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Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes
mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus.
,e aim of this study was to investigate the effect of the granule form of the extract produced from the dried root of Astragalus
membranaceous (AM) combination with the granule form of the extract produced from the dried Angelica sinensis (AS) on
diabetic macroangiopathy and its underlying mechanism. Herein, rats were treated by AM-AS at a ratio of 3 : 2 via intragastric
administration. High glucose-induced human umbilical vein vascular endothelial cells (HUVECs) were then treated with drug-
containing serum collected from the rats. In high glucose-treated HUVECs, AM-AS combination increased cell viability
(P< 0.05), decreased the percentage of apoptotic cells (P< 0.05) and the expression of the proapoptosis protein caspase 3
(P< 0.05), reduced the proportion of cells in the G0/G1 phase (P< 0.05), decreased reactive oxygen species level (P< 0.05),
enhanced cell migration and invasion (P< 0.05), and reduced the level of 8-iso-prostaglandin F2alpha. ,ese results indicate that
AM-AS combination at the ratio of 3 : 2 ameliorated HUVEC dysfunction by regulating apoptosis, cell migration, and invasion,
which might be mediated by their regulatory effect on reactive oxygen species production.,e current study provides a theoretical
basis for the treatment of diabetic macroangiopathy using AM-AS.

1. Introduction

Diabetes mellitus is a prevalent metabolic disease charac-
terized by hyperglycemia that results in high mortality. With
improvements in quality of life and increasingly poor dietary
habits, the number of diabetes mellitus patients is increasing
every year, and it has been identified as a public health issue
[1]. ,e number of adults suffering from diabetes mellitus
worldwide has increased from 108 million in 1980 to 422
million in 2014 [2]. Additionally, 84% of diabetes mellitus
patients have died in response to complex stroke and

cardiovascular disease [3]. Diabetic macroangiopathy is a
primary complication of diabetes mellitus and is a main
cause of mortality among diabetes mellitus patients [4].
Evidence has demonstrated that the pathogenesis of diabetic
macroangiopathy involves angiogenesis [5], vascular and
extracellular matrix remodeling [6], and oxidative stress [7].
Although much effort has been dedicated to diabetic
macroangiopathy therapy, no effective drug has been
identified to moderate the symptoms [8]. ,us, it is im-
perative to investigate target drugs and clarify their un-
derlying mechanisms.
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Diabetes mellitus has been identified as an emaciation-
thirst disease based on the concept of Yin deficiency in
China [8], and many traditional Chinese medical formu-
lations have been utilized to treat diabetes mellitus [9–11].
However, because of the complicated composition of the
ingredients, the mechanism of traditional Chinese formu-
lations in alleviating diabetes mellitus remains ambiguous.
Astragalus membranaceous, known as Huang Qi in China, is
one of most prevalent traditional Chinese herbal medical
compounds with known therapeutic effect against diabetes
mellitus [12–14]. Astragalus membranaceous has also shown
great antioxidative and anti-inflammatory effects [15].
Adesso et al. [16] reported that the Astragalus membrana-
ceous extract inhibited oxidative stress and inflammation in
intestinal epithelial cells through the activation of NF-κB
and Nrf2 signaling. Angelica sinensis, known as Dang Gui in
China, is another popular traditional Chinese medical in-
gredient, showing multiple pharmacological activities in-
cluding cardio protection, antiatherosclerosis, and
myocardial infarction prevention [17]. Astragalus mem-
branaceous and Angelica sinensis combination is a classic
combination applied medically in China to invigorate qi and
promote blood flow [18], having thus becomes an important
research topic in the prevention and treatment of diabetic
vascular diseases. Our previous study demonstrated that the
combination of Astragalus membranaceous and Angelica
sinensis at a ratio of 3 : 2 exhibited the best protective effect
against early diabetic nephropathy [19]. We theoretically
analyzed the feasibility of the AM-AS combination in dia-
betic macroangiopathy treatment [20], but this needs to be
further verified experimentally.

