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Background: Tuberculosis (TB) is the leading infectious cause of death worldwide. A major barrier to control of
the pandemic is a lack of clinical biomarkers with the ability to distinguish active TB from healthy and sick con-
trols and potential for development into point-of-care diagnostics.
Methods:Weconducted a prospective case control study to identify candidate urine-based diagnostic biomarkers
of active pulmonary TB (discovery cohort) and obtained a separate blinded “validation” cohort of confirmed cases
of active pulmonary TB and controls with non-tuberculous pulmonary disease for validation. Clean-catch urine
samples were collected and analyzed using high performance liquid chromatography-coupled time-of-flight
mass spectrometry.
Results: We discovered ten molecules from the discovery cohort with receiver-operator characteristic (ROC)
area-under-the-curve (AUC) values N85%. These 10molecules also significantly decreased after 60 days of treat-
ment in a subset of 20 participants followed over time. Of these, a specific combination of diacetylspermine,
neopterin, sialic acid, andN-acetylhexosamine exhibited ROC AUCs N80% in a blinded validation cohort of partic-
ipants with active TB and non-tuberculous pulmonary disease.
Conclusion: Urinary levels of diacetylspermine, neopterin, sialic acid, and N-acetylhexosamine distinguished pa-
tients with tuberculosis from healthy controls and patients with non-tuberculous pulmonary diseases, providing
a potential noninvasive biosignature of active TB.
Funding: This study was funded by Weill Cornell Medicine, the National Institute of Allergy and Infectious Dis-
eases, the Clinical and Translational Science Center at Weill Cornell, the NIH Fogarty International Center grants,
and the NIH Tuberculosis Research Unit (Tri-I TBRU).

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tuberculosis (TB) has surpassed HIV/AIDS as the leading cause of
deaths due to an infectious disease [1]. Spread simply by sharing air
with an infected person, TB poses a public health threat of singular pro-
portion due to its facile spread and rising rates of multi-drug resistant
strains of Mycobacterium tuberculosis (Mtb). Early diagnosis is thus
, Weill Cornell Medicine, New

.
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emerging as an essential, but incompletely met, need of TB control ef-
forts [2].

A significant limitation of current TB diagnostics is their dependence
on sputum-based assays. Conventional sputummicroscopy and microbi-
ologic culture remain the gold standard for diagnosis. Sputummicroscopy
relies on manual visualization of the bacteria, has diagnostic sensitivities
that vary widely according to collection and processing techniques [3],
and is not helpful in cases where TB has disseminated out of the lungs.
In addition, cultures require 3–6 weeks of incubation. Nucleic acid ampli-
fication-basedmethods, such as GeneXpert, have greatly increased sensi-
tivity and have a more rapid turnaround time but remain prohibitively
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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expensive in many resource-limited settings where TB disease burden is
highest. Additionally, they require sputum that is often difficult to obtain,
and exhibit limited usefulness in cases of extrapulmonary disease [4,5].

Urine tests are an increasingly common diagnostic modality used to
enable non-invasive, rapid, and point-of-care diagnosis of various infec-
tious diseases, including legionella, pneumococcal pneumonia, histo-
plasmosis, and TB [6]. Several studies have looked at urine as a source
of clinically relevant biomarkers for TB. Lipoarabinomannan (LAM) is a
component of themycobacterial cell wall that is shed into urine and ca-
pable of being detected in the urine of patients with active pulmonary
TB. With an overall estimated sensitivity of 46% and specificity of 89%,
programmatic implementation of urine LAMassays inHIV-infected sub-
jects has been associatedwith improvements in early TBdiagnosis and a
17% decrease in all-causemortality [7]. A point-of-care urine assay with
improved diagnostic performance may result in even larger reductions
in mortality. Recently, IP-10, an interferon inducible protein was also
shown to be increased in the urine of people with active TB and may
track with treatment response further demonstrating the potential for
urine as an optimal biological specimen for biomarker discovery [8–10].

Metabolomics is an emerging systems level technology with the po-
tential to expand the current repertoire of diagnostic biomarkers due to
its ability to enable the unbiased, multiplexed profiling and comparison
of metabolites in a biological sample. Accordingly, metabolomics has
been successfully used to identify novel biomarkers for different disease
states [11]. Specific interest in TB has recently revealed distinct metabo-
lite signatures present in blood, breath, and urine that may be associated
withMtb infection or treatment response [12–14]. Based on such studies,
we hypothesized that TB might also be associated with specific metabo-
lites that could be detected in the urine and used to both diagnose and
monitor the response to treatment of patients with active pulmonary TB.

