GRU and CNN-ILSTM.
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Evaluation index. To scientifically evaluate the prediction accuracy of the model, this experiment uses MAE, 
MSE,  R2, and model training time as the overall evaluation index of the model. MAE describes how different the 
predicted value is from the true value. MSE measures the average modulus length of the predicted value error, 
regardless of direction.  R2 describes how similar the predicted value is to the true value. The model training time 
describes the calculation time of the model. The calculation methods of MAE, MSE and  R2 are shown in formula 
(25–27).

where m is the number of data in the test set; ŷi is the predicted value; yi is the true value; yi is the average value 
of the true values.

Experimental results. To verify the accuracy of CNN-ILSTM in predicting AQI, traditional regression models 
(SVR, RFR, and MLP), recurrent neural network models based on gated technology (LSTM, GRU, ILSTM), and 
hybrid prediction models (CNN-LSTM, CNN-GRU) are introduced as comparison models.

Experimental results are shown in Table 6. The test set prediction evaluation results show that the traditional 
regression models SVR, RFR, and MLP have a lower prediction fitting degree than the recurrent neural network 
model based on gated technology. The  R2 of LSTM is 0.0697 higher than that of SVR, the  R2 of LSTM is 0.0542 
higher than that of RFR, and the  R2 of LSTM is 0.0341 higher than that of MLP. The predicted and true values 
of SVR, RFR, MLP, and CNN-ILSTM are shown in Fig. 13.
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Table 6.  Experimental results.

Model MAE MSE R2 Training time (s)

SVR 19.2644 483.6269 0.8750 411.2

RFR 15.364 402.6292 0.8905 341.3

MLP 13.6186 386.3648 0.9106 50.3

LSTM 9.4974 266.8523 0.9447 124.9

GRU 11.0032 270.8179 0.9411 71.6

ILSTM 9.2420 248.9234 0.9508 64.2

CNN-LSTM 9.2314 258.5143 0.9466 149.5

CNN-GRU 9.0615 248.6389 0.9478 92.5

CNN-ILSTM 8.4134 202.1923 0.9601 85.3

Figure 13.  True value and the predicted value of SVR, RFR, MLP, and CNN-ILSTM.
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Compared with LSTM and GRU,  R2 of ILSTM increases by 0.0061 and 0.0097, respectively. MAE decreases 
by 0.2554 and 1.7612, respectively. The true value and predicted values of LSTM, GRU, and ILSTM are shown in 
Fig. 14. As shown in Fig. 15, in this experiment, the different prediction models have improved their fitting degree 
after the introduction of CNN. Compared with LSTM,  R2 of CNN-LSTM increases by 0.0019, MAE decreases by 
0.266, and MSE decreases by 8.338. Compared with GRU,  R2 of CNN-GRU increases by 0.0067, MAE decreases 
by 1.9417, and MSE decreases by 22.179. Compared with ILSTM,  R2 of CNN-ILSTM increases by 0.0093, MAE 
decreases by 0.8286, and MSE decreases by 46.7311.

And in the prediction of this test set, CNN-ILSTM prediction evaluation is the best. Compared with CNN-
LSTM,  R2 of CNN-ILSTM increases by 0.0135, MAE decreases by 0.818, and MSE decreases by 56.3220. Com-
pared with CNN-GRU,  R2 of CNN-ILSTM increases by 0.0123, MAE decreases by 0.6481, and MSE decreases 
by 46.4466. In terms of training time, SVR and RFR take a high time, reaching 411.2 s and 341.3 s respectively. 
Compared with LSTM, the training time of ILSTM decreases by 48.60%. Compared with GRU, the training time 
of ILSTM decreases by 10.34%. Compared with CNN-LSTM, the training time of CNN-ILSTM decreases by 
42.94%. Compared with CNN-GRU, the training time of CNN-ILSTM decreases by 7.78%. The true value and 
predicted values of CNN-LSTM, CNN- GRU, and CNN-ILSTM are shown in Fig. 16.