On this basis, Sprague Dawley rats received intragastric
administration of the granule form of the extract produced
from the dried root of Astragalus membranaceous (AM) and
the granule form of the extract produced from the dried
Angelica sinensis (AS) at a ratio of 3 : 2 for one week and
drug-containing serum was obtained. Vascular endothelial
cell injury and dysfunction, which can be induced by high
glucose-triggered excessive oxidative stress, are an essential
and early determinant of diabetic macroangiopathy [21].
Vascular endothelial cells were treated with drug-containing
serum to explore the effect of AM-AS combination on di-
abetic macroangiopathy and its underlying mechanism.

2. Materials and Methods

2.1. Component Analysis of AM-AS. AM was supplied by
Sichuan New Green Pharmaceutical Technology Develop-
ment Co., LTD. AS was supplied by Beijing Tcmages
Pharmaceutical Co., LTD. ,e AM and AS were diluted in
warm water at a ratio of 3 : 2. A 5 μl aliquot of the combi-
nation solution was analyzed using ultrahigh-performance
liquid chromatography (Nexera UHPLC LC-30A, Shi-
madzu, Japan) equipped with a BEH C18 column (1.7 μm,
2.1× 100mm, Waters, Massachusetts, USA) maintained at
30°C. Water (A) and acetonitrile (B) were used as the mobile
phase for gradient elution at a flow rate of 400 μl/min as
follows: 0–3.5min, 5⟶15% B; 3.5–6min, 15⟶ 30% B;
6–6.5min, 30% B; 6.5–12min, 30⟶ 70% B; 12–12.5min,

70% B; 12.5–18min, 70⟶100% B; 18–22min, 100% B.,e
detector wavelength was set at 280 nm. ,e peak area and
retention time were used to calculate the concentrations of
the compounds.

2.2. Preparation of Drug-Containing Serum. Specific
pathogen-free Sprague Dawley rats, supplied by the Hubei
Provincial Center for Disease Control and Prevention, were
housed in a standard 12 h/12 h light/dark cycle with water
and food ad libitum at 22–25°C. To obtain drug-containing
serum, the rats received intragastric administration of AM-
AS (3 : 2) at 5.2 g/kg once a day for one week. ,e clinical
dosage of adult is 50 g granules per day (AM: 30 g; AS: 20 g).
,e dose of rat was calculated according to the guide for dose
conversion between animals and humans [22]. Positive
control rats received intragastric administration of sim-
vastatin (SIM, MedChemExpress, New Jersey, USA) at
20mg/kg once a day for one week. Nontreated rats received
intragastric administration of an equal volume of distilled
water. Blood collected from abdominal aorta and artery were
centrifuged at 3000 rpm at 4°C for 10min. ,e supernatant
was maintained at −20°C for the follow-up study.

2.3. Cell Treatment. Human umbilical vein endothelial
cells (HUVECs), purchased from Shanghai Institutes for
Biological Sciences, Chinese Academy of Science, were
maintained in a F12 K medium (Gibco, Gibco BRL,
Gaithersburg, MD, USA) contained 0.1 mg/ml heparin
(Bioswamp, Wuhan, China) and 0.05mg/ml endothelial
cell growth supplement (ScienCell, California, USA) at
37°C in a humidified atmosphere of 5% CO2. Cells in the
logarithmic phase were treated with 25mM glucose
(Sigma, MO, USA) to construct the high glucose-induced
HUVEC model [23]. Control cells were treated with
5.5 mM glucose [24]. ,en, the cells were divided into four
groups: control (CON), model (MOD), MOD+AS-AM
combination (3 : 2) (MOD+AS-AM), and MOD+ SIM.
Cells in the CON group were cultured in Dulbecco’s
modified Eagle medium (DMEM) containing 5.5mM
glucose and 10% serum from nontreated rats. Cells in the
MOD, MOD+AS-AM, and MOD+ SIM groups were
cultured in DMEM containing 25mM glucose plus 10%
serum from nontreated, AS-AM-treated, and SIM-treated
rats, respectively.