Here, we report the unbiased discovery of a urinary small molecule
bio-signature that could differentiate cases of active pulmonary tuber-
culosis from healthy controls and/or pulmonary disease from other
causes in two unrelated patient cohorts. Identified components of this
signature included known products of the immune response to Mtb. If
validated, this metabolic signature could facilitate the future develop-
ment of a point-of-care urine test for TB.

2. Materials and Methods

2.1. Study Design

We recruited participants with active pulmonary TB and matched
healthy controls from the GHESKIO Center in Haiti. Significant urinary
biomarkers were then validated using banked randomized urine sam-
ples collected by the Foundation for Innovative Diagnostics (FIND) in
collaboration with theWHO/TDR TB Specimen Bank on people with ac-
tive TB and controls with non-tuberculous pulmonary disease.

2.2. Discovery Cohort

Participants were enrolled at the GHESKIO Center in Port-au-Prince,
Haiti from September 2011 to March 2012. Participants with suspected
pulmonary TB were screened for active TB by medical history, physical
exam, chest radiography, sputum smear for acid-fast bacilli (AFB) and
Mtb culture. Participants with one or more clinical symptoms of TB (de-
fined as cough, dyspnea, fever, night sweats, weight loss, lymphadenop-
athy, and hemoptysis) and a positive sputum smear for AFB or positive
sputum culture were included in the study. Cases of MDR TB were ex-
cluded. Controls were recruited at the GHESKIO Center and screened
by medical exam and chest x-ray. Controls were matched to cases by
age +/− 5 years, sex, and HIV status. Controls were excluded if they
met any of the following exclusion criteria: symptoms of active tubercu-
losis at the time of study enrollment, history of tuberculosis or treat-
ment with anti-tuberculosis medications, HIV with CD4 count b250 or
AIDS defining illness, history of chronic immunosuppressive therapy,
or history of chronic diseases (heart disease, lung disease, auto-immune
disease, malignancy). Clean-catch urine samples were collected in ster-
ile cups and immediately refrigerated at −4 degrees for 1–7 h. Urine
was then aliquoted on ice and stored at −80 °C until shipment to
NYC. All samples were collected from participants at the time of enroll-
ment, prior to initiation of anti-tuberculosis therapy. No fasting restric-
tions or specific time of urine sample collection was defined.

2.3. Longitudinal Cohort

A subset of 20 participants with active TB had urine samples col-
lected at the time of diagnosis, prior to starting anti-tuberculosis ther-
apy and at day 60 after initiation of treatment. These participants
were followed for 6 months to ensure sustained treatment response.
All participants diagnosed with tuberculosis at GHESKIO were started
on anti-mycobacterial treatment on-site, followingWorld Health Orga-
nization Guidelines [15]. Tuberculosis treatment consisted of isoniazid,
rifampin, pyrazinamide and ethambutol in all cases.

2.4. Validation Cohort

We obtained blinded urine samples from 50 participants with con-
firmed pulmonary TB and 50 participants with cough who were being
evaluated for active tuberculosis but proven negative from collaborators
at the Foundation for Innovative New Diagnostics (FIND)/WHO TDR TB
Specimen Bank. Participants were recruited from a single center in Viet-
nam from June 2007 to October 2010. Participants with cough were
screened for active TB with chest x-ray, sputum smear microscopy for
AFB, and sputum culture. Participants were defined as having active pul-
monary TB if they had positive sputum smear microscopy andMtb cul-
ture. Control participants were included if they had negative sputum
smear AFB, Mtb culture, and an alternative diagnosis. Controls were
followed for an additional 3 months from the time of study enrollment
to document clinical improvement off anti-mycobacterial therapy. Urine
samples were collected on site, at the time of the initial evaluation, and
stored at a FIND storage facility at −80 °C until shipped on dry ice to
New York Presbyterian/Weill Cornell Medicine in New York for testing.

2.5. Sample Preparation

The urine samples were stored at−80 °C at Weill Cornell Medicine
until processing. Samples were thawed and filtered for large particles
using PALL nanosep centrifuge devices (centrifuged for 10 min at
10,000 rpm). The osmolality of each sample wasmeasured using an Ad-
vanced Instruments model 3250 micro osmometer. Filtered substrate
was then diluted with MiliQ filtered water to a standard 150 mOsm/kg
H2O in order to normalize the salt concentration within each sample.
Samples were then mixed with LCMS grade 0.2% formic acid in metha-
nol at a 1:1 ratio.