Discussion. In the experiment using this test set, the overall evaluation index of the CNN-ILSTM AQI predic-
tion model performs better than other models. Compared with the traditional regression models, the recurrent 
neural network models based on the gated technology have a better prediction fitting degree. Compared with 
LSTM and GRU, ILSTM significantly reduces the training time due to the reduction of ILSTM parameters on the 
premise of maintaining higher prediction accuracy. CNN-ILSTM compared with ILSTM, the introduction of 
CNN improves the prediction accuracy. Compared with CNN-LSTM and CNN-GRU, the prediction accuracy 
and training time of CNN-ILSTM are better.

The reasons for the improvement of CNN-ILSTM’s AQI prediction accuracy are as follows:

Figure 14.  True value and the predict value of LSTM, GRU, and ILSTM.

Figure 15.  Comparison of ILSTM, LSTM and GRU with or without CNN.
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1. The introduction of the model makes up for the shortcomings of the single model in some aspects. For exam-
ple, CNN can realize the advantages of data feature extraction, which makes up for the RNN’s deficiencies 
in eigenvalues screening and learning before data input.

2. ILSTM deletes the output gate, improves the input gate and forget gate, and introduces a CIM to learn his-
torical data more thoroughly.

ILSTM and CNN-ILSTM have been greatly improved in model training time because:

1. The structure of the ILSTM model is simpler. ILSTM consists of input gate and forget gate. Compared with 
LSTM, ILSTM has no output gate.

2. ILSTM has fewer parameters. Compared with LSTM, ILSTM reduces weight parameters from 8 to 4 and 
bias parameters from 4 to 2. Compared with GRU, ILSTM reduces weight parameters from 6 to 4 and bias 
parameters from 3 to 2.

Conclusions
This paper presents an AQI prediction model based on CNN-ILSTM. Compared with the traditional regres-
sion models of SVR, RFR, and MLP, and the deep learning models of LSTM, GRU, ILSTM, CNN-LSTM, and 
CNN-GRU, the overall evaluation of prediction results of CNN-ILSTM is best. ILSTM is proposed for the first 
time. ILSTM is improved and optimized in model design and parameter ratio on the premise of high prediction 
accuracy and alleviating the issues of “gradient explosion” and “gradient disappearance” in the RNN caused by 
long-term data dependence. Compared with LSTM and GRU, the training time of ILSTM is reduced by 48.6% 
and 10.34%, and ILSTM has the best AQI prediction results. In addition, the introduction of CNN makes up for 
the deficiency of ILSTM feature extraction and learning. The experiment results show that the MAE of CNN-
ILSTM decreases by 0.284798, and the  R2 increases by 0.013951 compared with ILSTM AQI prediction. The 
conclusions of this paper are as follows:

1. ILSTM has performed better than LSTM in my tests. ILSTM is an improvement of LSTM, which deletes the 
output gate in LSTM, improves its input gate and forget gate, and introduces a CIM to prevent supersatura-
tion in the learning process. On the premise of ensuring that the model can alleviate the issues of “gradient 
explosion” and “gradient disappearance” of RNN and has high prediction accuracy. Compared with LSTM 
and GRU, ILSTM significantly reduces the training time.

2. The AQI prediction model of CNN-ILSTM makes up for the shortcomings of the single prediction model, 
such as insufficient feature data extraction and insufficient historical data learning. In this experiment, the 
AQI prediction model of CNN-ILSTM is the best.

3. The model design and parameter tuning are improved and optimized, so the convergence rate of the AQI 
prediction model based on CNN-ILSTM is improved.

However, the AQI prediction model of CNN-ILSTM does not perform well in extreme value prediction. 
Therefore, the following research will carry out the high-precision prediction of extreme values.

Received: 13 February 2022; Accepted: 10 May 2022

Figure 16.  True value and the predict value of CNN-LSTM, CNN-GRU, and CNN-ILSTM.
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