2.4. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
Bromide (MTT) Assay. Cell viability was detected using an
MTTassay. Cells in the logarithmic phase were seeded into a
96-well plate (180 μl, 5×103 cells/well) and maintained at
37°C with 5% CO2 overnight. After the cells were subjected
to different treatments for 24, 48, and 72 h, 20 μl of MTT
(5mg/ml, Bioswamp,Wuhan, China) was added to each well
for 4 h at 37°C, followed by incubation with 150 μl of di-
methyl sulfoxide for 10min at room temperature. ,e ab-
sorbance of the wells was analyzed using an AMR-100
apparatus (Leica, Wetzlar, Germany) at 490 nm.
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2.5. Hoechst 33258 Staining. Hoechst 33258 staining was
carried out to qualitatively evaluate cell apoptosis. ,e cells
were subjected to different treatments for 24, 48, and 72 h
and fixed with 4% paraformaldehyde for 10min, followed by
Hoechst 33258 (Bioswamp) staining for 3min. ,ereafter,
the cells were observed under an inverted fluorescence
microscope (Leica).

2.6. Flow Cytometry. Cell apoptosis, cell cycle progression,
and reactive oxygen species (ROS) generation were assessed
using flow cytometry after different treatments. To analyze
apoptosis after 24 h of treatment, apoptosis was analyzed
using the annexin V-fluorescein isothiocyanate (FITC)/
propidium iodide (PI) kit (BD, Shanghai, China).
1× 106 cells were centrifuged twice at 1000× g at 4°C for
5min and resuspended in 200 μl of binding buffer (Bio-
swamp), followed by staining with 10 μl of annexin V-FITC
and 10 μl of PI in the dark for 30min at 4°C. After adding
300 μl of binding buffer, the cells were subjected to flow
cytometry (ACEA Biosciences, San Diego, CA, USA). To
analyze cell cycle progression, 1× 107 cells were centrifuged
at 1000× g at 4°C for 5min, followed by resuspension in
300 μl of phosphate-buffered saline (Bioswamp) containing
10% fetal bovine serum (FBS, Gibco, Gibco BRL, Gai-
thersburg, MD, USA) and 700 μl of absolute ethyl alcohol.
,e cells were then fixed at −20°C for 24 h and centrifuged at
3000× g for 30 s. ,e cell precipitate was resuspended in
100 μl of 1mg/ml RNase A (BD) and maintained at 37°C for
30min to digest intracellular RNA. ,e cells were then
incubated in 400 μl of PI (50 μg/ml) in the dark for 10min
and subjected to flow cytometry (ACEA Biosciences). For
ROS level detection, cells were suspended in diluted 2′,7′-
dichlorofluorescin diacetate (DCFH-DA) fluoroprobes
(10 μmol/l, Bioswamp) at 1× 107 cells/ml and incubated for
30min at 37°C with gentle shaking every 4min. Nonattached
DCFH-DA was removed and the cells were subjected to flow
cytometry (ACEA Biosciences).

2.7. Western Blot. ,e protein expression of caspase 3 in
HUVECs was measured using western blot after 24 h of
treatment. Total proteins were extracted from HUVECs
using radioimmunoprecipitation assay lysis buffer (Bio-
swamp), followed by quantification using a bicinchoninic
acid kit (Bioswamp) according to the manufacturer’s
protocol. 20 μg of proteins were separated by 12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred onto polyvinylidene fluoride membranes
(Millipore, MA, USA). ,e membranes were then blocked
with 5% skim milk at 4°C overnight and incubated with
primary antibodies against caspase 3 (1 : 1000 dilution,
Bioswamp) and β-actin (1 : 1000 dilution, Bioswamp) for
1 h at room temperature, followed by incubation in
horseradish peroxidase-conjugated goat anti-rabbit IgG
secondary antibody (1 : 20000 dilution, Bioswamp) for 1 h
at room temperature. ,e bands were visualized using a
Tanon-5200 apparatus (Tanon, Shanghai, China) and rel-
evant band gray values were read using TANON GIS
software (Tanon). β-Actin served as an internal reference.