2.6. HPLC-MS Analysis

Samples were separated by aqueous normal phase chromatography
using a Cogent Diamond Hydride column. Samples were then analyzed
using an Agilent Technologies 6230 high resolution, accurate mass TOF
LC/MS. Detected ions were characterized by chromatographic retention
time and ionmass. Data analysiswasperformedusing Profinder B08 and
Qualitative analysis (Agilent Technologies). Molecules were character-
ized by mass, time, and abundance (as reported by ion intensity) [16].

Experimentswere repeated to ensure reproducibility usingunfrozen
urine aliquots from the discovery cohort (technical replicates). Repeat
experiments were performed using 4 independent randomized subsets
of cases and controls (n= 5–7 cases and 5–7 controls per experiment).
Molecule abundance remained significantly different in repeat experi-
ments and ROC curve analysis of repeated sample sets confirmed an
area under the ROC curve of 87–100 for eachmoleculewhen comparing
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molecules within each experiment independently. Validation cohort
samples were randomized and blinded prior to sample prep and HPLC
analysis. Longitudinal samples were randomized prior to HPLC analysis.
Sample prep and HPLC analysis of longitudinal samples was repeated
three times to ensure reproducibility. Creatinine normalization did not
significantly alter molecule ion counts, significance calculations or ROC
curves.

2.7. Creatinine Normalization

A random subset of urine samples from the discover and validation
cohort were selected and urine molecule abundance was compared
prior to and after creatinine normalization. Urine creatinine concentra-
tion was measured using a creatinine colorimetric assay kit (Sigma Al-
drich Catalog number MAK080). Absorbance was measured using a
Spectramax M2 microplate reader at 570 nm (fluorometric (λex =
535/λem=587nm). If the creatinine concentrationwas out of themea-
surable range, the sample was excluded from the analysis. Creatinine
measurement was done in triplicate for each urine sample. Statistical
analysis was performed as described in statistical methods section. A
random sample of 66 participants from the discovery (Haitian) cohort
and 88 from the validation (Vietnam) cohort was analyzed before and
after creatinine normalization. There was no difference in overall me-
tabolite abundance or ROC characteristics when comparing samples
that were normalized to osmolality alone vs. those that were normal-
ized to both osmolality and creatinine. (Supplementary Table 1).

2.8. Molecule Identification

Molecule identification was done using the average exact mass for
eachmolecule. Sampleswere prepared as described above and analyzed
using theMS/MS feature of the Agilent Technologiesmodel 6520 Q-TOF
LC/MS. MS/MS spectral analysis was performed using Agilent Technolo-
gies Qualitative analysis program and confirmed by Agilent Molecular
Structure Correlator software and Metlin and HMDB databases. Mole-
cule identification was further confirmed by comparing MS/MS spectra
of each molecule with purchased pure chemicals as standards: 3-
ureidopropionic acid (product # 94295-1G, Sigma-Aldrich), 3-hy-
droxy-DL-kynurenine (product # H1771, Sigma-Aldrich), D-neopterin
(product # N3386 Sigma-Aldrich), N1,N12-diacetylspermine (item #
17918, Cayman Chem), 7-methylguanine (product # 67073, Sigma-Al-
drich), 3’-N-acetylneuraminyl-N-acetyllactosamine (product # A6936,
Sigma-Aldrich), N-acetylneuraminic acid (product # 19023, Sigma-Al-
drich), N-acetyl-β-D-mannosamine (product # sc-295642A, Santa
Cruz Biotechnology), and N-acetylglucosamine (product # A4106,
Sigma-Aldrich). Standards were analyzed alone, in a 1:1 solution of
0.2% formic acid in methanol and MilliQ H2O at a final concentration
of 50 nM and in urine samples spiked with each respective standard
to ensure accurate retention time andm/z value.

2.9. Statistical Methods

2.9.1. Discovery Cohort
The statistical analysis to identifymolecules relied on amixedmodel

and factor analysis methodology (RRmix) that corrects for batch effects
and other unwanted variation, and that detects a small number of mol-
ecules that are significantly different between two study groups [17].
Specifically, the model is defined as follows:
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where yg is an n × 1 column vector of the gth metabolite's log-trans-
formed, mass-to-charge ratio values from n-samples, μ is a vector of in-
tercept parameters, βg is a 2 × 1 parameter vector, X= [1n, x] is an n× 2
matrix where the second column is an indicator vector for TB/control
group status. Fg is the gth column of q × G factor matrix, Λ is the n × q
loading matrix, and Wg is the n × 1 residual error vector. RRmix is fit
for all metabolites simultaneously, estimates the metabolite-specific
group effect while adjusting for unwanted variation such as batch effect
reflected by the term, ΛFg, in the model.

This class of latent factor linear models can provide a means to han-
dle unwanted variability without prior knowledge of its source of mea-
surements [18] or internal controls [19]. In this approach, which has
been shown to be superior to othermethods [17], instead of attempting
to parameterize known effects [19] or using a two-step approach [20],
RRmix uses a factor analysis structure to model and adjust for latent
batch effect factors. Data were separated into training and test groups,
using randomly selected small subsets of cases versus controls in multi-
ple iterations. Modeling molecule-specific mean effects as a random ef-
fect with a prior distribution that is a zero-point mass element mixture
model, significantly different molecules were declared if their posterior
non-null probability was N0.9 [17] or if the p-value was less than or
equal to 0.0001 after adjustment for false discovery rate. Nonparametric
ROC curves were then constructed using molecule abundances or ion
counts as classifiers to known patient TB status.

Technical replicates were analyzed for significance using Wilcoxon
rank sum test and significance was defined as p-value b 0.05. Nonpara-
metric ROC curve analysis was performed as above.

2.9.2. Validation Cohort
Molecule abundances in the validation cohort were compared using

a nonparametric test of medians and Wilcoxon rank sum test with sig-
nificance defined as p-value b 0.05. Nonparametric ROC curves were
then constructed usingmolecule abundances or ion counts as classifiers
to known patient TB status.

Using random forest modeling, we selected 5 molecules with a ROC
AUC of at least 75% in both discovery and validation cohorts and built RF
classifiers to assess relative importance of thesemolecules as predictors.
First, we used the discovery cohort to rank relative importance of mol-
ecules by randomly selecting 80% of data and building RF and Gini im-
portance indices [21]. After 50 iterations, biomarkers were ranked
based on average of variable importance from largest to smallest. We
then tested this model on the validation set 50 times. In each iteration,
models with the top-ranked biomarkers were blindly tested on a ran-
domly selected subset of 80% of the validation set. Fig. 3 shows the
AUC statistics from 50 repetitions.

2.9.3. Longitudinal Cohort
Urine samples from each participant in the longitudinal cohort, at

time zero and at 2 months, were prepped, randomized and analyzed
in the same experiment as described previously. Mean ion counts
were compared using paired t-test. Effect size was calculated using
Cohen's d calculation.

Statistical analysis was performed using STATA 14 and R version
3.4.0.

2.9.4. Ethics
The study protocol and consent forms for samples collected at

GHESKIO were approved by the GHESKIO Center and Weill Cornell
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Medicine Institutional Review Boards. All participants provided written
informed consent. IRB approval was obtained fromWeill Cornell Medi-
cine for testing of unlinked and anonymous urine samples obtained
from the Foundation for Innovative New Diagnostics (FIND).
3. Results

3.1. Discovery Cohort

Screening 260 adult participants at the GHESKIO Center from Sep-
tember 2011 to March 2012, we identified 107 subjects meeting inclu-
sion criteria for pulmonary tuberculosis, defined as having 1 or more
symptoms of active pulmonary TB and positive sputum smear for
acid-fast bacilli (AFB) and/or Mtb culture. Of these, we matched 102 to
asymptomatic controls enrolled at the same center during the same pe-
riod. Cases were matched to controls by age +/− 5 years, gender, and
HIV status (Supplementary Fig. 1). Pertinent demographic and clinical
characteristics are listed in Table 1. The most common clinical symp-
toms among TB cases were cough (94.1%), fever (70.6%), and weight
loss (67.6%). Participants with TB had a significantly lower body weight
than controls (109.7 lbs. vs 136.1 lbs. p b 0.05) (Table 1). Of the control
subjects, 62.7% had a positive Tuberculin Skin Test (TST), defined as over
10 mm induration at the time of enrollment.

Using clean catch urine samples collected at the time of study enroll-
ment, prior to initiation of anti-tuberculous therapy, we next compared
themetabolic composition of samples from cases andmatched controls.
To do so, we normalized all urine samples to a standard 150 mOsm/kg
H2O and analyzed them in randomized batches, each containing 30–
35 cases and 30–35 controls, by untargeted liquid chromatography-
coupled high resolution mass spectrometry [22]. Using a statistical
method capable of simultaneously correcting for unrecognized poten-
tial batch effects and an absence of internal controls (RR mix) [17], we
identified 154 molecules whose levels were significantly different in
the urine of cases of TB compared to asymptomatic controls. After ad-
justment for multiple testing (false discovery rate p-value b 0.0001
and a Bayesian posterior non-null probability of 0.9), 49 of these 154
molecules were found to be significantly different between the two
groups (Supplementary Table 2).