2.8. Migration and Invasion Assay. Cell migration and in-
vasion were detected using two-chamber Transwell inserts.
Before the experiments, cells were starved in serum-free
medium for 24 h. 500 μl of treated cells (1× 105 cells/ml)
were resuspended in F12K medium (Gibco) supplemented
with 1% FBS (Gibco) and seeded in the top chamber. ,e
bottom chamber was filled with 750 μl of F12K medium
supplemented with 10% FBS.,e inserts for the cell invasion
assay were precoated with 80 μl ofMatrigel (BD) between the
bottom and top chamber. After 24, 48, 72 h of culture at
37°C, the cells were fixed with 4% paraformaldehyde for
10min at room temperature and stained with 0.5% crystal
violet (Bioswamp) for 30min. Nonmigrating or non-
invading cells were removed using cotton swabs. Migrated
or invaded cells were counted using an inverted fluorescence
microscope (Leica).

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). After
24 h of treatment, the levels of 8-iso-prostaglandin F2alpha
(8-iso-PGF2α) in HUVECs was measured using the cor-
responding ELISA kit (HM10023, Bioswamp) following the
manufacturer’s protocol.

2.10. Statistical Analysis. ,e data are represented as the
mean± standard deviation (SD). Statistical analysis was
performed using IBM SPSS statistics 19.0. Differences be-
tween more than two groups were analyzed using one-way
analysis of variance followed by Tukey. P< 0.05 was con-
sidered to be statistically significant.

3. Results

3.1. Components of AM-AS Combination. As shown in
Figure 1, the main components of the AM-AS combination
are umbelliferose, 7,5′-hydroxy-3′-methoxyisoflavone 7-
O-glucoside, ononin, astragaloside I, calycosin, astraci-
ceran, 3-n-butylphathlide, formononetin, astragaloside IV,
soyasaponin I, trojanoside A, isomucronulator 7-O-glu-
coside, and astragaloside VII.

3.2. Serum from Rats Treated with AM-AS Combination
Recovered the Viability of HUVECs Reduced by High Glucose.
As shown in Figure 2(a), the serum of rats treated with AM-
AS showed no effect on the viability of HUVECs, indicating
the nontoxic nature of the serum from rats treated with
AM-AS combination. Figure 2(b) demonstrated that high
glucose obviously reduced the viability of HUVECs
(P< 0.05), while the serum of rats treated with AM-AS
significantly recovered the viability of HUVECs after it had
been decreased by high glucose (P< 0.05). ,e protective
effect of serum from AM-AS-treated rats was similar to that
of serum from SIM-treated rats.

3.3. Serum from Rats Treated with AM-AS Combination
Attenuated High Glucose-Induced Apoptosis. Hoechst 33258
staining demonstrated that high glucose treatment resulted
in apoptosis (brilliant blue), which was rescued by serum
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from rats treated with AM-AS or SIM (Figure 3(a)).
Furthermore, the percentage of apoptotic cells was ana-
lyzed by flow cytometry. ,e results indicated that high
glucose remarkably increased apoptosis (P< 0.05,
Figure 3(b)), whereas serum from rats treated with SIM
notably attenuated high glucose-induced apoptosis

(P< 0.05). ,e effect of serum from AM-AS-treated rats
was similar to that of serum from SIM-treated rats. ,e
results of flow cytometry were consistent with those of
Hoechst 33258 staining. In addition, the expression of the
apoptosis-related protein caspase 3 was measured, indi-
cating that serum from AM-AS-treated rats downregulated
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Figure 1: Components of AM-AS. (a) UHPLC-QTOF-MS fingerprint of AM-AS combination in the positive mode; (b) UHPLC-QTOF-MS
fingerprint of AM-AS combination in the negative mode.
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the expression of caspase 3 in HUVECs that was enhanced
by high glucose treatment (P< 0.05, Figure 3(c)).

3.4. Serum from Rats Treated with AM-AS Combination
Counteracted High Glucose-Induced G0/G1 Phase Arrest and
ROSProduction inHUVECs. Cell cycle and ROS production
were detected in HUVECs using flow cytometry. ,e results
demonstrated that high glucose led to G0/G1 phase arrest
and enhanced ROS production in HUVECs (P< 0.05,
Figures 4(a) and 4(b)), which were counteracted by serum
from rats treated with AM-AS or SIM (P< 0.05, Figures 4(a)
and 4(b)).