Of these 49, 10 exhibited area under the Receiver Operator Charac-
teristic (ROC) curve values N85% (Fig. 1, Table 2). These molecules
remained significantly different, with p-values of b0.0001 irrespective
of adjustments for age, gender, weight, HIV status, and clinical symp-
toms (e.g. fever, night sweats, dyspnea, lymphadenopathy, and hemop-
tysis). The mean abundance of a molecule subsequently identified as
neopterin (m/z 254.0859)was found to be higher in HIV infected partic-
ipants than in HIV uninfected participants but remained significantly
Table 1
Clinical characteristics of participants from the discovery (Haiti) and validation (Vietnam) coh

Discovery (Haiti)

Control (n = 102) Case

Age, years (range) 33.8 (20–71) 33.7
Sex (% male) M 53 (51.9%) M 53
Average Weight (range) 136.1 lbs. (85–285) 109.
HIV+ 15 (14.7%) 16 (
Average CD4 536.3 (390–790) 433
On ARVs prior to enrollment 0 3

Symptoms
Fever 0 72 (
Night sweats 0 56 (
Cough 0 96 (
Dyspnea 0 19 (
Weight loss 0 69 (
Abnormal CXR 0 96 (
higher in TB cases irrespective of HIV status. (Supplementary Fig. 2)
Subgroup analysis of samples from healthy controls failed to reveal
any significant differences in the levels of these biomarkers in TST-pos-
itive vs. -negative healthy controls.

3.2. Molecule Identification

Of the 10molecules with areas under the ROC curve of over 85%, we
identified 4 by collision-induced dissociationMS/MS analysis, and com-
parison to reference MS/MS spectra of pure chemical standards and
metabolomics databases (Metlin, HMDB). These metabolites were
ureidopropionic acid, N1N12 diacetylspermine, hydroxykynurenine,
and neopterin. Of the remaining 6 metabolites, we were able to deter-
mine the chemical class of 4 byMS/MS spectral analysis. These included
3 sialic acid species (numbered 1, 2 and, 3), and a N-acetylhexosamine.
The remaining 2 molecules have not yet been identified. (Supplemen-
tary Figs. 3 and 4).

3.3. Validation Cohort

To more robustly investigate the discriminatory potential of these
candidate biomarkers, we next analyzed a blinded “validation” set of
urine samples from an unrelated cohort of 50 adults with active pulmo-
nary TB and 50 controls with other respiratory tract diseases (obtained
from the Foundation for Innovative New Diagnostics (FIND)). Subjects
were recruited from a single center in Vietnam from June 2007 to Octo-
ber 2010 and were enrolled in the study if they had symptoms consis-
tent with pulmonary TB, a chest radiograph, AFB sputum smear
microscopy, andMtb culture. TB cases were defined by positive sputum
smear AFB and Mtb culture. Control participants were included if they
had both negative sputum AFB andMtb culture and an alternative diag-
nosis as follows: 27/50 (54%) with pneumonia, 9/50 (18%) with prior
TB, 4/50 (8%) with COPD, and 10/50 (20%) with an unclear diagnosis.
Urine samples were collected at the time of enrollment. Controls were
followed for an additional 3months offMtb treatment to ensure clinical
improvement. We received samples blinded and randomized.
Associated clinical information was provided after metabolomic
analysis was complete. Samples were normalized to 150 mOsm/kg
H2O and analyzed in random batches of 25 as before. Of the 10
previously described molecules, 8 remained significantly different in
this cohort. Moreover, this analysis independently identified levels of
diacetylspermine, ureidopropionic acid, neopterin, sialic acids (1, 2 &
3), N-acetylhexosamine, and an unknown molecule with a molecular
mass of 240 Da (m/z 241.0903) as significantly different in TB cases
compared to participants with other respiratory tract disease with a p-
value of b0.05. (Wilcoxon Rank Sum, Fig. 2). These molecules remained
orts.