3.5. Serum from Rats Treated with AM-AS Combination
Enhanced Dysfunction-Impaired HUVEC Migration and
Invasion. As shown in Figures 5(a) and 5(b), high glucose
impeded the migration and invasion of HUVECs, which was
demonstrated by the decrease in the number of migrated and
invaded cells (P< 0.05). Compared to the cells in the MOD
group, the number of migrated and invaded cells in the
MOD+AM-AS group and MOD+SIM group were sig-
nificantly increased (P< 0.05).

3.6. Serum from Rats Treated with AM-AS Combination
Counteracted the Increase in 8-Iso-PGF2α Level Induced
by High Glucose. Compared to the CON group, the level
of 8-iso-PGF2α in the MOD group was increased (Figure 6,
P< 0.05). Compared to the MOD group, the level of 8-iso-
PGF2α in the MOD+AM-AS and MOD+SIM groups were
decreased (Figure 6, P< 0.05).

4. Discussion

,e pathogenesis of diabetes mellitus-induced vascular
dysfunction involves dysregulated revascularization or
damaged function associated with vascular permeability and
homeostasis maintenance in cells such as endothelial cells,
stromal cells, inflammatory cells, smooth muscle cells, and
pericytes [25, 26]. Vascular endothelial dysfunction induced
by excessive oxidative stress is an essential and early de-
terminant of diabetic macroangiopathy [21]. Hyperglycemia
is the key pathogeny that drives the development of diabetic
vascular complications towards macroangiopathy. High
glucose induces oxidative stress, thereby inducing inflam-
mation and cytotoxicity and leading to diabetic macro-
angiopathy [27, 28].,e underlyingmechanism is associated
with ROS production during autooxidation of
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Figure 2: (a) Cell viability of HUVECs in CON and AM-AS (3 : 2) groups by MTT after culture for 24, 48, and 72 h. (b) Cell viability of
HUVECs in CON, MOD, MOD+AM-AS (3 : 2), and MOD+ SIM groups by MTT after culture for 24, 48, and 72 h. Data represent the
mean ± SD (n � 3). ∗P< 0.05 vs. CON; #P< 0.05 vs. MOD. Cells in the CON group were cultured in DMEM containing 5.5mM glucose
and 10% serum from nontreated rats. Cells in the AM-AS group were cultured in DMEM containing 5.5mM glucose plus 10% serum
from AS-AM-treated rats. Cells in the MOD, MOD+AS-AM, and MOD+ SIM groups were cultured in DMEM containing 25mM
glucose plus 10% serum from nontreated, AS-AM-treated, and SIM-treated rats, respectively.
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Figure 3:,e effect of AM-AS combination on HUVEC apoptosis. (a) Hoechst 33258 staining of HUVECs in CON,MOD,MOD+AM-AS
(3 : 2), andMOD+ SIM groups after culture for 24, 48, and 72 h. (b) Flow cytometric detection of percentage of apoptotic HUVECs in CON,
MOD, MOD+AM-AS (3 : 2), and MOD+SIM groups after culture for 24 h. (c) Western blot of apoptosis-related protein caspase 3 of
HUVECs in CON, MOD, MOD+AM-AS (3 : 2), and MOD+SIM groups after culture for 24 h. Data represent the mean± SD (n� 3).
∗P< 0.05 vs. CON; #P< 0.05 vs. MOD. Cells in the CON group were cultured in DMEM containing 5.5mM glucose and 10% serum from
nontreated rats. Cells in the MOD, MOD+AS-AM, and MOD+SIM groups were cultured in DMEM containing 25mM glucose plus 10%
serum from nontreated, AS-AM-treated, and SIM-treated rats, respectively.
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monosaccharides and advanced glycation endproducts,
resulting in direct toxicity in the cardiovascular system
[29, 30]. ,us, suppressing high glucose-triggered ROS
production might be an effective method of treating diabetic
macroangiopathy. Abnormal ROS production results in the
damage of lipids, DNA, and proteins [31], resulting in
cellular dysfunction such as inhibition of cell proliferation
[32], migration, and invasion [33] and increased apoptosis
[34]. Previous studies have shown that high glucose induced
apoptosis in retinal capillary endothelial cells by enhancing
ROS production, which was attenuated after the inactivation