Validation (Vietnam)

s (n = 102) Control (n = 50) Cases (n = 50)

(18–68) 47.2 (19–83) 36.6 (19–79)
(51.9%) 33 (66%) 38 (76%)

7 lbs. (78–172) N/A N/A
15.7%) 0 (0%) 0 (0%)
(71–974) N/A N/A

N/A N/A

70.6%) 16 (32%) 29 (58%)
54.9%) 3 (6%) 8 (16%)
94.1%) 50 (100%) 50 (100%)
18.6%) 26 (52%) 8 (16%)
67.6%) 4 (8%) 18 (36%)
94.1%) 50 (100%) 50 (100%)



Fig. 1. SignificantMolecules in Discovery Cohort. (a) Violin plots showing overall abundance of significant urinarymolecules in TB cases (TB) (n= 102) versesmatched controls (C) (n=
102). Each color represents a distinct molecule shown in table. Darker black line represents 25th and 75th percentile. White line represents median value. Values are scaled to mean and
log2 transformed. Values are shown in log2 scale. All molecules with p-value b 0.0001 (b) Receiver operator characteristic (ROC) curve of 10 significant molecules in discovery cohort of
102 TB cases and 102 matched controls. Each color represents a distinct molecule shown in table. (c) Table of molecules. Masses listed as mass to charge ratio (m/z) in positive mode.
Retention time (RT) is listed in minutes.
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significantly different after adjustment for age, gender, and smoking
status. After normalization to creatinine concentration and adjustment
for age, gender, smoking status, and clinical symptoms (e.g. fever,
dyspnea, night sweats, weight loss, and hemoptysis) diacetylspermine,
neopterin, sialic acids (1, 2 & 3), N-acetylhexosamine, and
hydroxykynurenine remained significantly different when comparing
cases of pulmonary TB to controls with other non-tuberculous
Table 2
Significant Molecules with Preliminary Identification and Area Under ROC (AUC).

Mass
(m/z)

Retention time
(min)

Predicted
formula

Pr
id

115.0498 1.55 C4H6N2O2 U

133.0600 1.56 C4H8N2O3 U

144.1241 14.92 C14H30N4O2 D

186.0762 2.08 C8H15NO6 N

225.0845 6.22 C10H12N2O4 H

241.0903 1.77 C9H12N4O4 U

254.0859 3.32 C9H11N5O4 N

292.0995 2.10 C11H17NO8 Si

310.1148 2.56 C11H19NO9 Si

491.1754 2.51 C17H26N6O11 Si

Colors correspond to molecules shown in Figs. 1 and 2. Predicted formula obtained by using av
pulmonary disease. (p-value b0·05), suggesting that these markers
may have some specificity for TB disease. As shown in Fig. 2 and Table
2, ROC curve analyses showgood individual overall sensitivity and spec-
ificity with AUC values over 75%.

We found that 5 biomarkers show good predictive performance
with ROC AUC values N75% for both discovery and validation data
(diacetylspermine, N-acetylhexosamine, neopterin, sialic acid 1, and
eliminary
entification

Discovery cohort Validation cohort

AUC (95% CI) AUC (95% CI)

nknown 1 91.25%
(87.4%–95.1%)

58.29%
(46.22%–70.36%)

reidopropionic acid 93.47%
(90.4%–96.5%)

65.01%
(53.46%–76.56%)

iacetylspermine 90.95%
(86.8%–95.1%)

80.26%
(70.84%–89.67%)

-Acetylhexosamine 93.24%
(89.5%–97.0%)

79.74%
(70.25%–89.22%)

ydroxykynurenine 86.50%
(81.5%–91.5%)

58.97%
(46.97%–70.95%)

nknown 2 85.96%
(80.1%–90.1%)

67.39%
(55.85%–78.93%)

eopterin 91.75%
(87.8%–95.7%)

78.50%
(69.10%–87.90%)

alic acid 1 90.49%
(86.2%–94.8%)

74.47%
(64.15%–84.78%)

alic acid 2 94.16%
(90.9%–97.4%)

70.85%
(59.87%–81.86%)

alic acid 3 92.08%
(88.0%–96.2%)

75.40%
(65.16%–85.63%)

erage exact mass and MS/MS fragmentation pattern.



Fig. 2. Significant Molecules in Validation Cohort. (a) Violin plots showing overall abundance of significant urinary molecules in TB cases (TB) (n = 50) verses controls with pulmonary
disease from other causes (C) (n = 50). Each color represents a distinct molecule shown in table. Darker black line represents 25th and 75th percentile. White line represents median
value. Values are scaled to mean and log2 transformed. Values are shown in log2 scale. Wilcoxon rank sum test *p-value b 0.05, **p value b 0.001. (b) Receiver operator characteristic
(ROC) curve of 10 significant molecules in validation cohort of 50 TB cases and 50 controls with pulmonary disease from other causes. Each color represents a distinct molecule shown
in table. (c) Table of molecules. Masses listed as mass to charge ratio (m/z) in positive mode. Retention time (RT) is listed in minutes.

Fig. 3. Performance of Molecule Combinations. Box plots showing area under the ROC
curve for the top 5 molecules in combination. Using random forest modeling on the
discovery set we ranked the top 5 molecules by importance and tested these molecules
and molecule combinations on the validation set in 50 iterations. Molecules are shown
in the following order, for which each successive molecule is added to the model: N-
acetylhexosamine, sialic acid 3, neopterin, diacetylspermine, sialic acid 1. The lower
quartile and upper quartile represent the 25th and 75th percentile respectively.
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sialic acid 3). To further optimize the discriminatory power of these
molecules and identify potentially improved metabolite combinations,
we applied Random Forest (RF) classification modeling. We initially
tested the relative importance of each molecule as a predictor of TB
using a randomly selected subset of 80% of the discovery data in 50 iter-
ations. The 5 molecules were then ranked by their average Gini impor-
tance index [21]. After the biomarkers were ranked, RF classifiers built
from the discovery set were blindly tested on a randomly selected sub-
set of 80% of the validation data 50 times (Fig. 3). This model identified
the specific combination ofN-acetylhexosamine, sialic acid 3, neopterin,
and diacetylspermine as exhibiting a ROC AUC of 82.0% in the validation
cohort.
3.4. Longitudinal Cohort

Of the 102 cases in the original discovery cohort, a subset of 20 par-
ticipants were followed longitudinally and had urine samples collected
at the time of enrollment and at 2 months' post-initiation of anti-tuber-
culosis therapy. These participants were followed for an additional
4 months to ensure sustained treatment responses. Tuberculosis treat-
ment consisted of isoniazid, rifampin, pyrazinamide, and ethambutol
in all cases. Participant characteristics are shown in Supplementary
Table 3. The mean age was 39 years. The most common presenting
symptoms included cough (95%), weight loss (85%), fever (60%), and
night sweats (60%). All participants had positive sputum AFB on enroll-
ment, 14 (70%) had documented negative sputum AFB at 2 months. All
had documented negative sputum AFB at 4 months. There were no



Fig. 4.Molecule Abundance Before and After 60 Days of Treatment. Box plot showing overall abundance of urinarymolecules from 20 participants before and sixty days after initiation of
anti-tuberculosis therapy. The lower quartile and upper quartile represent the 25th and 75th percentile respectively. Values are scaled tomean and log2 transformed. Values are shown in
log2 scale. N = 20 Paired t-test *p value b 0.01, **p value b 0.001 ***p value b 0.0001.
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documented relapses at 6 months of follow up.With an n of 20, we cal-
culate over 80% power to detect a difference in mean metabolite abun-
dance of 20% with an alpha of 0.01.

Thawed urine aliquots from each participant, prior to initiation
of anti-tuberculosis therapy and after two months of treatment,
were prepped and analyzed as described above. Comparing the av-
erage abundance of each of the ten identified molecules at diagnosis
and after 2 months of anti-tuberculosis treatment we noted statisti-
cally significant decreases in the overall abundance of all 10 mole-
cules after 60 days of treatment (paired t-test, Fig. 4) mean effect
size 1.46 (range 0.84–3.09, Cohen's d). These trends were also ob-
served on the individual patient level when comparing levels at
Fig. 5. Line Graph Showing Overall Abundance of Urinary Molecules Before and Sixty Days aft
Values are scaled to mean and Log2 transformed. Values are shown in log2 scale.
the time of enrollment, prior to initiation of therapy and at 2months
(Fig. 5).

4. Discussion

Identification of clinically relevant, non-sputum based biomarkers
capable of facilitating TB diagnosis remains a major unmet need in ef-
forts to achieve control of thepandemic [23,24]. Suchbiomarkers are es-
pecially needed in characteristically difficult to diagnose populations,
such as HIV-infected, children, and individuals with extrapulmonary
TB, where disease prevalence and mortality are especially high. To
date, few studies have looked for urine metabolite biomarkers for
er Initiation of Anti-tuberculosis Therapy. Each line represents an individual participant.
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tuberculosis and have mostly focused on volatile organic compounds
from breath or serum metabolites [25–27]. One recent study by Luier
et al., showed changes in tryptophan, phenylalanine, and tyrosine as sig-
nificant changes that occur in the urine in cases of active pulmonary tu-
berculosis [28]. This study, however, was limited by a small cohort of
participants with TB and did not include a validation cohort.