of ROS-related pathways [35]. In addition, high glucose
inhibited HUVEC proliferation and migration [36]. ,ese
findings are in accordance with our present work, showing
the high glucose-induced ROS production and increased the
levels of 8-iso-PGF2α, a reliable indicator of ROS production
[37]. Our present work also demonstrated that high glucose
inhibited HUVEC proliferation, migration, and invasion
and enhanced apoptosis.

High glucose-injured HUVECs were treated with
AM-AS combination, which reduced ROS generation
and alleviated high glucose-triggered HUVEC
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Figure 4: (a) Flow cytometric evaluation of HUVECs cycle progression in CON,MOD, MOD+AM-AS (3 : 2), andMOD+ SIM groups. (b)
Flow cytometric evaluation of the ROS level of HUVECs in CON, MOD, MOD+AM-AS (3 : 2), and MOD+SIM groups after culture for
24 h. Data represent the mean± SD (n� 3). ∗P< 0.05 v.s. CON; #P< 0.05 v.s. MOD. Cells in the CON group were cultured in DMEM
containing 5.5mM glucose and 10% serum from nontreated rats. Cells in theMOD,MOD+AS-AM, andMOD+SIM groups were cultured
in DMEM containing 25mM glucose plus 10% serum from nontreated, AS-AM-treated, and SIM-treated rats, respectively.
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Figure 5: Continued.
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dysfunction. Component analysis showed that AM-AS
contains umbelliferone, astragaloside IV, calycosin, and
formononetin, which are associated with diabetes mel-
litus. Umbelliferone was previously reported to show
protective effects against diabetic liver injury by inhib-
iting inflammatory response and oxidative stress [38].
Astragaloside IV is a dominant active ingredient of AM,
and its protective function against diabetes mellitus has
been reported [39]. Additionally, astragaloside IV
ameliorated vascular endothelial dysfunction through

oxidative stress inhibition and calpain-1 activation [40].
Calycosin alleviated diabetes mellitus-induced renal
inflammation and cognitive impairment by regulating
the NF-κB pathway [41] and reducing oxidative stress-
mediated PI3K/Akt/GSK-3β signaling [42], respectively.
Formononetin showed a protective effect against cog-
nitive impairment in streptozotocin-induced diabetic
mice [43] and ameliorated endothelial dysfunction in-
duced by high glucose by inactivating the JAK/STAT
pathway [43].
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Figure 5: Evaluation of HUVECs (a) migration and (b) invasion in CON, MOD, MOD+AM-AS (3 : 2), and MOD+SIM groups after
culture for 24, 48, and 72 h. Data represent the mean± SD (n� 3). Scale bar� 50 μm. ∗P< 0.05 vs. CON; #P< 0.05 vs. MOD. Cells in the
CON group were cultured in DMEM containing 5.5mM glucose and 10% serum from nontreated rats. Cells in the MOD, MOD+AS-AM,
and MOD+SIM groups were cultured in DMEM containing 25mM glucose plus 10% serum from nontreated, AS-AM-treated, and SIM-
treated rats, respectively.
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5. Conclusion

Collectively, this work demonstrated that AM-AS combi-
nation (3 : 2) might ameliorate high glucose-induced
HUVEC dysfunction (proliferation, apoptosis, migration,
and invasion) by inhibiting oxidative stress (ROS produc-
tion) through its active ingredients, including umbelliferone,
astragaloside IV, calycosin, and formononetin. ,is work
reveals that AM-AS combination (3 : 2) could act as a target
drug in the therapy of high glucose-induced diabetes mel-
litus and complications towards macroangiopathy. How-
ever, the underlying specific molecular mechanism is
obscured and will be elucidated in follow-up studies.
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