Our study identified N-acetylhexosamine, neopterin,
diacetylspermine, and sialic acids as potential discriminatory urinary bio-
markers of active TB. We found that these potential biomarkers discrimi-
nated active pulmonary tuberculosis from healthy controls with an
overall sensitivity and specificity of over 95% in a cohort of 204 partici-
pants fromHaiti, and from sick controls in an independent blinded cohort
of patients with active pulmonary tuberculosis and other non-tubercu-
lous causes of pulmonary disease fromVietnamwith anoverall sensitivity
and specificity of over 82%. These biomarkers remain significantly differ-
ent after adjustment for age, gender, and symptomatology. Interestingly,
neopterin, kynurenine, and sialic acids have all been individually reported
to be increased in blood, urine or pleural fluids of patients with TB in pre-
vious studies [29–34]. Neopterin has also been studied as a potential bio-
marker for HIV infection [35,36]. In our study, levels of neopterin were
increased in HIV infected participants when compared to HIV uninfected
but remained significantly higher in participantswith active TB regardless
of HIV status. N1,N12-diacetylspermine was similarly identified by
Mahapatra et al. as a potential biomarker of TB treatment response, as
well as a urinary biomarker for certain malignancies [13,37,38].

Many of the biomarkers identified in this study arewell known bioac-
tive products of activated immune cells. Neopterin and kynurenine are
downstream products of macrophage INF gamma signaling [39,40].
Spermine is thought to be a negative regulator of macrophage activation
[41].N-acetylated sugars and sialic acids are thought to be involved in im-
mune signaling through glycosaminoglycan (GAG) signaling and sialic-
acid-binding immunoglobulin like receptors (Siglecs) [42–45]. Interest-
ingly, increasing evidence indicates that immune regulation and
metabolic regulation are highly integrated and interdependent [46].
Moreover, several studies have identified specific transcriptional signa-
tures of TB [47–49] while others have reported specific T cell responses
[50,51]. These findings thus support the biological plausibility of a corre-
sponding immunometabolic signature of TB, the specificity of which re-
mains to be elucidated, but is supported by the apparent increased ROC
AUC associated with the specific combination of diacetylspermine,
neopterin, sialic acid 3, and N-acetylhexosamine. While the majority of
identified discriminatory metabolites correspond to putatively host-de-
rivedmolecules, the precise chemical identities of others remain to be de-
termined and leave open the possibility of microbe-derived products,
such as in the case of lipoarabinomannan [52].

In a subset of patients that were followed longitudinally, we found
that all ten molecules decreased with anti-tuberculosis treatment. Al-
beit a small cohort of participants, these findings raise the possibility
of an additional prognostic role for urine metabolites as potential bio-
markers of treatment response. Few studies have looked at metabolite
biomarkers to follow treatment response to TB drug therapy.Mahapatra
et al. looked at urine metabolite changes while participants were
being treated for tuberculosis. Although this study did not specifi-
cally look at metabolites that could be used for diagnosis, it also iden-
tified N1,N12-diacetylspermine as one of 12 urine metabolites
detected in participants with active pulmonary TB that significantly
decreased after treatment.

Taken together, this study is distinguished by the use of 2 dis-
tinct clinical cohorts of patients from different areas of the world,
that included sick controls, standardized experimental and analyt-
ical techniques, and orthogonal statistical methods to decrease the
chance of overfitting. Interestingly, many of the metabolites identi-
fied correspond to known products of activated immune cells, some
of which have, in fact, been previously reported in isolation. Their
rediscovery in this study and improved diagnostic power when
combined raise the intriguing possibility that elucidation of a TB
specific immune response can be aided through metabolomic as-
sessment of urinary products. We recognize as a limitation the
need for multiple reiterative studies in diverse populations to final-
ize biomarkers for a new diagnostic test. Our study was a first step,
demonstrating the potential of using LC-MS technology to discover
urinary biomarkers for TB diagnosis and identifying five candidates
for future studies. The development of a urine-based point-of-care
diagnostic for TB will ultimately require further elucidation of the
biological origin of these metabolites as well as their performance
in endemic clinical settings and additional populations, including
those with latent or extrapulmonary TB. However, the discovery
of a potential urinary immunometabolic signature of TB helps lay
the foundation for the future development of a novel biological
class of point-of-care diagnostic.
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